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Abstract

The pantograph equation is a special type of delay differential equation with applications in quantum mechanics
and electrodynamics. A generalized hybrid pantograph equation of fractional order involving deformable derivative
is considered in this work to carry out the stability analysis. The existence of solutions is established by employing
the measure of noncompactness and Darbo’s fixed point theorem while the contraction mapping principle is used for
proving the uniqueness of the solution. The link between the right-hand term of the given equation and the order of
the deformable derivative is established. The paper presents the results on Ulam-Hyers stability and the generalized
Ulam-Hyers stability of the proposed equation. Numerical simulations are provided to demonstrate the performed
theoretical analysis.
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1 Introduction

The concept of fractional order differentiation and integration has been known since 1695. However, various
methods and related theory were developed only during the 20th century and thus an instantaneous growth of the
subject is evident via the interest of the researchers towards the field. Recent advancements in fractional calculus
with evolution of different types of derivative (conformable [29], deformable [2], M-conformable fractional derivative
[31], so on) has received the attention of many scientists who are working in applied sciences and engineering and this
because fractional differential equations provide better description for several real world applications. Indeed, fractional
calculus has strengthened the modeling capability of researchers in fields like quantum mechanics, solid state physics,
optical physics, chemical engineering, population dynamics, control systems, fractional multi-pantograph systems,
diffusion models and astronomy [25, 30, 28].
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Pantograph, a mechanical device used to collect the current through a suspended wire in an electric train or
tram, was mathematically modeled in [32, 24]. Currently, the half pantograph is more common for compactness and
it provides a responsible design with single arm for trains moving at high speed. Several authors have studied the
pantograph equations considering various aspects and different derivative operators. For completeness, we report some
of them. In [19], the authors developed the Runge-Kutta methods for the following multi-pantograph equation

u′(t) = ξu(t) +

m∑
i=1

σi(t)u(λi(t)) + f(t), t ≥ 0. (1.1)

However in [20], Liu and Li considered the nonlinear generalized multi-pantograph equation given by

u′(t) =Ψ(t, u(t), u(λt), . . . , u(λm(t))), 0 ≤ t ≤ T,

u(0) =u0.
(1.2)

and discussed the properties of the solution. Recently in [6], Pantograph equation with fractional order of the form

Dαu(t) =Ψ(t, u(t), u(λt)), 0 ≤ t ≤ T,

u(0) =u0.
(1.3)

where D is the Riemann–Liouville fractional operator. The existence of solutions of (1.3) is obtained using fractional
calculus and fixed point theorems. In [10], the existence results for generalized hybrid type pantograph equation of
fractional order given by

Dα u(t)

Θ(t, u(t), y(µt))
=Ψ(t, u(t), u(σt)), 0 < t < 1,

u(0) =0,

(1.4)

where α, µ, σ ∈ (0, 1). Further results regarding equation (1.4) were established by Karimov et al in [15]. The existence
and uniqueness results for nonlinear neutral pantograph equations with generalized fractional derivative was the topic
of the paper [32]. In [29], the authors explored the existence and uniqueness for a coupled Caputo conformable system
of pantograph equation. The analysis of impulsive boundary value pantograph problems via Caputo proportional
fractional derivative under Mittag-Leffler functions was discussed in [17]. The asymptotic stability results of discrete
fractional pantograph equations with nonlocal initial conditions was carried out in [3].

Deformable derivative was developed in [2] to overcome the shortcoming of conformable derivative defined by R.
Khalil in [29] which lacks to include zero and negative numbers. The definition of the deformable derivative uses
limit approach as of classical differential equations while the range of the parameters varying over unit interval.
The term “deformable” refers to the intrinsic property of continuously deforming function to derivative. Thus, the
deformable derivative is linearly related to the usual derivative while it can be viewed as a derivative of fractional
order. The properties of deformable derivatives were provided in [34] whereas the existence and uniqueness results of
the deformable fractional equation were illustrated in [12, 23]. To the best of authors expectations, there is no papers
in the literature concerning the pantograph equation within the deformable fractional derivative.

Inspired by the above mentioned works and motivated by the advantage of deformable derivative over other types
of fractional derivatives, we carry out the stability analysis for the generalized hybrid type fractional pantograph
equation of the form: Dθ

0+

( u(t)

φ (t, u(t), u(ψ(t)))

)
= h (t, u(t), u(ϕ(t))) , 0 ≤ t ≤ 1

u(0) = 0
(1.5)

whereDθ is the deformable fractional derivative, θ ∈ (0, 1) satisfying δ+θ = 1 for some δ > 0. Let L > 0 be such that L =
sup

t∈[0, 1]

|φ (t, 0, 0) | and assume the following assumptions:

(A1) φ ∈ C
(
[0, 1]× R× R,R− {0}

)
, h ∈ C

(
[0, 1]× R× R,R

)
and ϕ, ψ ∈ C

(
[0, 1], [0, 1]

)
,

(A2) |φ (t, x1, x2)− φ (t, y1, y2) | ≤ max
(
|x1 − y1|, |x2 − y2|

)
,

|h (t, x1, x2)− h (t, y1, y2) | ≤ max
(
|x1 − y1|, |x2 − y2|

)
, t ∈ [0, 1], x1, x2, y1, y2 ∈ R,
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(A3) ∃M > 0, such that |h (t, x1, x2) | ≤M, ∀ x1, x2 ∈ R.

The paper is structured in the following way. Section 2 provides basic mathematical requirements for the theoretical
analysis. The results of existence and uniqueness of solutions are presented in section 3. Stability analysis are performed
in the sense of Ulam and Hyers in section 4 followed with examples and simulations in section 5.

2 Prerequisites

In this section we will recall some important and basic definitions, preliminary facts and properties of deformable
derivative which will be used in this paper. By C ([0, 1] ,R) we denote the Banach space of continuous functions from
[0, 1] into R endowed with the norm

∥u∥ = sup
t∈[0, 1]

|u(t)|

Definition 2.1. [34, 12] Let h : [a, b] −→ R, θ, δ positive numbers with 0 ≤ θ ≤ 1 and θ + δ = 1. The deformable
derivative of h of order θ at t ∈ (a, b) is defined by

(
Dθh

)
(t) = lim

ε→0

(1 + εδ)h (t+ εθ)− h(t)

ε
(2.1)

If the limit exists, h is θ−differentiable at t

Remark 2.2. If θ = 1, then δ = 0, we recover the usual derivative. This shows that the deformable derivative is more
general than the usual derivative.

Definition 2.3. [34, 12] For θ ∈ (0, 1] , the θ−integral of the function h ∈ L1 ([a, b] ,R+) is defined by

(
Iθah
)
(t) =

1

θ
e−

δ
θ t

∫ t

a

e
δ
θ sh(s) ds, t ∈ [a, b] , (2.2)

where θ + δ = 1. when a = 0 we write
(
Iθh
)
instead of writing

(
Iθ0h
)
.

The following theorem is an important tool in our work, it gathers the most important properties of the operators
Dθ, Iθa which will be used in the sequel.

Theorem 2.4. [34, 12, 22, 21] Let θ, θ1, θ2 ∈ (0, 1] be such that θ + δ = 1 and θi + δi = 1 for i = 1, 2. Then,

1. The operators Dθ and Iθa are linear.

2. The operators Dθ and Iθa are commutative.

3. Dθ(τ) = δτ, for all constant τ ∈ R
4. Dθ(hg) =

(
Dθh

)
g + θhDg.

5. Let h be continuous on [a, b] . Then, Iθah is θ−differentiable in (a, b) and we have

Dθ
(
Iθah
)
(t) = h(t) (2.3)

Iθa
(
Dθh

)
(t) = h(t)− e

δ
θ (a−t)h(a). (2.4)

Lemma 2.5. [12] Let θ ∈ (0, 1] . The differential equation(
Dθh

)
(t) = 0

has solutions
h(t) = τe−

δ
θ t,

where τ ∈ R is a constant.

Theorem 2.6. [18] (Banach Contraction Mapping Principle) A Contraction Mapping on a complete metric space has
exactly one fixed point.
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Now, we recall Darbo fixed point theorem which will be very useful for our work.

Theorem 2.7. [7, 1, 15] Let Λ be a nonempty, closed and convex subset of a Banach space X and let T : Λ −→ Λ
be a continuous mapping. Assume that there exists a constant τ ∈ [0, 1) such that

µ (TY ) ≤ τµ (Y )

for any nonempty subset Y of Λ, where µ is a measure of noncompactness defined in X. Then T has a fixed point in
Λ.

For more details on non-compactness measures and Darbo’s fixed points theorems, the reader is invited to consult
[7, 1, 15, 8, 5]. We denote by MX the family of all nonempty bounded subset of X. The following definition constitutes
an important tool for our purposes.

Definition 2.8. [15, 9] Let X be a Banach algebra. A measure of noncompactness µ is said to satisfy condition (m)
if it satisfies the following condition:

µ (Y Z) ≤ ∥Y ∥µ(Z) + ∥Z∥µ(Y )

for any Y, Z ∈ MX , where Y Z = {yz / y ∈ Y, z ∈ Z} .

Let us mention that the Banach space (C [a, b] , ∥.∥) is a Banach algebra, where the multiplication is defined as
the usual product of real functions and ∥u∥ = sup

t∈[a, b]

u(t), u ∈ C [a, b] . The concept of measure of noncompactness

in C [a, b] is needed in the sequel. Let ε > 0, for a fixed set Y ∈ MX and y ∈ Y, the modulus of continuity of y is
defined as follow:

ω (y, ε) = sup
{∣∣y(t)− y(s)

∣∣ : t, s ∈ [a, b] ,
∣∣t− s

∣∣ ≤ ε
}
.

As cited in [15], it was proven in [8] that

ω0(Y ) = lim
ε→0

ω (Y, ε)

is a measure of noncompactness in C [a, b] , with

ω (Y, ε) = sup
{
ω (y, ε) : y ∈ Y

}
.

3 Main result

Let X = (C [0, 1] ,R) be the Banach space of real functions defined and continuous on [0, 1] equipped with the
usual norm given by ∥u∥ = sup

t∈[0,1]

u(t), u ∈ X.

Lemma 3.1. Let h ∈ C ([0, 1] ,R) and g ∈ C ([0, 1] ,R∗) . The function u ∈ C ([0, 1] ,R)
such that

u(t) =
1

θ
g(t)e−

δ
θ t

∫ t

0

e
δ
θ sh(s) ds

is a solution for the fractional initial value problemDθ

(
u(t)

g(t)

)
= h(t), t ∈ [0, 1]

u(0) = 0

where Dθ is the deformable fractional derivative of order θ with θ + δ = 1, 0 ≤ θ ≤ 1, and δ ̸= 0.

Proof . Since
u

g
is continuous on [0, 1] and h is a continuous anti-θ-derivative of

u

g
over [0, 1] , we have

Iθ0

(
u

g

)
(t) = Iθ0 (h) (t)
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by (2.4), we obtain
u(t)

g(t)
− u(0)e−

δ
θ =

1

θ
e−

δ
θ t

∫ t

0

e
δ
θ sh(s)ds,

using the initial condition u(0) = 0, it follows that u(t) =
1

θ
g(t)e−

δ
θ t

∫ t

0

e
δ
θ sh(s) ds. □

Theorem 3.2. Assume that (A1)− (A3) hold. If
M < δ (3.1)

then the Problem (1.5) has at least one solution.

Proof . We will prove this theorem in frame of Theorem(2.7). In view of Lemma 3.1, we define on C ([0, 1]) the
operator F by

Fu(t) =
1

θ
e−

δ
θ tφ (t, u(t), u(ψ(t)))

∫ t

0

e
δ
θ sh (s, u(s), u(ϕ(s))) ds. (3.2)

For any u ∈ C ([0, 1]) and t ∈ [0, 1] , it is clear that Fu = (Ψu)(Υu), where Ψ,Υ are the operators defined by

Ψu(t) = φ (t, u(t), u(ψ(t)))

and

Υu(t) =
1

θ
e−

δ
θ t

∫ t

0

e
δ
θ sh (s, u(s), u(ϕ(s))) ds.

The proof will be done in four steps:

Step 1: F is well defined,i.e, Fu ∈ C[0, 1] for any u ∈ C[0, 1]. Let us prove that Ψu,Υu are in C[0, 1]. let (tn)
a sequence in [0, 1] which converge to t0 in [0, 1] as n → +∞. It can be easily seen that that for any u ∈ C[0, 1], we
have Ψu is continuous on [0, 1]. Indeed∣∣∣Ψu(tn)−Ψu(t0)

∣∣∣ =
∣∣∣φ (tn, u(tn), u(ψ(tn)))− φ (t0, u(t0), u(ψ(t0)))

∣∣∣ −→
n→+∞

0,

on the other hand, taking into account that t0 ≤ tn we obtain∣∣∣Υu(tn)−Υu(t0)
∣∣∣ =∣∣∣1

θ
e−

δ
θ
tn

∫ tn

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds− 1

θ
e−

δ
θ
t0

∫ t0

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds

∣∣∣
≤
∣∣∣1
θ
e−

δ
θ
tn

∫ tn

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds− 1

θ
e−

δ
θ
t0

∫ tn

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds

∣∣∣
+

∣∣∣1
θ
e−

δ
θ
t0

∫ tn

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds− 1

θ
e−

δ
θ
t0

∫ t0

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds

∣∣∣
≤1

θ

(
e−

δ
θ
tn − e−

δ
θ
t0
)∫ tn

0

e
δ
θ
s
∣∣∣h (s, u(s), u(ϕ(s))) ∣∣∣ds+ 1

θ
e−

δ
θ
t0

∫ tn

t0

e
δ
θ
s
∣∣∣h (s, u(s), u(ϕ(s))) ∣∣∣ds

≤1

θ
M

[ (
e−

δ
θ
tn − e−

δ
θ
t0
)∫ tn

0

e
δ
θ
sds+ e−

δ
θ
t0

∫ tn

t0

e
δ
θ
sds

]
≤1

δ
M

[ (
e−

δ
θ
tn − e−

δ
θ
t0
)(

e
δ
θ
tn − 1

)
+ e−

δ
θ
t0
(
e

δ
θ
tn − e

δ
θ
t0
) ]

≤1

δ
M

[
e−

δ
θ
t0
(
e−

δ
θ
(tn−t0) − 1

)(
e

δ
θ
tn − 1

)
+

(
e

δ
θ
(tn−t0) − 1

) ]
−→

n→+∞
0.

Step 2: Selecting r ≥ ML

δ −M
. We claim that F (Br) ⊂ Br, Br = {u ∈ C[0, 1] / ∥u∥ ≤ r}

Indeed, take u ∈ Br then for any t ∈ [0, 1], we have∣∣∣Fu(t)∣∣∣ ≤ ∣∣∣φ (t, u(t), u(ψ(t)))
∣∣∣∣∣∣1
θ
e−

δ
θ
t

∫ t

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds

∣∣∣
∣∣∣φ (t, u(t), u(ψ(t)))

∣∣∣ ≤
∣∣∣φ (t, u(t), u(ψ(t)))− φ (t, 0, 0)

∣∣∣+ ∣∣∣φ (t, 0, 0)
∣∣∣

≤ max
(
|u(t)|, |u(ψ(t)|

)
+ L

≤ ∥u∥+ L

≤ r + L
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∣∣∣1
θ
e−

δ
θ
t

∫ t

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds

∣∣∣ ≤ 1

θ
e−

δ
θ
t

∫ t

0

e
δ
θ
s
∣∣∣h (s, u(s), u(ϕ(s))) ∣∣∣ ds

≤ 1

θ
e−

δ
θ
tM

∫ t

0

e
δ
θ
s ds

≤ 1

δ
e−

δ
θ
tM

(
e

δ
θ
t − 1

)
≤ 1

δ
M

(
1− e−

δ
θ
t
)

we deduce that∣∣∣Fu(t)∣∣∣ ≤ 1

δ
(r + L)M

(
1− e−

δ
θ
t
)

∥∥∥Fu∥∥∥ ≤ 1

δ
(r + L)M

(
1− e−

δ
θ

)
≤ M

δ
(r + L)

≤ r.

This last result yields from the selection of r. That is F(Br) ⊂ Br. Moreover, for any u in Br we have the following
estimations

∥Ψu∥ ≤ r + L

and

∥Υu∥ ≤ M

δ

(
1− e−

δ
θ

)
≤ M

δ

Step 3: We prove that F is continuous on the Ball Br.

Claim 1: Ψ is continuous. For this purpose let us consider u, v ∈ Br with ∥u− v∥ −→
u→v

0.

∣∣∣Ψu(t)−Ψv(t)
∣∣∣ =

∣∣∣φ (t, u(t), u(ψ(t)))− φ (t, v(t), v(ψ(t)))
∣∣∣

≤ max
(
|u(t)− v(t)|, |u(ψ(t)− v(ψ(t)|

)
hence,

∥∥∥Ψu−Ψv
∥∥∥ ≤ ∥u− v∥ −→

u→v
0.

Claim 2: Υ is continuous. Indeed, let ρ be a real positive number and u, v ∈ Br such that ∥u− v∥ ≤ ρ. For any t ∈ [0, 1]
we have∣∣∣Υu(t)−Υv(t)

∣∣∣ =
∣∣∣1
θ
e−

δ
θ
t
[∫ t

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds−

∫ t

0

e
δ
θ
sh (s, v(s), v(ϕ(s))) ds

]∣∣∣
≤ 1

θ
e−

δ
θ
t

∫ t

0

e
δ
θ
s
∣∣∣h (s, u(s), u(ϕ(s)))− h (s, v(s), v(ϕ(s)))

∣∣∣ ds
≤ 1

θ
e−

δ
θ
t

∫ t

0

e
δ
θ
s max

(
|u(s)− v(s|, |u(ϕ(s))− v(ϕ(s))|

)
ds

≤ 1

δ
e−

δ
θ
t∥u− v∥

(
e

δ
θ
t − 1

)
≤ 1

δ
∥u− v∥

(
1− e−

δ
θ
t
)

∥∥∥Υu−Υv
∥∥∥ ≤ 1

δ
∥u− v∥

(
1− e−

δ
θ

)
≤ 1

δ
ρ
(
1− e−

δ
θ

)
−→
ρ→0

0

Since F = ΨΥ, we deduce the continuity of F.
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Step 4: We show that F is a contraction with respect to some measure of noncompactness in (C [0, 1]). Let us consider
the operator F : Br −→ Br defined by Fu = (Ψu)(Υu). Let Y a nonempty set of Br and u ∈ Y, we need to estimate ω0(Ψu)
and ω0(Υu). As ψ is uniformly continuous we have

∀ ε > 0, ∃ η > 0 such that |t1 − t2| ≤ η =⇒ |ψ(t1)− ψ(t2)| < ε.

According to this, let take t1, t2 ∈ [0, 1] with |t1 − t2| ≤ η < ε.∣∣∣Ψu(t1)−Ψu(t2)
∣∣∣ =

∣∣∣φ (t1, u(t1), u(ψ(t1)))− φ (t2, u(t2), u(ψ(t2)))
∣∣∣

=
∣∣∣φ (t1, u(t1), u(ψ(t1))) + φ (t1, u(t2), u(ψ(t2)))− φ (t1, u(t2), u(ψ(t2)))− φ (t2, u(t2), u(ψ(t2)))

∣∣∣
≤

∣∣∣φ (t1, u(t1), u(ψ(t1)))− φ (t1, u(t2), u(ψ(t2)))
∣∣∣+ ∣∣∣φ (t1, u(t2), u(ψ(t2)))− φ (t2, u(t2), u(ψ(t2)))

∣∣∣
≤ max

(∣∣∣u(t1)− u(t2)
∣∣∣, ∣∣∣u(ψ(t1))− u(ψ(t2))

∣∣∣)+ ω (φ, ε)

≤ ω (Y, ε) + ω (φ, ε)

where

ω (φ, ε) = sup
{∣∣∣φ (t1, u(t2), u(ψ(t2)))− φ (t2, u(t2), u(ψ(t2)))

∣∣∣, |t1 − t2| ≤ ε, t1, t2 ∈ [0, 1]
}
, ω (Y, ε) = sup {ω (u, ε) , u ∈ Y }

and
ω (u, ε) = sup

{∣∣∣u(t1)− u(t2)
∣∣∣, |t1 − t2| ≤ ε, t1, t2 ∈ [0, 1]

}
.

In view of the uniform continuity of φ (t, z1, z2) we have lim
ε→0

ω (φ, ε) = 0. Therefore,

ω0 (ΨY, ε) ≤ ω0 (Y ) .

Now, we move on to estimating ω0(Υu). For this purpose, let 0 < t1 < t2 < 1 and |t1 − t2| ≤ υ < ε, for a given ε > 0. For
any u ∈ Y we have

∣∣∣Υu(t1)−Υu(t2)
∣∣∣ =

∣∣∣1
θ
e−

δ
θ
t1

∫ t1

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds− 1

θ
e−

δ
θ
t2

∫ t2

0

e
δ
θ
sh (s, u(s), u(ϕ(s))) ds

∣∣∣
≤ 1

θ
e−

δ
θ
t1

∫ t2

t1

e
δ
θ
s
∣∣∣h (s, u(s), u(ϕ(s))) ∣∣∣ ds+ 1

θ

∣∣∣e− δ
θ
t1 − e−

δ
θ
t2
∣∣∣∫ t2

0

e
δ
θ
s
∣∣∣h (s, u(s), u(ϕ(s))) ∣∣∣ ds

≤ M

δ
e−

δ
θ
t1

∫ t2

t1

e
δ
θ
s ds+

M

δ

∣∣∣e− δ
θ
t1 − e−

δ
θ
t2
∣∣∣∫ t2

0

e
δ
θ
s ds

≤ M

δ

(
e−

δ
θ
(t1−t2) − 1

)
+
M

δ

(
e−

δ
θ
(t1−t2) − 1

)
− M

δ

(
e−

δ
θ
t1 − e−

δ
θ
t2
)

≤ 2M

δ

(
e−

δ
θ
(t1−t2) − 1

)
≤ 2M

δ

(
e

δ
θ
ε − 1

)
Then

ω (Υu, ε) ≤ 2M

δ

(
e

δ
θ
ε − 1

)
and

ω0 (Υu) = 0.

Now, we can deduce the estimate of ω0 (FY ) . Using the fact that ω0 (Y Z) ≤ ∥Y ∥ω0(Z) + ∥Z∥ω0(Y ) and the estimations of
∥ΨY ∥, ∥ΥY ∥ we have

ω0 (FY ) = ω0 ((ΨY ) (ΥY ))

≤ ∥ΨY ∥ω0 (ΥY ) + ∥ΥY ∥ω0 (ΨY )

≤ M

δ
ω0 (Y )

≤ σω0 (Y )
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where 0 < σ =
M

δ
< 1. That is F is a contraction with respect to the measure of noncompactness ω0. From steps

(1) − (4) the operator F : Br −→ Br is a continuous contraction with respect to the measure of noncompactness
ω0, then by Theorem 2.7 the operator F has at least a fixed point in Br. Therefore, the Problem (1.5) has at least a
solution. □

Theorem 3.3. Assume that the conditions (A1)− (A3) hold and let r be such that r < δ −M − L If

δ −M > max
(
L,

√
Lδ
)

(3.3)

then problem (1.5) has a unique solution on Br.

Proof . We prove that the operator F is a contraction. Let u, u∗ ∈ C([0, 1],R) and t ∈ [0, 1], we have

|Fu(t)− Fu∗(t)| =
∣∣∣∣1θ e− δ

θ tφ (t, u(t), u(ψ(t)))

∫ t

0

e
δ
θ sh (s, u(s), u(ϕ(s))) ds

− 1

θ
e−

δ
θ tφ (t, u∗(t), u∗(ϕ(t)))

∫ t

0

e
δ
θ sh (s, u∗(s), u∗(ϕ(s))) ds

∣∣∣∣
≤
∣∣∣∣1θ e− δ

θ tφ (t, u∗(t), u∗(ψ(t)))

∣∣∣∣ [∫ t

0

e
δ
θ s
∣∣h (s, u(s), u(ϕ(s)))

− h (s, u∗(s), u∗(ϕ(s)))
∣∣ds]+ ∣∣∣∣1θ e− δ

θ

∣∣∣∣ ∣∣φ (t, u(t), u(ψ(t)))

− φ (t, u∗(t), u∗(ψ(t)))
∣∣ ∣∣∣∣∫ t

0

e
δ
θ sh (s, u∗(s), u∗(ϕ(s))) ds

∣∣∣∣
≤1

δ
e−

δ
θ t
[
(r + L)

(
e

δ
θ t − 1

)
+M

(
e

δ
θ t − 1

)]
∥u− u∗∥

≤1

δ

(
1− e

δ
θ t
)
(r + L+M) ∥u− u∗∥

∥Fu(t)− Fu∗(t)∥ ≤1

δ

(
1− e

δ
θ

)
(r + L+M) ∥u− u∗∥

≤1

δ
(r + L+M) ∥u− u∗∥ .

Since
ML

δ −M
≤ r < δ−M−L the mapping F is a contraction such that F(Br) ⊂ Br. Hence, by Banach contraction

principle the operator F has a unique fixed point. □

4 Ulam-Hyers Stability

Stability analysis is a popular topic among the mathematicians and is crucial in understanding the dynamics
of the mathematical models constructed representing real world phenomena. Differential equations with quadratic
perturbations of fractional order has been of recent interest and stability of the equation are carried out in [11, 3, 26,
13, 4]. This section is devoted for establishing the Ulam- Hyers stability results for the considered problem (1.5).

(Q1) φ ∈ C
(
[0, 1]× R× R,R+ − {0}

)
, h ∈ C

(
[0, 1]× R× R,R

)
and ϕ, ψ ∈ C

(
[0, 1], [0, 1]

)
.

Definition 4.1. [27] [Ulam-Hyers Stability]If there exist a real number P > 0 such that for ε > 0 and for every
solution u1 ∈ C([0, 1],R) of the inequality∣∣∣∣Dθ

0+

( u1(t)

φ (t, u1(t), u1(ψ(t)))

)
− h (t, u1(t), u1(ϕ(t)))

∣∣∣∣ < ε, t ∈ [0, 1], (4.1)

there exists u ∈ C([0, 1],R) that solves (1.5) with

|u1 − u| < Pε. (4.2)

Then the hybrid fractional pantograph equation via deformable derivative in (1.5) is Ulam-Hyers stable.
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Definition 4.2. [27] [Generalized Ulam-Hyers Stability] If ζ ∈ C(R+,R+) with ζ(0) = 0 exists, such that for every
u1 ∈ C([0, 1],R) that solves (4.1), there exists u ∈ C([0, 1],R) of (1.5) with

|u1 − u| < ζ(ε). (4.3)

Then the initial value fractional hybrid pantograph equation involving deformable derivative (1.5) is generalized
Ulam-Hyers stable.

Theorem 4.3. Assume that conditions (Q1), (A2), (A3) are satisfied. If

∆ =
1

δ
(r + L+M) < 1 (4.4)

and (3.3) hold, then there exists P > 0 and a unique u ∈ C([0, 1],R) such that

∥u1 − u∥ ≤ Pε. (4.5)

That is (1.5) is Ulam-Hyers stable.

Proof . Let u1 ∈∈ C([0, 1],R) such that∣∣∣∣Dθ
0+

( u1(t)

φ (t, u1(t), u1(ψ(t)))

)
− h (t, u1(t), u1(ϕ(t)))

∣∣∣∣ < ε, with u1(0) = 0 t ∈ [0, 1]. (4.6)

Integrating 4.6 and using u1(0) = 0, we have( u1(t)

φ (t, u1(t), u1(ψ(t)))

)
− Iθ0 (h (t, u1(t), u1(ϕ(t)))) ≤ Iθ0 (ε).

Hence, ∣∣∣u1(t)− φ (t, u1(t), u1(ψ(t))) I
θ
0 (h (t, u1(t), u1(ϕ(t))))

∣∣∣ ≤ ∣∣∣Iθ0 (ε)∣∣∣∣∣∣φ (t, u1(t), u1(ψ(t)))
∣∣∣.

That is∣∣∣u1(t)− F(u1)(t)
∣∣∣ ≤ 1

θ
e−

δ
θ t

∫ t

0

e
δ
θ sε
∣∣∣φ (t, u1(t), u1(ψ(t)))

∣∣∣
≤ 1

δ

(
1− e−

δ
θ t
)
(r + L) ε∥∥∥u1 − F(u1)

∥∥∥ ≤ 1

δ

(
1− e

δ
θ

)
(r + L) ε

≤ 1

δ
(r + L) ε.

On the other hand∥∥∥F(u1)− u
∥∥∥ =

∥∥∥F(u1)− F(u)
∥∥∥

≤ 1

δ
(r + L+M)

∥∥∥u1 − u
∥∥∥.

Furthermore,∥∥∥u1 − u
∥∥∥ ≤

∥∥∥u1 − F(u1)
∥∥∥+ ∥∥∥F(u1)− u

∥∥∥
≤

∥∥∥u1 − F(u1)
∥∥∥+ ∥∥∥F(u1)− F(u)

∥∥∥
≤ 1

δ
(r + L) ε+

1

δ
(r + L+M)

∥∥∥u1 − u
∥∥∥,
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then, (
1− 1

δ
(r + L+M)

)∥∥∥u1 − u
∥∥∥ ≤ 1

δ
(r + L) ε.

Since r + L+M < δ we have ∥∥∥u1 − u
∥∥∥ ≤ (r + L)

δ − (r + L+M)
ε,

setting P =
(r + L)

δ − (r + L+M)
we have ∥∥∥u1 − u

∥∥∥ ≤ Pε.

Therefore, fractional hybrid pantograph equation via deformable derivative in (1.5) is Ulam-Hyers stable and the
generalized Ulam-Hyers stability is obtained by replacing Pε = ζ(ε) with ζ(0) = 0. □

5 Examples

Example 5.1. Let us consider the following fractional hybrid problem
D

3
4

0+

(
B (1 + t)u(t)

A
[
u(t) + u(e−t) + 1

]) =
α cos (2πt)

β (1 + t)
2

[
u2(t)

u2(t) + 1
+

u2(t2)

u2(t2) + 1

]
, 0 < t < 1

u(0) = 0

(5.1)

where α, β,A,B > 0 with 24α − 5β < 0, 2A < B. Let us point out that the Problem 5.1 is similar to the Problem
1.5 where

φ (t, u, v) =
A

B (1 + t)
(u+ v + 1) , ψ(t) = e−t

h (t, u, v) =
α cos (2πt)

β (1 + t)
2

(
u2

u2 + 1
+

v2

v2 + 1
+ 1

)
, ϕ(t) = t2, θ =

3

4
, δ =

1

4
, M =

3α

β
, L =

A

B
, r ≥ 24Aα

B (5β − 24α)
.

We easily check that assumptions (A2) and (A3) hold. On the other handM < δ since 24α−5β < 0. Furthermore,
assumption A1 hold for φ and h. Indeed, for any t ∈ [0, 1] and x, y, u, w ∈ R, we have

∣∣∣φ (t, x, y)− φ (t, u, v)
∣∣∣ ≤ A

B(1 + t)

[∣∣∣x− u
∣∣∣+ ∣∣∣y − v

∣∣∣]

≤ 2A

B
max

(∣∣∣x− u
∣∣∣, ∣∣∣y − v

∣∣∣)

≤ max

(∣∣∣x− u
∣∣∣, ∣∣∣y − v

∣∣∣).
In the same way∣∣∣h (t, x, y)− h (t, u, v)

∣∣∣ ≤α cos (2πt)

β (1 + t)
2

[(
|x|

(x2 + 1) (u2 + 1)
+

|u|
(x2 + 1) (u2 + 1)

) ∣∣∣x− u
∣∣∣

+

(
|y|

(y2 + 1) (v2 + 1)
+

|v|
(y2 + 1) (y2 + 1)

) ∣∣∣y − v
∣∣∣]

∣∣∣h (t, x, y)− h (t, u, v)
∣∣∣ ≤ 4α

β
max

(∣∣∣x− u
∣∣∣, ∣∣∣y − v

∣∣∣)

≤ max

(∣∣∣x− u
∣∣∣, ∣∣∣y − v

∣∣∣).
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All conditions of Theorem 3.2 are satisfied, then the fractional order problem 5.1 has at least one solution. Let the
parameters A,B, α and β take the values 0.3, 5, 0.1 and 7.5 respectively. From the condition (3.3), we get δ−M = 0.21
which is clearly greater than max {0.06, 0.1224}. Thus, the considered problem (5.1) has an unique solution. Using
these values we now check the Ulam-Hyers stability of (5.1) from Theorem 4.3. Substituting the parameters value
in ∆ defined in (4.4), we yield ∆ = 0.41641 which is clearly less than 1. Further, we shall illustrate the impact of
the parameters α and β on the stability criterion by varying α ∈ [0.05, 0.2]and β ∈ [4, 8] such that the condition
24α − 5β < 0 is satisfied. Table 1 presents the value of ∆ for different choices of α and β and corresponding the
3-dimensional plot is displayed in Figure 1. From the tabulation and numerical simulation, we ensure the Ulam-Hyers
stability of the considered problem (5.1) for the assumed parameter values.

Figure 1: Impact of the change of values for the parameters α and β on ∆.

Table 1: Impact of the change of values for the parameters α and β on ∆.

β α = 0.05 α = 0.1 α = 0.15 α = 0.2
∆

4.0 0.40531 0.57272 0.74268 0.91578
4.5 0.38685 0.53532 0.68571 0.83841
5.0 0.37210 0.50548 0.64037 0.77702
5.5 0.36004 0.48113 0.60342 0.72711
6.0 0.35000 0.46086 0.57272 0.68571
6.5 0.34150 0.44375 0.54681 0.65081
7.0 0.33423 0.42909 0.52465 0.62100
7.5 0.32793 0.41641 0.50548 0.59522
8.0 0.32242 0.40531 0.48873 0.57272

Example 5.2. This example establishes the Ulam-Hyers stability result for hybrid fractional problem of the form
D0.6

0+

(
u(t)

cos
(
u
(

t
1+t

))
−K

)
= A sin(u2(t)) +B

[
u(t)

u(t) + 1

]
, 0 < t < 1

u(0) = 0

(5.2)

Comparison of Equation (5.2) with (1.5) yields φ (t, u, v) = cos
(
u
(

t
1+t

))
− K, ψ(t) = t

1+t . h (t, u, v) =
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A sin(u2(t)) + B

[
u(t)

u(t) + 1

]
. We know that L = sup

t∈[0, 1]

|φ (t, 0, 0) | = 1 − K. and from the assumption (A3) we get

M = A + B. Let us assume A =
1

10
, B =

1

10
and K = 0.92. Calculations yield the following values θ = 0.6, δ = 0.4,

M = 0.2, L = 0.08. Direct observations ensure the satisfaction of condition (3.1) presented in Theorem 3.2. Firstly,
the condition (3.3) yields δ −M = 0.2 > max {0.08, 0.1788} ensuring that the problem (5.2) has a unique solution.
We shall now numerically analyse the stability of the considered problem (5.2) in the sense of Ulam and Hyers. The
value of r defined in Theorem 3.2 is 0.08 and the condition ∆ in (4.4) is evaluated as 0.9 < 1. Thus, for the assumed
parameter values the fractional order hybrid equation is Ulam-Hyers stable. We now proceed the demonstrate the
impact of the M and L by suitable choice of K,A,B. Table 2 and Figure 2 demonstrates the impact of value of
M ∈ [0.01, 0.2] and L ∈ [0.02, 0.08].

Figure 2: Impact of the change of values for the M and L on ∆.

Table 2: Impact of the change of values for the M and L on ∆.

M L = 0.02 L = 0.04 L = 0.06 L = 0.08
∆

0.01 0.07628 0.12756 0.17884 0.23012
0.03 0.12905 0.18310 0.23714 0.29121
0.05 0.18214 0.23928 0.29642 0.35357
0.07 0.23560 0.29621 0.35681 0.41742
0.09 0.28951 0.35403 0.41854 0.48306
0.11 0.34396 0.41293 0.48189 0.55086
0.13 0.39907 0.47314 0.54722 0.62129
0.15 0.45500 0.53500 0.61500 0.69500
0.17 0.51195 0.59891 0.68586 0.77282
0.19 0.57023 0.66547 0.76071 0.85595

6 Conclusion

The work established the existence results for hybrid fractional pantograph equation as an application to Darbo’s
fixed point theorem. The study also proved the unique solution for the problem and performed stability analysis.
Examples resembling the considered generalized pantograph equation are presented and the values are assumed for
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the parameters such that the basic criterion are satisfied. The impact of the parameters are discussed with simulation
provided as 3-dimensional and 2-dimensional portraits. The plots are simulated focusing on the value of ∆ which is
vital for determining the stability and existence of unique solutions. The tabulation for value of ∆ at different possible
states are given and it is evident that the simulations support the obtained theoretical results.
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References

[1] A. Aghajani, J. Banas and N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull.
Belg. Math. Soc. Simon Stevin 20 (2013), 345–358.

[2] P. Ahuja, F. Zulfeqarr, and A. Ujlayan, Deformable fractional derivative and its applications, AIP Conf. Proc.
AIP Publishing LLC, 1897 (2017), no. 1.

[3] J. Alzabut, A.G.M. Selvam, R.A. El-Nabulsi, D. Vignesh, and M.E. Samei, Asymptotic stability of nonlinear
discrete fractional pantograph equations with non-local initial conditions, Symmetry 13 (2021), 473.

[4] J. Alzabut, A.G. M. Selvam, D. Vignesh, and Y. Gholami, Solvability and stability of nonlinear hybrid
∆− difference equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul. 2021, 000010151520210005.
https://doi.org/10.1515/ijnsns-2021-0005.

[5] R. Arab, Some generalization of Darbo fixed point theorem and its application, Miskolc Math. Notes 18 (2017),
no. 2, 595–610.

[6] K. Balachandran, S. Kiruthika, and J.J. Trujillo, Existence of solutions of nonlinear fractional pantograph equa-
tions, Acta Math. Sci. 33 (2013), no. 3, 712–720.

[7] J. Banaks and K. Goebel, Measures of noncompactness related to monotonicity, Lecture Notes in Pure and Applied
Mathematics, Marcel Dekker, Inc, vol. 60, 1980.

[8] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math.,
Marcel Dekker, New York, 1980.
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[12] M. Etefa, G.M. N’Guèrèkata, and M. Benchohra, Existence and uniqueness of solutions to impulsive fractional dif-
ferential equations via the deformable derivative, Appl. Anal. (2021), 1-12. doi.org/10.1080/00036811.2021.1979224

[13] S. Harikrishnan, E.M. Elsayed, and K. Kanagarajan, Existence theory and Stability analysis of nonlinear neutral
pantograph equations via Hilfer-Katugampola fractional derivative, J. Adv. Appl. Comput. Math. 7 (2020), 1–7.

[14] A. Iserles, On the generalized pantograph functional differential equation, Eur. J. Appl. Math. 4 (1993), no. 1,
1–38.
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