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Abstract

The pantograph equation is a special type of delay differential equation with applications in quantum mechanics
and electrodynamics. A generalized hybrid pantograph equation of fractional order involving deformable derivative
is considered in this work to carry out the stability analysis. The existence of solutions is established by employing
the measure of noncompactness and Darbo’s fixed point theorem while the contraction mapping principle is used for
proving the uniqueness of the solution. The link between the right-hand term of the given equation and the order of
the deformable derivative is established. The paper presents the results on Ulam-Hyers stability and the generalized
Ulam-Hyers stability of the proposed equation. Numerical simulations are provided to demonstrate the performed
theoretical analysis.
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1 Introduction

The concept of fractional order differentiation and integration has been known since 1695. However, various
methods and related theory were developed only during the 20*" century and thus an instantaneous growth of the
subject is evident via the interest of the researchers towards the field. Recent advancements in fractional calculus
with evolution of different types of derivative (conformable [29], deformable [2], M-conformable fractional derivative
[31], so on) has received the attention of many scientists who are working in applied sciences and engineering and this
because fractional differential equations provide better description for several real world applications. Indeed, fractional
calculus has strengthened the modeling capability of researchers in fields like quantum mechanics, solid state physics,
optical physics, chemical engineering, population dynamics, control systems, fractional multi-pantograph systems,
diffusion models and astronomy [25], 30, [28].

*Corresponding author
Email addresses: Souad.ayadi@univ-dbkm.dz (Souad Ayadi), jalzabut@psu.edu.sa (Jehad Alzabut), agmshc@gmail.com (A. George
Maria Selvam), dvignesh260@gmail.com (D. Vignesh)

Received: March 2022  Accepted: June 2023


http://dx.doi.org/10.22075/ijnaa.2023.26647.3376

2 Ayadia, Alzabut, Selvam, Vignesh

Pantograph, a mechanical device used to collect the current through a suspended wire in an electric train or
tram, was mathematically modeled in [32] 24]. Currently, the half pantograph is more common for compactness and
it provides a responsible design with single arm for trains moving at high speed. Several authors have studied the
pantograph equations considering various aspects and different derivative operators. For completeness, we report some
of them. In [19], the authors developed the Runge-Kutta methods for the following multi-pantograph equation

u'(t) = Eu(t) + Zai(t)u()\i(t)) + f(t),t > 0. (1.1)

However in [20], Liu and Li considered the nonlinear generalized multi-pantograph equation given by

z;’((éi Zfo(.t,u(t),u()\t), s u(An(t)), 0<t<T, (1.2)

and discussed the properties of the solution. Recently in [6], Pantograph equation with fractional order of the form

D%u(t) =P (¢, u(t),u(At)), 0 <t <T,

(1.3)
u(0) =up.

where D is the Riemann—Liouville fractional operator. The existence of solutions of (|1.3)) is obtained using fractional

calculus and fixed point theorems. In [I0], the existence results for generalized hybrid type pantograph equation of

fractional order given by

O‘—u(t) = u(t), u(o
D O u(t), () =U(t,u(t),u(ot)), 0 <t <1, (1.4)

u(0) =0,

where a, pu, 0 € (0,1). Further results regarding equation were established by Karimov et al in [I5]. The existence
and uniqueness results for nonlinear neutral pantograph equations with generalized fractional derivative was the topic
of the paper [32]. In [29], the authors explored the existence and uniqueness for a coupled Caputo conformable system
of pantograph equation. The analysis of impulsive boundary value pantograph problems via Caputo proportional
fractional derivative under Mittag-Leffler functions was discussed in [I7]. The asymptotic stability results of discrete
fractional pantograph equations with nonlocal initial conditions was carried out in [3].

Deformable derivative was developed in [2] to overcome the shortcoming of conformable derivative defined by R.
Khalil in [29] which lacks to include zero and negative numbers. The definition of the deformable derivative uses
limit approach as of classical differential equations while the range of the parameters varying over unit interval.
The term “deformable” refers to the intrinsic property of continuously deforming function to derivative. Thus, the
deformable derivative is linearly related to the usual derivative while it can be viewed as a derivative of fractional
order. The properties of deformable derivatives were provided in [34] whereas the existence and uniqueness results of
the deformable fractional equation were illustrated in [12} 23]. To the best of authors expectations, there is no papers
in the literature concerning the pantograph equation within the deformable fractional derivative.

Inspired by the above mentioned works and motivated by the advantage of deformable derivative over other types
of fractional derivatives, we carry out the stability analysis for the generalized hybrid type fractional pantograph
equation of the form:

0 u(t)

A R ORTEON)
u(0) =0

) = h(tult) u(6(1)), 0<t<1 (15)

where DY is the deformable fractional derivative, § € (0, 1) satisfying d+60 = 1 for some § > 0. Let L > 0 be such that L =

sup |¢ (¢,0,0)| and assume the following assumptions:
telo, 1]

(A) g e C([o, 1] xR xR,R— {O}),h c C([o, 1] x R x R,R) and ¢, € C([o, 1], [0, 1]),

(A2) I (b,2) = o (61, 2) | < max (Jan =, oz = gl )
(w1, @2) = h (b ysy2) | < max (Joy =il o = gal). £€ [0, Tyor,m0,91,90 € R,
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(A3) 3 M >0, such that |h(¢t,21,22) | < M, V21,29 € R.

The paper is structured in the following way. Section 2 provides basic mathematical requirements for the theoretical
analysis. The results of existence and uniqueness of solutions are presented in section 3. Stability analysis are performed
in the sense of Ulam and Hyers in section 4 followed with examples and simulations in section 5.

2 Prerequisites

In this section we will recall some important and basic definitions, preliminary facts and properties of deformable
derivative which will be used in this paper. By C ([0, 1],R) we denote the Banach space of continuous functions from
[0, 1] into R endowed with the norm

Jull = sup Ju(®)
telo, 1]

Definition 2.1. [34[12] Let h : [a, b] — R, 6,0 positive numbers with 0 < # < 1 and § + ¢ = 1. The deformable
derivative of h of order 0 at t € (a, b) is defined by

(DR) (t) = limy LR EFE0) — h(D)

e—0 3

(2.1)

If the limit exists, h is 0—differentiable at ¢

Remark 2.2. If 6 = 1, then § = 0, we recover the usual derivative. This shows that the deformable derivative is more
general than the usual derivative.

Definition 2.3. [34,[12] For 6 € (0, 1], the f—integral of the function h € L' ([a, b] , R4 ) is defined by

1 t
(I%) (1) = ge*%t/ 5 h(s)ds, tela,b], (2.2)
where  + 6 = 1. when a = 0 we write (I’h) instead of writing (I{h).

The following theorem is an important tool in our work, it gathers the most important properties of the operators
DY 19 which will be used in the sequel.

Theorem 2.4. [34, [12] 22| 21] Let 0,6,,05 € (0, 1] be such that § + 6 =1 and 0; + 6; = 1 for ¢ = 1,2. Then,

1. The operators DY and I? are linear.

2. The operators DY and I? are commutative.
3. DY(7) = 67, for all constant 7 € R
4. D?(hg) = (D°h) g + 6hDy.
5. Let h be continuous on [a, b] . Then, I?h is §—differentiable in (a,b) and we have
DY (I2h) (t) = h(t) (2.3)
19 (Dh) (t) = h(t) — e#@Dh(a). (2.4)

Lemma 2.5. [12] Let 6 € (0, 1]. The differential equation
(D°h) (t) =0
has solutions
h(t) = Te~ ot
where 7 € Ris a constant.

Theorem 2.6. [I8] (Banach Contraction Mapping Principle) A Contraction Mapping on a complete metric space has
exactly one fixed point.
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Now, we recall Darbo fixed point theorem which will be very useful for our work.

Theorem 2.7. [7, [I, 15] Let A be a nonempty, closed and convex subset of a Banach space X andlet T: A — A
be a continuous mapping. Assume that there exists a constant 7 € [0, 1) such that

W (TY) < 7 (Y)

for any nonempty subset Y of A, where p is a measure of noncompactness defined in X. Then T has a fixed point in
A.

For more details on non-compactness measures and Darbo’s fixed points theorems, the reader is invited to consult
[7, [T, 15, 8, 5]. We denote by M x the family of all nonempty bounded subset of X. The following definition constitutes
an important tool for our purposes.

Definition 2.8. [I5,[9] Let X be a Banach algebra. A measure of noncompactness p is said to satisfy condition (m)
if it satisfies the following condition:
p(YZ) < IY[[u(2) + 121 u(Y)

for any Y, Z € Mx, where YZ ={yz /ye Y,z € Z}.

Let us mention that the Banach space (C'[a, b],].||) is a Banach algebra, where the multiplication is defined as
the usual product of real functions and ||u|| = sup wu(t), u € C|a, b]. The concept of measure of noncompactness
t€la, b]

in C'[a, b] is needed in the sequel. Let ¢ > 0, for a fixed set Y € Mx and y € Y, the modulus of continuity of y is
defined as follow:

w(y,e) = sup{|y(t) — y(5)| : t,s €la, b, |t — 5| < 5}.
As cited in [I5], it was proven in [§] that

wo(Y) =limw (Y,¢)

e—0

is a measure of noncompactness in C'[a, b] , with

w(Y,e) =sup{w(y,e): yeY}.

3 Main result

Let X = (C[0, 1],R) be the Banach space of real functions defined and continuous on [0, 1] equipped with the

usual norm given by |lu|| = sup u(t), u € X.
t€[0,1]

Lemma 3.1. Let h € C' ([0, 1],R) and g € C ([0, 1] ,R*). The function u € C ([0,1],R)
such that

u(t) = ég(t)e_%t/o egsh(s) ds

is a solution for the fractional initial value problem

DY (“(t)> =h(t), te0,1]

g(t)
u(0) =0

where DY is the deformable fractional derivative of order  with § +6 =1,0 <60 < 1, and § # 0.

u u
Proof . Since — is continuous on [0, 1] and h is a continuous anti-f-derivative of — over [0, 1], we have
g g

(%) w=rmo
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by (2.4), we obtain

1 t
using the initial condition u(0) = 0, it follows that u(t) = gg(t)e’%t/ egsh(s) ds. O
0

Theorem 3.2. Assume that (A;) — (A4s) hold. If
M<$ (3.1)

then the Problem ([1.5) has at least one solution.

Proof . We will prove this theorem in frame of Theorem(2.7). In view of Lemma we define on C ([0, 1]) the
operator F by

Fu(t) = ge~#' (tu(t), u(p(0) / e#°h (s, u(s), u(9(s))) ds. (3.2)

For any uw € C ([0, 1]) and ¢ € [0, 1], it is clear that Fu = (¥u)(Yu), where U, T are the operators defined by

Yu(t) = @ (¢, u(t), u(y(t)))

and

Tu(t) = ~e 8 /Oe%Sh(s,u(s),u(qs(s))) ds.

The proof will be done in four steps:

Step 1: F is well defined,i.e, Fu € C[0, 1] for any u € C[0, 1]. Let us prove that $u, Yu are in C[0, 1]. let (¢,)
a sequence in [0, 1] which converge to to in [0, 1] as n — 4o00. It can be easily seen that that for any v € C[0, 1], we
have Wy is continuous on [0, 1]. Indeed

|Wa(t) = Wulto)| = [ (bn ultn), u((ta))) = @ (to, ulto), u(@ (k) | — 0,
on the other hand, taking into account that ¢, < t,, we obtain
1 _s, [ s, sy [0 s,
Yu(ta) = Tu(to)| =| e 3 / e*h (s, u(s), u(¢(s))) ds — ze b / €81 (s,u(s), u(@(s))) ds|
0

IN

IA

IN IN
= = DI DI
= =

[67%% (eig(tn%o) B 1) (egtn _ 1) + (e%(tnfto) _ 1)] — 0.

n—-+oo

L
iR We claim that F(B,) C B, B, ={ue C[0,1] / |lul]| <r}
Indeed, take w € B, then for any t € [0, 1], we have

Step 2: Selecting r > 5

[Fu)] < [o w0, utw )| [ e [ 8 s, u(s), u(o5)) ds

0

@ (Lu®u@®) | < e ), uw®) - ¢ (6,0,0) |+ |¢(£,0,0)|
< max (Ju()], lu((®)]) + L
< Jul+L
< r+1L
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t
,ét/ R
eo
0 0

L5y [* s,
5e 1 [ ebh s e o) as

IN
|
g

|

h (s, u(s), u(d(s))) | ds

t
< 1e_%tM/ e ds
0 0
1 _sy Sy
< et M(69 —1)
1
1
< hu(e

we deduce that

Fu)] < So+nym(1-ed)
[ra| < Se+nya(1-e9)
< Lo+
< r

This last result yields from the selection of r. That is F(B,) C B.. Moreover, for any v in B, we have the following
estimations

|Pul| <r+L

and

[Tul] - <

(-

SISEdIS

<

Step 3: We prove that F is continuous on the Ball B,..

Claim 1: ¥ is continuous. For this purpose let us consider u,v € B, with ||u — v| — 0.
uU—v

|wu(t) = wot)| = [ (b ut) u@®) — ¢ (o0, v @ 0)) |
< max (Ju(t) — v(®)], [u((t) - v(()])

hence,

Py — \IIUH < |luw—wv|] — 0.
uU—rv

Claim 2: T is continuous. Indeed, let p be a real positive number and u,v € B, such that ||ju — v|| < p. For any t € [0, 1]

we have
‘Tu(t)—Tfu(t)‘ - ‘%e*3t[/{Jtegsh(s7u(s)7u(¢(s))) ds—/Otegsh(sm(s),v(qﬁ(s))) ds”

< get [leb b st o6~ s.0(o) (606D | s
< et [eBman (Ju(s) — (sl ul(s) — o6(s))]) ds
< e ] (8t 1)
< Slu—of (1-e7H)

[ru-ro] < Zu-ol(1-e7%)
< (=) o

Since F = ¥Y, we deduce the continuity of F.
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Step 4: We show that F is a contraction with respect to some measure of noncompactness in (C'[0, 1]). Let us consider
the operator F : B, — B, defined by Fu = (Vu)(Yu). Let Y a nonempty set of B, and u € Y, we need to estimate wo(Pu)
and wo(Yu). As 9 is uniformly continuous we have

Ve >0, 3n > 0such that [t1 — t2| <np = [¢Y(t1) — Y(t2)]| < e.
According to this, let take t1,t2 € [0, 1] with [t; — 2] <7 <e.

Wulta) = Wulta)| = [ (b1, ults), u((t)) = @ (ta,ulta), u((t2))) |
= | (b, ut) (W (0) + @ (b1 uta), u(b(t2))) = @ (b ulte), u((t2))) — ¢ (b2, ulta), u(@(t2))) |

< ot utt), u@n) — o (b, ulta) ul@(t2)) | + [o (b, ute), u(@(t2) = ¢ (2, ulte), u(w(t2) |
< max ([u(ty) — ulta)], [u((t)) - u(@(t2)]) +w (2.e)
< w(Y,e) +wl(p,e)

where

w () = sup {0 (b1, ult2), u((t2))) = @ (b2, ult), u(i(t2))

’ |t1_t2| <eg, ti,t2 € [07 1]}7 W(Y7€):Sup{w(u7€)7 UEY}

and
w(u,e) = sup{‘u(tl) —u(tg)‘, [t1 — ta] <&, t1,t2 €0, 1]}

In view of the uniform continuity of ¢ (¢, z1, z2) we have lirréw (p,€) = 0. Therefore,
e—
wo (PY,e) <wp (V).

Now, we move on to estimating wo(YTw). For this purpose, let 0 < ¢ < ¢2 < 1 and |1 — t2| < v < &, for a given £ > 0. For
any u € Y we have

1 _s, [T s, 1 s, [T s,
Yu(t) = Yu(e)| = [ge " [Tebhis s uo()) ds - ge i [ Tebh (s u(s),uo() s
0 0
to to
< et [Tl ns s u@n) [ds+ glem b - b [Teb s uts) u(ée) | ds
t 0
t t
< %67%“/Qegsds—k%)e*%tl—e*gtz /2egsds
J t J 0
M — 8 (t1—tg) — 8 (ty—tg) M _sy — 94
< = 1—t2) _ 1—t2) _ _ " 1 2
S G Bt o Gl b e o GRS
2M 7é(t 7t)
< (e @ 1—t2 -1
< 5 ( )
o Sy
Then Y
w(Tu,e) < - (e%s - 1)
and
wo (Yu) = 0.

Now, we can deduce the estimate of wo (FY'). Using the fact that wo (Y Z) < ||Y||wo(Z) + || Z||wo(Y) and the estimations of
[leY ||, ITY || we have

wo (FY) = wo((¥Y)(YY))
< WY lwo (YY) + [ TY [Jwo (PY)
< %wo (Y)
< owo (Y)
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M
where 0 < 0 = 5 < 1. That is F' is a contraction with respect to the measure of noncompactness wg. From steps

(1) — (4) the operator F' : B, — B, is a continuous contraction with respect to the measure of noncompactness
wp, then by Theorem the operator F' has at least a fixed point in B,.. Therefore, the Problem (|1.5) has at least a
solution. [J
Theorem 3.3. Assume that the conditions (A1) — (As) hold and let r be such that r <6 — M — L If

§ — M > maz (L, \/L6> (3.3)
then problem (|1.5)) has a unique solution on B,..

Proof . We prove that the operator F is a contraction. Let u,u* € C([0,1],R) and t € [0, 1], we have
1 t
[Fu(t) —Fu (1) ]eegtso(t,u(t),u(w(t») / €81 (s, u(s), u(g(s))) ds
0

1 _sy u* ut tegs s, u*(s), u*(P(s S
L), <¢<t>>>/0 h (s, (s),u" (8(s))) d

< g et @] | [ s uom)
=)o (o) as| + | e o o) oo
(bt (£), u V(1)) | / €31 (s,u" (), u* (8(5)) ds
S%e‘gt [(r +1IL) (e%t - 1) +M (e%t - 1)} llu —u*|
g% (1= e#) G+ L+ M) Ju—
IFu(t) — Fu* (1) s% (1=¢?) r+ L+ M) lu— |
g%(r—i—L—i—M) I — |

Since

<r < d—M — L the mapping F is a contraction such that F(B,) C B,. Hence, by Banach contraction

principle the operator F has a unique fixed point. [J

4 Ulam-Hyers Stability

Stability analysis is a popular topic among the mathematicians and is crucial in understanding the dynamics
of the mathematical models constructed representing real world phenomena. Differential equations with quadratic
perturbations of fractional order has been of recent interest and stability of the equation are carried out in [IT], 3] 26
13, 4]. This section is devoted for establishing the Ulam- Hyers stability results for the considered problem .

Q1) e C([o, 1] xR x R,R" — {0})7h c C([O, 1] x R x R,R) and ¢, € C([o, 1], [0, 1]).
Definition 4.1. [27] [Ulam-Hyers Stability]If there exist a real number P > 0 such that for ¢ > 0 and for every
solution u; € C([0,1],R) of the inequality

Ul(t)

<<P(t,U1(t)’U1 (¥ ()
there exists u € C([0,1],R) that solves (L.5) with

0
0+

) - h(t,m(t),ulw(t)))’ <e telo], (4.1)

|up — u| < Pe. (4.2)

Then the hybrid fractional pantograph equation via deformable derivative in (|1.5)) is Ulam-Hyers stable.
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Definition 4.2. |27] [Generalized Ulam-Hyers Stability] If ¢ € C(RT,R*) with ¢(0) = 0 exists, such that for every
uy € C([0,1],R) that solves (4.1)), there exists u € C([0,1],R) of (1.5 with

lur —ul < {(e). (4.3)

Then the initial value fractional hybrid pantograph equation involving deformable derivative (1.5 is generalized
Ulam-Hyers stable.

Theorem 4.3. Assume that conditions (Q1), (As), (A3) are satisfied. If
1
A==(r+L+M)<1 (4.4)

and (3.3) hold, then there exists P > 0 and a unique u € C([0,1],R) such that

lus — | < Pe. (4.5)
That is is Ulam-Hyers stable.
Proof . Let u; €€ C([0,1],R) such that
0 ua (1) : _
’Dm ((p (ml(t)’ulw(t)))) —h (t,ul(tml(qs(t)))’ <&, with w1 (0)=0 te0,1]. (4.6)

Integrating and using u1(0) = 0, we have

( uy (t)
@ (tur(t), ur((1)))

Hence,

Jua(8) = i (& () wa (@(0) 16 (h (8, w1 (), wa (60) | < [28(E) [ (8 1 (), wa (2))) |

That is

IN

('b‘
|
o~
o\
&
@
|
w
Q)

ju(8) — F(un)(1)]

IN
N
—

\

&‘0‘

SS9
~+
N—
—
=
+
h
~
™

IN

o - 2o

SO e S N e~ I
/N
—
\
®
SN[
~—
—
=3
+
b(
-
()

On the other hand
RO
< %(r—i—L—l—M)Hul—uH.

Furthermore,

IN

Joa =] + ) =]

IN

o

N

b

1 1
< S(r+L)€+g(r+L+M)Hu1—u
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then,
(1—%(T+L—I—M))Hu1—uH S%(r%—L)E.

Since r + L + M < § we have

(r+1L)
_ <V v7
Hu1 uH S5+ L+ M)
L
setting P = (M we have
Hu1 — u” < Pe.

Therefore, fractional hybrid pantograph equation via deformable derivative in (|1.5]) is Ulam-Hyers stable and the
generalized Ulam-Hyers stability is obtained by replacing Pe = ((g) with ¢(0) = 0. O

5 Examples
Example 5.1. Let us consider the following fractional hybrid problem
i B (14 t)u(t) _acos(2nt) | uP(t) n u?(t?) O<t<i
"\afut + e 1] )~ B [POFT T E@ 1] (5.1)

u(0) =0

where a, 3, A, B > 0 with 24a — 58 < 0, 2A < B. Let us point out that the Problem is similar to the Problem

LAl where
(u+v+1), i) =e*

<p(t7u,v)=m

a cos (27t) u? v? 9 3 1 3a A 24 A
h(t = 1 )y=t0=-,0=- M=—,L=—=,1r>———.
(7”7’0) B(1+t)2 <u2—|—1+v2—|—1+ 7¢() 9 47 47 B7 B7 r =z

We easily check that assumptions (Az) and (A3) hold. On the other hand M < § since 24a — 58 < 0. Furthermore,
assumption A; hold for ¢ and h. Indeed, for any ¢ € [0, 1] and z,y, u, w € R, we have

ap(t;vy)—go(tuv)‘ < 4 )x—u’—l—‘y—v‘
v B ~— B(l1+%)
2A
< P _ .
< Bmax(’:p ul, |y v‘)
< max(‘xu,yv‘).
In the same way
acos (2mt) |z] |l )
h(t,z,y)—h(tu, < N
(t,z,y) (“U)‘ B(1+1) ((x2+1)(u2+1)+(x2+1)(u2+1) ‘x u‘

lyl [v]
N ((y2 + 1)y(v2 ) S R VY 1)) ‘y B “”

)

4o (
< — max ’x—u

7

h(taxay) - h(t,U7U)

y—v

=il

B

=

IN
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All conditions of Theorem [3.2] are satisfied, then the fractional order problem [5.1] has at least one solution. Let the
parameters A, B, o and 3 take the values 0.3,5,0.1 and 7.5 respectively. From the condition (3.3), we get § — M = 0.21
which is clearly greater than max{0.06,0.1224}. Thus, the considered problem has an unique solution. Using
these values we now check the Ulam-Hyers stability of from Theorem Substituting the parameters value
in A defined in , we yield A = 0.41641 which is clearly less than 1. Further, we shall illustrate the impact of
the parameters o and § on the stability criterion by varying o € [0.05,0.2]and 8 € [4,8] such that the condition
24 — 503 < 0 is satisfied. Table [I] presents the value of A for different choices of @ and 3 and corresponding the
3-dimensional plot is displayed in Figure[I] From the tabulation and numerical simulation, we ensure the Ulam-Hyers
stability of the considered problem for the assumed parameter values.

Figure 1: Impact of the change of values for the parameters o and 8 on A.

Table 1: Impact of the change of values for the parameters a and 3 on A.
B [a=005]a=01]a=015] a=0.2
A

4.0 | 0.40531 | 0.57272 | 0.74268 | 0.91578
4.5 | 0.38685 | 0.53532 | 0.68571 | 0.83841
5.0 | 0.37210 | 0.50548 | 0.64037 | 0.77702
5.5 | 0.36004 | 0.48113 | 0.60342 | 0.72711
6.0 | 0.35000 | 0.46086 | 0.57272 | 0.68571
6.5 | 0.34150 | 0.44375 | 0.54681 | 0.65081
7.0 | 0.33423 | 0.42909 | 0.52465 | 0.62100
7.5 1 0.32793 | 0.41641 | 0.50548 | 0.59522
8.0 | 0.32242 | 0.40531 | 0.48873 | 0.57272

Example 5.2. This example establishes the Ulam-Hyers stability result for hybrid fractional problem of the form

Do.e( u(t) u(t)
"\ cos (u (ﬁ)) -K u(t) +1
u(0) =0

) = Asin(u®(t)) + B , 0<t<1

(5.2)

Comparison of Equation (5.2) with (1.5) yields ¢ (¢,u,v) = cos (u (%H)) - K, ¢¥(t) = 1L+t h(t,u,v) =
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t
Asin(u?(t)) + B u(t) . We know that L = sup |¢(¢,0,0)] = 1 — K. and from the assumption (A3) we get
u(t) +1 tefo, 1]
1 1
M = A+ B. Let us assume A = —, B = — and K = 0.92. Calculations yield the following values § = 0.6, § = 0.4,

M = 0.2, L = 0.08. Direct observé(‘gions en%@?lre the satisfaction of condition presented in Theorem (3.2 Firstly,
the condition yields 6 — M = 0.2 > max{0.08,0.1788} ensuring that the problem has a unique solution.
We shall now numerically analyse the stability of the considered problem in the sense of Ulam and Hyers. The
value of r defined in Theorem is 0.08 and the condition A in is evaluated as 0.9 < 1. Thus, for the assumed
parameter values the fractional order hybrid equation is Ulam-Hyers stable. We now proceed the demonstrate the
impact of the M and L by suitable choice of K, A, B. Table 2] and Figure [2] demonstrates the impact of value of
M €0.01,0.2] and L € [0.02,0.08].

[=—L=002==L=004==1=006=L=008]

T T 1
0.10 0.12 0.14 0.16 0.18 0.20
M

T T
0.06 0.08

T
0.02 0.04

Figure 2: Impact of the change of values for the M and L on A.

Table 2: Impact of the change of values for the M and L on A.
M [L=002[L=004]L=0.06]L=0.08
A

0.01 | 0.07628 | 0.12756 | 0.17884 | 0.23012
0.03 | 0.12905 | 0.18310 | 0.23714 | 0.29121
0.05 | 0.18214 | 0.23928 | 0.29642 | 0.35357
0.07 | 0.23560 | 0.29621 | 0.35681 | 0.41742
0.09 | 0.28951 | 0.35403 | 0.41854 | 0.48306
0.11 | 0.34396 | 0.41293 | 0.48189 | 0.55086
0.13 | 0.39907 | 0.47314 | 0.54722 | 0.62129
0.15 | 0.45500 | 0.53500 | 0.61500 | 0.69500
0.17 | 0.51195 | 0.59891 | 0.68586 | 0.77282
0.19 | 0.57023 | 0.66547 | 0.76071 | 0.85595

6 Conclusion

The work established the existence results for hybrid fractional pantograph equation as an application to Darbo’s
fixed point theorem. The study also proved the unique solution for the problem and performed stability analysis.
Examples resembling the considered generalized pantograph equation are presented and the values are assumed for
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the parameters such that the basic criterion are satisfied. The impact of the parameters are discussed with simulation
provided as 3-dimensional and 2-dimensional portraits. The plots are simulated focusing on the value of A which is
vital for determining the stability and existence of unique solutions. The tabulation for value of A at different possible
states are given and it is evident that the simulations support the obtained theoretical results.
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