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Abstract

We study the existence, uniqueness, continuous dependence, and asymptotic expansion of solutions of the Dirichlet
problem for a nonlinear Kirchhoff wave equation. At first, we state and prove a theorem involving the local existence
and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous
dependence of the solution with respect to the nonlinear terms. Finally, an asymptotic expansion of high order in a
small parameter of a weak solution is also discussed.
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1 Introduction

In this paper, we study the following Dirichlet problem for a nonlinear Kirchhoff wave equation with strong damping
and nonlinear memory

S [ (.t ue, ), Ju®) w017 = S8, 0<2 <1, 0<t<T,

0x?
u(O7 t) = u(l, ))

=0, (1.1)
u(z,0) = uo( (x,

0) = (=),

1 1
where A > 0 is given constant; j, f, g, @1 are given functions; ||u(t)|* = / u?(z, t)dx, |ug ()] = / u?(x,t)dx.
0 0

*Corresponding author
Email addresses: sonlhk@hufi.edu.vn (Le Huu Ky Son), duongla3@fe.edu.vn (Ly Anh Duong), ngoc1966@gmail.com (Le Thi
Phuong Ngoc), longnt2@gmail.com (Nguyen Thanh Long)

Received: March 2023  Accepted: June 2023


http://dx.doi.org/10.22075/ijnaa.2023.30205.4362

18 Son, Duong, Ngoc, Long

When p:= g (||u$ (t)||2) u, Prob. lb is related to the Kirchhoff equation

Eh [f,
phuy = | Po+ — uy (Y, 0)dy | Uga, (1.2)

presented by Kirchhoff in 1876 (see [14]). This equation is an extension of the classical D’Alembert wave equation
which considers the effects of the changes in the length of the string during the vibrations. The parameters in
have the following meanings: u is the lateral deflection, L is the length of the string, h is the area of the cross - section,
FE is the Young modulus of the material, p is the mass density, and Py is the initial tension.

The Kirchhoff equations of the form Eq. 1 has been studied by many authors, for example, we refer to [I],
[9], [10], [12]-[15], [I7] - [21], [23]. By using different methods together with various techniques in functional analysis,
several results concerning the existence/global existence and the properties of solutions of viscoelastic problems such
as blow-up, decay, stability have been established.

For more details, there have been a lot of investigations dedicated to the following viscoelastic Kirchhoff equation
t

uy — M <\|Vu||2) Au + / g(t — s)Au(z, s)ds — AAuy + vh(uy) = F(x,t, u), (1.3)
0

where positive function M, the kernel g and the source F are C! functions satisfying some appropriate hypotheses,
and h is a linear or nonlinear function of u;.

When g = 0 and M is not a constant function, the equation without damping and the source terms is often
called the Kirchhoff type equation; it was first introduced by Kirchhoff [14] in order to describe the nonlinear vibrations
of an elastic string. In this regard, the existence and nonexistence of solutions have been discussed by many authors
and references cited therein ([22], [24]-]26]).

On the contrary, when g # 0 and M =1, becomes a semilinear viscoelastic wave equation. In [I], Cavalcanti
et al. proved that, as A = 0, v = 0, F = 0 and together with nonlinear boundary damping, the energy of solutions
of the corresponding problem went uniformly to zero at infinity. In [20], Messaoudi considered Eq. with A =0,
v =0, F = |ulf -2 u, and showed that, for certain class of relaxation functions and certain initial data, the solution
energy decayed at a similar rate of decay of the relaxation function, which was not necessarily decaying in a polynomial
or exponential fashion. In [I9], Messaoudi studied Eq. in case of A = 0, h = a|u|™ *uy, F = blu|’”*u, and
proved a blow-up result for solutions with negative initial energy if p > m and a global existence result for p < m.
In the presence of the strong damping —Awu; and the linear damping u; (m = 2), Li and He [I5] proved the global
existence of solutions and established a general decay rate estimate for the corresponding problem given by

t
g — Au + / g(t — 8)Au(z, s)ds — Aug + uy = u |ul”~?, (1.4)
0

where the relaxation ¢ is a C'! function satisfying some suitable hypotheses.

There are few works devoted to the study of wave equations with nonlinear memory, for example, we can see [2],
[3], [I1], [23]. In [23], Ngoc et al. proved the local existence of the wave equation with strong damping and nonlinear
viscoelastic term as follows

e = Mtz — 5 [a o, e 1), ) e ()] )] + / ot =)o [, e, ), () | e (5) ) o, )] s

= F(x,t,u, g, ug, Ju(®)]]?, Jue 0)]°), 0 <z <1, 0<t<T, (1.5)

associated with Robin-Dirichlet boundary conditions and initial conditions, where A > 0 is a constant, u1, 2, g, f are
given functions which satisfy some certain conditions. Moreover, the authors established an asymptotic expansion of
solutions, i.e., the solutions of (1.5 can be approximated by a N-order polynomial in small parameter.

The topic of continuous dependence on datum has received important attention since 1960, with the earlier works
of Douglis [4] and Fritz [§]. Recently, Quynh et al. [27] discussed the continuous dependence of solutions for a wave
equation with a nonlinear memory term

82 t 82
Ut — AUty — Ere) (n(z, t,u(z, b)) +/ g(t — s)@ (i(z, s,u(z, s)))ds = f(z,t,u,us, Uz, Utz), 0 <2 <1, 0<t<T
0
u(0,t) = u(1,t) =0,
u(z,0) = to(x), w(x,0) =t (z).
(1.6)
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The authors defined the continuous dependence of solutions in sense, if u = u(y, ii, f,¢) and w; = u(y;, iy, f5, 95)
are the solutions of Prob. (1.6) respectively depending on the datum (u, i, f, g) and (u;, ii;, fj, g;), such that

sup max ||DPp; — Dﬁ“HcO(AM) — 0, a8 j — o0,

M>0 |BI<3 5 5

sup max ||D”u; — DPj — 0, as 7 — o0,

2150 18125 ID78, Alleoian) ’ (1.7)
sup max ||D*f; — Daf”C()(A]W) — 0, as j — o0,

M>0 |al<1

ng _gHHl(o’T*) — 0, as j — oo,

where T* is fixed positive constant; Ay, Ays are compact sets depending on a positive constant M; D*f are partial
derivatives with order less than or equal |a|, then u; converges to u in

Wi(T) = {u e C°([0,T}; Hy) N C*([0,T); L?) : ' € L*(0,T; Hy)} as j — oc.

Motivated by the above-mentioned inspiring works, in this paper, we consider Prob. and we first prove
existence, uniqueness of solutions for this problem (Theorem 3.4) by applying the linearization method together with
Faedo-Galerkin method and the weak compact method. Next, we consider the continuous dependence of solutions on
the nonlinearities of Prob. . Precisely, if u = u(p) and u; = u(p;) are the solutions of Prob. respectively
depending on the datum p and p;, such that

D1 (pj, p) = 54“3) [k — NHCS(AM) -0, (1.8)

where Ajs is compact set depending on a positive constant M; then u; converges to u in

Wi(T) = {u e C°0,T]; Hy) N C*([0,T]; L?) : «’ € L*(0,T; H}) } asj — .

Finally, we consider the following perturbed problem in a small parameter

2
et — Mg — % (uelu](2,0)) = f(a ), 0< 2z <1,0<t<T,

(P) ) w(0,8) = u(1, ) = 0,
u(z,0) = ag(x), u(z,0) = 01 (x),

(1.9)

with

pelidwt) = g (e, ), Ju®) oo (1) + g (8w, 1), ), e (0])

We shall establish an asymptotic expansion of high order of the solution u.(z,t) of Prob. (P.) with respect to a
small parameter ¢, in which u.(z,t) is approximated by the polynomial of N degree in a small parameter ¢ (Theorem
5.6).

2 Preliminaries

In this section, we present some notations and materials in order to present main results. Let Q = (0,1), Qr =
(0,1) x (0,T) and we define the scalar product in L? by

and the corresponding norm |-, i.e., |ul|* = (u,u). Let us denote the standard function spaces by C"™(Q), L? = L?(Q)
and H™ = H™(Q) for 1 < p < oo and m € N. Also, we denote that ||-||y is a norm in a Banach space X, and
L?(0,T; X), 1 < p < o0, is the Banach space of real functions « : (0,7') — X measurable with the corresponding norm
H'HLp(o,T;X) defined by

1/p

T
[ wopa) <o, for1sp<os,
HUHLP(O,T;X) = 0

esssup ||u(t)|| y , for p = 0.
0<t<T
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On H!, we use the following norm

foll s = (ol + o l?) (21)
The following lemma is known.
Lemma 2.1. [16] The imbeddings H' — C°([0,1]) and H} — C°([0,1]) are compact and
@) Wlcogoy < V2Illg forallve HY, (22)
() loloogeny < ol for all ve HY,

where H} = {v e H' : v(0) =v(1) =0} .

Remark 2.2. By (2.1) and (2.2), it is easy to prove that, on HJ, the two norms v — |[v| 5 and v — |[jv,| are
equivalent.

Throughout this paper, we write u(t), v/(t) = u(t) = w(t), u”(t) = up(t) = @(¢), ug(t) = Vu(t), uze(t) = Ault),

ou 0%u ou 0%u i
to denote u(x,t), E(m’t)’ ﬁ(x,t)7 %(sc,t), @(x,t), respectively.
With o € CF(0,1] x [0,7°) B x B2), = e, 1,9, 21,22), we define Dup = 90, Do = Py = O,
€ Y
o . 5

Daip= 5oy i=1,2and DPu =D} Dy, B = (Br,--, B5) € 22, 18] = By + -+ B < ks DO O = .
.. . 1 % _ _ af _ af « _ (o351 Qg pr,
Similarly, with f € C*([0,1] x [0,T%]), f = f(z,t), we define Dy f = P2’ Dyf = g and D*f = D' D32 f;

T

a=(ar,a2) €Z2, o] = a1 +a; < 1; DO f = f.

3 Local existence and uniqueness

In this section, we consider the local existence and uniqueness of Prob. (1.1)). By using the linearization method
together with Faedo-Galerkin method, we prove that there exists a recurrent sequence which converges to the weak
solution of (L.1)). Let T* > 0, we make the following assumptions:

(Hy) o, 0y € H? OH(};

(Ha) pe€ C3([0,1]x[0,T*] x RxR2 ) and Dspu(x,t,y, 21, 22) > pus > 0, for all (z,¢,y, 21, 22) € [0,1]x [0, T*] x RxR?;
(H3) f e C([0,1] x [0,T*]), such that f(0,t) = f(1,t) =0, for all t € [0,T™].

A function u is called a weak solution of the initial-boundary value problem (1.1)) if

u€ Wr={uecL>®0,T;H*NH}) :u' € L>(0,T; H* N H}),u" € L*(0,T; HY) N L>=(0,T; L*)},
and u satisfies the variational equation

(u (), v) + Mu (1), v2) + alt;u(t), v) = (f(t),0), (3.1)

for all v € H}, a.e. t € (0,T), together with the initial conditions

u(0) = o, '(0) = i, (3.2)
where
alt;u(t),v) = <8g£ﬂu] (t), vw> = (Dyulul(t) + Daplu] () (1), v,)
plul @, 8) = p (.t ue,t), Ju @) a0 (3:3)

D;puful(w,t) = Djpe (w0, t,ula, ), [u®) Jua ()], j = 1.3,
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Let T* > 0 be fixed. For M > 0, we put

Ku(p) = ||NH03(AM) = ‘%1'?53 ||DBM||CU(AM)’

() = lor(re) = 25 10 Slogoy.
||:LL||CU(AM) = Sup |M(xat7ya21722)| 5
(z,t,y,21,22) EAM

Ifllco(@ry = sup  |f(a 1),

(z,t)€Qr~

where Ay = [0,1] x [0,T*] x [-M, M] x [0, M?)%, Qr~ = [0,1] x [0, T*]. For any T € (0, T*], we consider the set
Vi ={ve L>®0,T; H* N Hy) : v € L=(0,T; H* N HY), v" € L*(0,T; HY)}, (3.5)
then V7 is a Banach space with respect to the norm (see Lions [I6])
1vllv,, = max{{|vll oo o, 2082y » 10 e 07 m20m3) > 1V 20,3000 - (3.6)

Also, we define the sets

{ W(M,T) = {1} e Vr: ||UHVT < M}v (37)

Wi(M,T) = {v e W(M,T): v € L®(0,T; L?)}.

In the following, we shall establish a linear recurrent sequence {u,,} by choosing the first iteration ug = g, and
suppose that
Um—1 € Wl (Ma T)> (38)

then we shall find u,, in Wi (M, T) satisfing the following problem

(ur, (8),0) + Mt (8), Vo) + am (B um (t),v) = (f(t),v) , Vv € Hg, (3.9)

um(o) = ”LNI,(), u;n(o) = ﬂly ’
in which

A (51, 0) = (D ptt—1](t) + D[ty 1] () g, v2) , u,v € Hp. (3.10)

Note that a,,(t;u,v) can be rewritten in form of
A (B0, 0) = A (B, 0) + (1 (1), v,) , u,v € Hy, (3.11)
where

An(tu,v) = {pzm(Oug,v.), u,v € Hy, (3.12)
/J'jm(xat) Dju[umfl}(lz?t)
= Djpr (w11 (,0), i O [ Va1 ()]7) = 1,3

Then, Prob. (3.9) is equivalent to

(0 (1),0) -+ Mty (6, 00) + A (10000, 0) = (Fon(1),0) 0 € Y, 13
um (0) = o, up, (0) = 1,
where, Fy,(t) : Hy — R is a linear continuous functional on H{, which is defined by
(Fnlt),v) = (f(1),0) = (pum(t),00), v e HY, 0T, (3.14)

The existence of u,, is assured by the following theorem.

Theorem 3.1. Under assumptions (Hy) — (Hs), there exist positive constants M, T such that, for uy = 1o, there

exists a recurrent sequence {un,} C Wi (M, T) defined by (3.8)), (3.13) and (3.14)).
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Proof . The proof consists of several steps.

Step 1. The Galerkin approzimation. Consider a special orthonormal basis {w;} on H} : w;(z) = v/2sin(jrz),

2
j € N, formed by the eigenfunctions of the Laplacian —A = —%. Put
i
k
k
= et (3.15)
j=1

(k) satisfy the following system of linear integrodifferential equations

where the coeflicients Cnj

{ <u57]§)( t),w;) + >\<U$v]fa)c( t), wjz) + Am(t; Urrli)(t%wj) = <Fm(t>7wj>7 L<j<k, (3.16)
uF(0) = dgr, w¥) (0) = digg,
in which .
ok = Zagk)wj — g strongly in H2 N H,
jil (3.17)
Ui = Zﬂj(k)wj — @y strongly in H2 N H}.
j=1

The system (3.16)) is equivalent to system of linear intergal equations which can be rewritten in the following form
B = e, (3.18)

where ®) _ (k) k)
Cm _(m17 € k)’

U] = (U2 [D]. ~~,U[(k)]),
Uj{csm(t) FP et >+G<’“ (1),

FRERI = -3, / dr [N (e, (3.19)

(k)
G(k)(t) ( ) 4 67 ( — e_”‘jt) —|—/ dT/ 67)‘)‘1'(775) Fm(s),wj>ds,

Aj =(j7r) , Amlj(t):Am(t;wi,wj), i, j=1,---,k 0<t<T.

Using Banach’s contraction principle, it is not difficult to prove that the above fixed point equation admits a unique
solution (¥ ¢ C([0,T];R¥), so let us omit the details.

Step 2. A priori estimate. Put
2 2 2
0o = o]+ o]+ |Viouio] +HW3mfAu“”<f>H A aido)

+2,\/0 ()]ug,':;(s)” +HAu H >d3+2/ H i) (s (3.20)

then it follows from (3.16) that

- _ 0 . -
ng)(t) :ng) (O) + 2 <M3mx(0)u0kw’ AUQk> + 2 <a{E (,ugm(O)uom) , Aul;m> (3.21)

/ ds/ W (T, 8 ( ()(x s) +’Aug§)(m,s)‘2) dx

#2 [ (G [romeni20] 8200+ 83800 s 2 [ (3 (982 0] 210 s
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=2 (o O200). A0 (00 ~ 2 (57 (pan (OuE0) A <t>>

+2/0t <Fm(s),u51n“)(s)>ds+2/0t <F (s), —Aa® (s d5+2/0

_ _ 0 °
=S5(0) + 2 (H3mar (0)iioka, Adiog) + 2 <&T (t13m (0) o) Aum> +3

=1

We shall estimate the terms J; on the right-hand side of (3.21]) as follows.

First, we need the following lemma whose proof is easy, hence we omit the details.

Lemma 3.2. Put fi, = min{1, p,, A} and

2
5(k) (4 :H (k)t’
m () um()HmHl

t
[ (o
I’Izﬁl‘f1 0

o]

H2nH}

Then, the following estimations are admitted

S (8);
| < (14 M +4M?) Ky (p), i =1,3;
)< (1+2M) K (p), i = 1,35
)| < (1+5M +6M? +8M3) Kn(n), i = 1,3;
< V2,/85%(1);

<V2(1+ MK (1) ,S_'ﬁ,f)(t);

Q) SWt) >n
() |, t)
(iii) ‘:umw( 3
(iv) mm t
V) [|Au () + Ak (1)
o) | a0l

Oz (M?)m (t)umac

0

(vit) |15 |:,u3m:c( )ugi%(t)} ’ < (24 TM + 6M2 + 8M3) Ky (u)y/ S (1);

gt [ugm( HAu® (t)} ’ < (24 M +4M?) Ky (1)1 S (8);

. 0?
() 0zt

23

55)(5)> ds

i ‘U“) H) . (3.22)

(ugm( Hulh(t )) H < (44 8M + 10M? + 8M3) Kpr(u)\/ S (1),

By Lemma 3.2, the terms J; — J5 on the right-hand side of (3.21)) are estimated as follows.

Using Lemma 3.2 ((ii), (ix), (vi), (vii)), then the terms J; — Js are respectively estimated by

J1

t 1 2 2
/ ds/ W (7, 8) ( ug,]f;(m,s)‘ + )Augi)(g;, s)‘ ) dx
0 0

(14 M +4M?) Ky (p) /tg,(,’f)(s)dszC_‘l(M)/tgqu)(s)ds
0 0

IN

B - 2/<§ [ams (D) A 6) + 20D o) ) s

t
< 2 [ [ fromateruttioo)] H | 2w (5) + 208 ()| s
0 85
t t
< 2VE(24TM + 60 + 8MP) K () / 50 (s)ds = Cy (M) / 5 (s)ds:
0 0

no=2f (2 [ran&0ul (0] 35 ) ds

2(2+ M +4M?) K (p) /Ot S5 (s)ds = Cs(M) /Ot S5 (s)ds.

IN

(3.23)

In order to estimate the terms Jy and J5, we need the following lemma whose proof is easy, hence we omit the

details.
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Lemma 3.3. We have the following inequalities

(ii

) ]3‘1 (am(®20) |

2 t_
i) |[ome U2 (O] < 2 ll3ma (0)iors | + 277 (24 TM + 612 + 8M%)* K3, (1) / S8 (s)ds,

9 0

t
42T (4+8M + 10M2 + 8M3)* K2, (1) / S (s)ds
0

<2 Haax (13m (0) o)

Using the inequality

1
2ab < Ba® + ~b2, VYa,b € R, with § = B, = &

6 9 ) ) §*7 (3'24)

and Lemma 3.3 (i), (ii), the terms Jy, J5 are estimated as follows:

Jy =

IN

IN

Js =

IN

IN

FEstimate

(Futt o)

Then

IN

FEstimate

—2 (pgme ()il (1), Auld (1)) (3.25)

8. Aug’?(t)\f (o)

BS(1) +

2 t_
" - bt (O + -7 (24 7M + 602 + 8M%) Ky 1) [ 5 (s)ds
* * 0

t
8.5 () + 2 e (0)ioga |2 + Ca(M) / 5 (s)ds:
* O

6

-2 < ;’x (Mgma) (e >) ,Au$£><t>>
OO+ 5 |2 (el 0)

m
2

2

63 (13m (0Yioks)

*

+Cs(M / S (s

of Js. By (3.14), we obtain the following inequality

2 t_
+ 6—T* (4+8M + 10M2 + 8M?)? K2, (1) / S5 (s)ds
0

a 2

5y (Ham(0)toka)

IN

LF@OI Tl + pm O v (3.26)

< (K + Kuw) o] = Co) [loa] . v € H.

N

2/t< (), 4 (7 )>d7’<206 / ‘ HdT (3.27)
/\/ ,(n Ydr < TCs(M) + Cg(M )/ qulf)(r)dT
0

of J7;. We have

(Fn(r).=0i (1) = (), =2iD(r)) + (pum(r), Daf)(r)) (3.28)

= (£, =24D () + (LA (1,7) = 10 (0.7 A (0,7) = (prma (), Al (7))

- <f(7),fAﬂ5,]f)(T)> - <u1mx( ), Ay (7 )>
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Using the Lemma 3.2 ((iii), (vi)) the term <Fm(7), YN (7‘)> is estimated as follows:

[(Fn(r), =20 )] < (O + lma () |20 (7| (3.29)
< (R + (20K ()) ||l ()]
< K+ (+ 200K ()] V552 (7)

Cr(M)\/ S (7).
Therefore

Jr = 2 / t <Fm(7)7—Au;§>(T)>dT < 205(M) / t\/Sﬁ,’:)(T)dT (3.30)
0 0

< TC7(M)+C7(M)/Ot§1Sf)(T)dT

Estimate of Jg. Similarly with (3.28)), we have

(Bn(r), =i (7)) = = (£(0), M) (7)) + (pua(r), 2ilE (7))

= (o), 8L(7) ) + pam (1, DA (1,7) = 21 (0, 7) A (0,7) = (poma (7), A (7) )

= (L), 8(7)) = (pima (), B (7)) (3.31)
Then, we rewrite Jg as follows
Jo = 2 /0 t (Fu(e). ~ 08 (7)) dr (3.32)
= 2 [ (800 dr =2 [ (). 50 ()

= gV +aP.

Estimate of Jél). Note that || f.(7)|| < K(f), then Jél) is estimated as follows:

W t t

K= 2 [ {pmam)ar <2 g i) a (33
0 0

1 t 5 t A 2
L [ in@par s, [ o] o
B Jo 0

x
B.

IN

IN

TK2(f) + 8.5 (t) = TC{™ (M) + 8.5 (¢).

Estimate of JéQ). Using integration by parts, we rewrite J§2) as follows

JB = 2 /Ot<ﬂ1m(7),mg;>(r)>d7 (3.34)

= 2 (1ma(0), Adiag) = 2 (prame(t), Al (6)) +2 /0 t (imar (7). 801 (7)) dr

2 <U1mw(0)a A'alk> + Js(zb) + J8(2a).
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Using the inequality 1D and Lemma 3.2 (iv) the terms J§2a), Jé%) are estimated as follows:

t t
JEY = 9 /0 <u1mm(7),Au5’,§>(7)>dT§2 /0 | etmar ()] HM%’?(T)HdT (3.35)
t
< 2(1+5M+6M2+8M3)KM(M)/ \/%Ch’
0
t t
= M)/ \/Sﬁrlf)(T)dTSTég(M)-i-C’s(M)/ S (7)dr
0 0

FE = =2 (pma(®), A (0)) < 2 ama ()] VS ()

< BSWO + 3 e O

t 2
< B8P0+ S ||u1m<o>||2+( / ||u'1m<s>||ds)]
_ T _
< BSBE) + 2 (im0 (Cs(M))?.
B, B,
Then
I = 2 (e (0), Adigg) + JE + T2 (3.36)
t
< 2<ﬂ1mx(0)7Aﬂ1k>+TC8(M)+O8(M)/ Sﬁ)(f)dr+5*5£’f>(t)+ﬁzllmmx( )|I? +*T* (Cs(M ))2
0 *
t
< 2<u1m(0),Aa1k>+T08(M)+68(M)/ S,%)(T)dTJm@s;’ﬁ,f)(t)+ﬂzllmm(om%r 25TT* ((Z“S(M))2
0 * *

- 2<u1m<o>,mlk>+2||u1mx<o>||2+ms,<,’:><>+T[1+ 2 prey(i )} Cs(M) + Cs(M) / 5 (r)dr

B B

2 (H1ma(0), Adiyy) + 53 #1ma (0)|° + B.SE () + TCE (M) + Cs (M) / S (r)dr
* 0

Thus, Jg is estimated by

t
Js STC (M) + 858 (1) + 2 (111m(0), Adiyy) + 53 1 (0)]* + B.SE (2) + TCE (M) + Cs (M) / SP (r)dr
* 0
t
=28.5(0) + 2 11 0), Aa) + - s O + 7 (G700 + €2 01)) + a3 [ 5 ryar
* 0
t
=285 () + 2 (j11me (0), Adiny) + 53 1ma (0)||* + TCL (M) + Cs (M) / S (s)ds. (3.37)
* 0

Combining (3.23), (3.25), .27), (3.30), (3.37), it implies from (3.21) and Lemma 3.2 (i) that

t
S®) (1) < S8 4 Dy (M) + Dy(M) / S (s)ds, (3.38)
0

n

where

4 N 5 - 4 0 N N
+ — ((13ma (0)Toka, Alok) + (1ma(0), Adig)) + 0 <8az (13m.(0) o) vAulkac>

= 2
S8 — - S92 (0) - 2
) (3.39)

3

|35 Gram O

2 -
(IIulmz( O)I* + |23 (0)tona | * +
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The convergences given by (3.17) show that there exists a positive constant M independent of k and m such that
_ M?
S(()]:,Z < R for all m, k € N. (3.40)

Then, T can be chosen small enough such that

M? _ 5
(2 - TDl(M)> eTP2(M) < \p2, (3.41)

and

kr = 31/TD*(M)exp(TD3(M)) < 1, (3.42)
where g

Di(M) = —5 (1 +4M)*(1 + M?) K3, (n),

B K (3.43)

D3 (M) = [7(1 + M + 4M?) K pr (1)

It follows from (3.38)), (3.40) and (3.41]) that

— _ t —
S () < M2e=TD2() +D2(M)/ 5 (5)ds. (3.44)
0

By using Gronwall’s Lemma, we deduce from that
S (1) < M2~ TD2(M)tD2(M) < 2, (3.45)
for all t € [0, 77, for all m, k € N. Therefore, we have
u® € Wy (M,T), for all m and k € N. (3.46)

Step 3. Limiting process. By li there exists a subsequence of {uﬁ,’f)} with the same symbol, such that

u = up, in  L>(0,T; H? N Hy) weak*,
k) - ul, in  L>(0,T; H? N Hg) weak*,
ik in  L2(0,T; H}) weak,

U, € W(M,T).

(3.47)

Passing to limit in (3.16)), we have u,, satisfying (3.13)) and (3.14)) in L?(0, 7). On the other hand, we deduce from
(3-13)1 and (3.47))4 that

0 t o
ul = Au;er—a (ulm(t)+u3m(t)um(t))—/ — (11m(5,t) + am (8, ) uma(s)) ds + Fry,
x o Ox

= [, e L>(0,T;L%.

Thus, u,, € W1(M,T). Theorem 3.1 is proved. [

By using Theorem 3.1 and the compact imbedding theorems, we shall prove the existence and uniqueness of weak
local solutions to Prob. (1.1f). We first introduce the Banach space (see Lions [16]) as follows

Wi(T) = {u e C°([0,T]; Hy) N C*([0,T]; L?) : v’ € L*(0,T; HY)} (3.48)
with respect to the norm |[ully, () = HUHCO([O,T];H(}) + v/ ll oo, 7.2y + ||u/||L2(o,T;H(}) .

Then we have the following theorem.

Theorem 3.4. Suppose that the assumptions (Hy) — (Hs) hold. Then the recurrent sequence {u,,} defined by (3.8)),
(8-13) and (3.14) strongly converges to w in W1(T). Furthermore, u is a unique weak solution of Prob. (L.1) and
u € Wi(M,T). On the other hand, the following estimation is valid

um = ully, 7y < Crky*, for all m €N, (3.49)

where kp € [0,1) is defined as in (3.42)) and Cr is a constant depending only on T, f, p, Gg, U;.
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Proof of Theorem 3.4. First, we prove the local existence of Prob. (l.1). We begin by proving that {u,} (in
Theorem 3.1) is a Cauchy sequence in Wi (T'). Let wy, = tma1 — Up,. Then w, satisfies the variational problem

(wl (), v) + Mwl,, (t),vz) + B (t,v) =0, Vo € H}, (3.50)
Wiy (0) = wy, (0) =0, .
where
B (t,0) = g1 (£ Um i1 (1), 0) — @ (B 1w (1), v), v € Hy. (3.51)
Taking v = w/,(¢) in (3.50); and then integrating in ¢, we get
B ¢ 1
ReSn(®) < Su) = [ ds [ sya(osud (o s)do (3.52)
0 0
t
=2 [ (ram1(5) = s (5)) o (5), . 5) ds
0
¢
=2 [ () = (). ) () s
0
3 _
= ijl I],
where fi, = min{1, p,, A} and
2 t
Snl®) = uin O + | Viamea @wna )]+ 22 [ i o)1 ds, (3.53)
0
¢
5 2 2
Smt) = [lw, @O + [[wme(t)]* +/0 [[wr ()] ds.
Next, the integrals on right-hand side of (3.52)) are estimated as follows.
By the following inequalities
s (r25)| < (L M+ 4M?) s, (354
[im+1(2,t) — pim (2, 8)| < (L+4AM) Ky (1) |wm—1llw, () i =1,3,
the terms Iy, I, I3 are estimated by
_ t 1 t _
D= [ s [ s (osiul(os)ds < (14 2+ 02 Kar() [ Sis)ds, (3.55)
0 0 0
¢
I = —2/ ([3m+1(8) = p3m ()] Uma (8), Wiy (8)) ds
0
t
<20+ AMMR ) [l [ (5] ds
¢
2 1
< 9 [ i 9)1P ds 2T+ AP ) o iy,
G 1 2772 12 2 .
< ASa(t) + ;T(l +4M)" M K5, (1) |wm-1llw, (1) ;
t
o= =2 [ na(s) = (o) wlus) ds
0
¢
< 204K () o,y [ a0l ds
! / 2 1 2 72 2
< v ; Wi (8)]” ds + ;T(1+4M) Ko (1) 1wm—1ll, ()
<

_ 1
v&mw7¢u+ﬂﬂ%@mewm%@y
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Combining the estimations (3.55)), we deduce from ([3.52)) that
¢
n(t) < TDFM) s [y +2D50) [ Sin(s)ds, (3.56)
where D% (M), D3(M) are defined by (3.39).
Using Gronwall’s lemma, we get from (3.56]) that
Q ) * 2 )%
Sin(t) < TDF (M) l 1,y 50 (2T D) (3.57)

hence, it leads to

where the constant k7 < 1 is defined as in ([3.42)), which implies that

M m
”uer;D _umHWI( )— 1— k kT7 Vm pe N. (359)

It follows that {u,,} is a Cauchy sequence in Wj (T') . Then there exists u € Wi (T') such that

U, — u strongly in Wy (T). (3.60)

Note that w,, € W(M,T), then there exists a subsequence {u,; } of {un,} such that

Um,; — U in  L°(0,T; H?> N H}) weak*,
ul, —u in  L°(0,T; H?> N H}) weak*,

u’,fz; —u” in  L?(0,T; HY) weak, (3.61)
ue W(M,T).
On the other hand, using the equality
am (£ um (t), v) — alt; u(t), v) = (pam () tme (t) = Dap[u] (t)ue (t) + pam(t) — Dipful(t), vs) (3.62)

= (uam (t) [Uma (t) — uz (B)] + [p3m (t) — Dap[u] ()] ue (), ve) + (pam(t) — Dipfu] (), va)

and the inequality
i (2, t) = Diplu](z, )] < (1 +4M)Knr () [wm—1lly, (1> = 1,3, (3.63)

we get
@ (8w (1), 0) = altu(®),0)| < Kt (1) [l = llyy gy + (O AMYA+ M) 1 = wllyg oy | o2 - (3.64)

Hence
(5 U (1), 0) = a(t;u(t),v) in L (0,T) weak*, for all v € H}. (3.65)

Passing to limit in and (3.10) as m = m; — oo, it implies from (3.60)), (3.61) and (3.65) that there exists
, (3-2)

uwe W(M,T) ba‘mbfymg
On the other hand, we derive from and (| 4 that

o = Au;m+a%[Dw[U](f)+D3M[U](t)uz(t)]+f(t)

= feL>0,T;L%.

Thus u € W1(M,T). The proof of existence is completed. Finally, we need to prove the uniqueness of solutions.
Let uy, ug € W1 (M, T) be two weak solutions of Prob. (1.1)). Then u = u; — us satisfies the variational problem

{ (W (1), 0) + Ml (t), va) + Bt,v) = 0, Vo € H}, (3.66)

u(0) = u/(0) =0,
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where

B(t,v) = (Dsplur](t)us(t) + [Daplur](t) — Dap[ug](t)] uze(t), va) (3.67)
H(D1pur](t) — Diplus)(t),vz), v € Hy.

Taking v = /(¢) in (3.66)); and integrating in time from 0 to ¢, we get

mZt) < / dr OT;,<D3u[ul1><x,r>u§<x,r>dx—2 / ([Dspafus](s) — Dapfus](s)] uza(s), w,(s))ds  (3.68)

2 / (D plun)(s) — Dipalus](s), u(s)) s,
0

t

where i, = min{1, pu,, A} and Z(t) = ||/ (8)]|* + |Ju ()] + / IIu;(s)||2 ds. Through similar calculations in Theorem
0

3.2, we obtain from ([3.68) that

(fix — 20)Z(t) < {1 + M +4M? + %(1 +4M)?(1 + MQ)KM(M)} Kar(p) /Ot Z(s)ds, (3.69)

for all 6 > 0. Then, by choosing J > 0 such that fi. — 2§ > 0 and using Gronwall lemma, we deduce from (3.69)) that
Z (t) =0, ie., u =u; —uz = 0. Therefore, uniqueness is proved. The proof of Theorem 3.4 is done. [

4 Continuous dependence

In this section, we assume that A > 0 and g, 41 € H2 N HY, f € C([0,1] x [0,7%]). By Theorem 3.4, Prob. (1.1
admits a unique solution u depending on the datum pu :

u = u(p),

where p satisfy the assumptions (Hs). First, we note that if the datum g, p; satisfy (Hz) and in addition, the following
condition is fulfilled

Dy (g, p) = sup lpj = pellcaa,,y =0, (4.1)
M>0
as j — 0o, then there exists jo € N (independent of M) such that

H:uj”CB(AM) <1+ HU”cs(AM) , VM >0, Vj = jo.

By setting the constant Ky (u), we deduce from the above estimation that

Knr(pj) <1+ Kny(p), YM >0, Vj = jo. (4.2)

Therefore, the Galerkin approximation sequence {uﬁ,’f)} corresponding to p = uj, j > jo also satisfies the priori
estimates as in Theorem 3.1 and
ul® € Wi(M,T), for all m and k € N, (4.3)

where M, T are constants independent of j. Indeed, in the process, we can choose the positive constants M and T

as in (3.41) - (3.42) with replacing Kas (), Dip, D1Dsp, D3p by 14 Kp(p), 1+ ’D%u , 1+ |D1Dsp|, 1+ |D3pl|,
respectively.

Hence, the limitation u; of {ugf)}, as k — +oo and m — +oo later, is the unique weak solution of Prob. |i
corresponding to p = i, j > jo satisfying

u; € Wi(M,T), for all j > jo. (4.4)

Moreover, by the same argument used in Theorem 3.4, we can prove that the limitation u of {u;} as j — 400, is
the unique weak solution of Prob. (1.1) and w € Wy (M, T).

Consequently, we have the following theorem.
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Theorem 4.1. For any X > 0, g, 41 € H>NHg, f € CH([0,1] x [0,T*]), suppose that (Hz) and the condition (4.1)
hold. Then, there exists a positive constant T such that the solution of Prob. (1.1|) is continuous dependence on the

datum p, i.e., if p and p; satisfy (Ha) and (4.1)), then

uj = u(p;) — u strongly in W1 (T), as j — oc.
Moreover, we have the estimation
lluj = ully, () < CrD1(p, 1), Vi = Jo,
where Cr is a constant only depending on T, f, u, iy and Uy.

Proof of Theorem 4.1. Setting

Di,u]’[uj‘](l‘,t) = Di/’Lj (x’t7uj (.L“,t) ) ”u] (t)||2 ’ ”u]w (t)||2) )

Di:u[u](xﬂt) = Di/’“ (amt,u(x,t) ) ”u(t)Hz ’ Huw (t)||2) ,1=13, j€ N,
then w; = u; — u, satisfies the variational problem

{ (Wi (£),0) + Muwi, (£), vz) + a; (£ 4;(t),v) — alt;u(t),v) = 0, Vv € Hg,

w;(0) = w(0) = 0,
where
aj(t;ui(t),v) = (Dapilus](t)uje(t), ve) + (Dipslus](t), va)

a(t;u(t),v) = (Daplu](t)us(t), ve) + (D1p[u](t), ve) -
On the other hand, by the following equalities

a;j(t;ui(t),v) —alt;u(t),v) = (Dap;lus](O)wse(t), ve) + ([Dapslus](t) = Daplu] (8)] wa (1), vz)
+ (Dipslus)(t) = Diplul(t), vz)

we rewrite (4.8) by

+ <D1Mj[uj](t) - Dlu[u](t)ﬂvz> =0, Vv e H(%7

w;(0) = wj(0) = 0.

{ (wj (t), v) + Mwfy (8), va) + (Dsp; [ug] (A)wja (), va) + ([Dsp; [ug)(t) — Dapful ()] ua(t), va)

Taking v = w/(t) in (4.11); and then integrating in ¢, we get

p5i0) < S0 = [ ds [ 5Dl ) wh e, )de

= / ([Dspi3[u5)(s) — Dsplu)(5)] ta(5), who(s)) s — 2 / (Dajsslu)(s) — Dipulul(s)
0 0

3
Zjlm
k=1

where i, = min{1, ., A} and

2 t
Si(t) = Hw;-(t)||2—|—H\/Dg,uj[uj](t)wjz(t) +2)\/0 Hw;m(s)szs,
5t) = Wi + oy ()] + / o ()] ds.

(4.5)

(4.6)

(4.9)

(4.10)

(4.11)

(4.12)

(s)> ds

(4.13)
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We estimate the terms I; on the right-hand side of (4.12)) as follows.
Estimate of I;. By the estimation

0

we have

I

O (Dl 1) < Earloag) [1+ [u (0] +2 g () sy 0]+ 2 e (0 s, 1))
< (U Kago) [+ ] xt!+2uuj ) O] + 2 g O [, O]
< (4 Kar(p) [T+ [[ufy ()] + 4 lluge O] ||ufe )]
< (14 Ku(p) (14 M +4M?),
t 1 8
[ as [ 5 Dutulu)es) k.o (4.14)

<

IN

(14 Kaa) (14 M+ 40%) [ (9] ds

(1+ Kar(p) (14 M + 4M?) /t S, (s)ds.
0

Estimate of I>. By the estimation

[ Dapajluj](2,t) — Daplu](z, 1))

we obtain

I

IN

IN

IN

|Dapujluj](a,t) = Daplu)(z,t)] + | Dapluj](2,t) — Daplu](z,1)]
D1 (pg, 1) + Kar () (1 + 4M) [[wje ()]

Di(pj, ) + Kpr(p) (14 4M) £/ S5(t),

IN AN

-2 [ {Dumlus ) — Danl ) e 51 5) s (4.15)
2 [ (Datisom + K (1 +-400) 5569 ) a1 [ ()] s

24 [ (D1l )] + Ko (15430356 s 9] ) s

M D (i, /Hwﬂ )| ds + 2M K ys (1) 1+4M/Fuwﬂ )| ds

v nDy s ([ ol an) 2nrsnt - aan) ([ si) ([ g colfas)

‘ 1/2
WTMD (117, )1/ S; () + 2M K pg (1) (1 + 4M) ( /O Sj(s)ds) 0

1/2

_ 1 1 t_
208;(t) + ST"M? Dt (j, p) + 5 M K3y () (1 +4M)2/0 Sj(s)ds

Estimate of I3. Similarly to Iz, we have also

I3

Finally, by choosing § =

<

2 [ (Duplu]6) ~ Daplul (s}, 5) ds (4.16)
0

_ 1 1 t_
255,(t) + 5T DRy ) + 5K (L+400)° [ 5(s)ds
0

, we get from (4.12)), (4.14))-(4.16) that

oo‘t\

S,(t) < a(M)E; + B(M) /0 8,(s)ds, (4.17)
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where
E; = Di(uj,p), (4.18)
a(M) = Spe14 ),
BM) = %(1+KM(M))(1+M+4M2)+;T2(1+M2)(1+4M)2K12\4(M)~

Using Gronwall’s lemma, we have

S;(t) < a(M)E; exp(TB(M)), (4.19)

This derive that

Ity — ully, (< 34/ a(M)E; exp(TB(M)) < CrDa(jug, 1), Vi = jo. (4.20)
Theorem 4.1 is proved. [J

Remark 4.2. We give here an example, in which the condition (4.1)) is satisfied.
Considering {y;} defined by

xt
/J‘j(xa tv Y, 21, 22) = #(xv t, Y, 21, Z?) + 7&I‘Ctg(y),
(z,t,y,21,22) € [0,1] x [0,T*] x R x R2, where € C3([0,1] x [0, 7] x R x R?) satisfies (H>).

It is easy to check that p; € C3([0,1] x [0,7*] x R x R?%) also satisfies (H) and

Di(pj,p) = sup 15 = pll oo anpy
_ DBy, — DB
sup (fggﬂgH i u!|oo<AM>>
1 s " .
< fmax{§,2T } — 0, as 7 — o0.
j

5 Asymptotic expansion of the solution with respect to a small parameter
In this section, let (Hy), (H3) hold. We also make the following assumptions:
(H5) w1 € C3([0,1] x [0,T*] x R x R2)
and Dspuq(z,t,y, 21, 22) > 0, for all (z,t,y,21,22) € [0,1] x [0,T%] x R x RZ.
We consider the following perturbed problem, where ¢ is a small parameter, with 0 <e < 1:

2
S % (uefu)(z,0)) = f(,8), 0<a<1,0<t<T,

(P 0 (0,8) = u(1,0) =0,
u(x,0) =g (x), ut (x,0) =0y (z),

where
pelul(@ ) = g (wtoue, ), Ju I Jua@)1) + e (2t w0, [u )] @)

By the assumptions (Hy), (Hz), (H3), (H3) and Theorem 3.4, Prob. (P:) has a unique weak solution u depending
one:u=u.. Whene =0, (P;) is denoted by (Fy). We shall study the asymptotic expansion of the solution u. of Prob.

(P.) with respect to a small parameter . We use the following notations. For a multi-index o = (v, -+ , o) € ZY,
and z = (71, -+ ,zy) € RY, we put

ol =a1+---+an, al=aq!---anl,

xa :x?l -..x%N’

o, BEZY, a<B+= ;<P Vi=1,---,N.

First, we shall need the following lemma.
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Lemma 5.1. Let m, N €N, 2z = (z1,--- ,2n) € RV, and € € R. Then

N m mN
(Z xE) = P alee”, (5.1)
i=1 k=m

where the coefficients P][\,m} []k, m < k <mN depending on x = (x1,--- ,xN) are defined by the formula
Tk, 1<k<N, m=1,
Pl = > mae, m<k<mN, m>2, (5.2)
acAl™(N)

N
with ALm](N) = {a € ZY :|al =m, Z‘—1 lo; = k}

The proof of this lemma is easy, hence we omit the details. [

The lemma below shows that the coefficient PJ[\,m] [z]) of €¥ in the formula 1) depends only on 1y, ,xp_1.

Lemma 5.2. Let m, N € N\ {1}, z = (z1,--- ,on) €RY and ¢ € R, |¢| < 1. Then

N m N
(Z xisi> = Z Pim} (€1, ,xp_1)e" + £N+1R[Nm] [z, €], (5.3)
i=1 k=m

where the coefficients P,Lm} [x1, - ,2k—1], m < k < N depending on (x1, - ,x,_1) are defined by the formula
P[m][x C L Tpo] = Z Lxmu'xak’l m<k<N (5.4)
k 1, yLbk—1] — - 061!"'0%—1! 1 k—1 > = = ) .
acAl™
with
k—1
/_127"}:{an{flzal—!—---—i—ak_l:m, Ziaizk‘}, (5.5)
i=1
and
(m—1)N—1
m k m m
[Bieel| < (Wllallgn)™ 30 el < Gm - DN g (56)
k=0
el = max lail.

Proof of Lemma 5.2. We rewrite the formula (5.1]) as follows

N 4 m N mN
(Z xﬂl) = Z P [2]ie® + Z P [2]ie®, (5.7)
=1 k=m

k=N+1
With 2 <m <k <N, a € ALm](N), we deduce that «; = 0, Vi € {k,k+ 1,---,N}. Indeed, if there exists
io € {k,k+1,---, N} such that oy, > 1, then

N
k= Ziai > g, > g > K,
i1

which leads to

N
E iOéi = ioaio = io = k.
i=1
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So
ioik, Oéioil, Oéj:(), V‘]#ZO

N
It follows that 2 < m = |a| = Z a; = a;, = 1. This is a contradiction. Therefore
i=1

o; =0, Vie{kk+1,--- N}

Then, for 2 < m < k < N, the set of multi-indices Agem] (N) is replaced by

k—1
ALm] :{QEZI_T__I:O(1+"-+O¢/§_1=7TL, Ziaz‘:k}7

i=1

and therefore

o]

m m! o Qp_ =[m
P][V}[x]kz Z ﬁxll---xkillzPIL }[acl,---,xk_l], m <k <N.

On the other hand

mN
5N+1R531][$78]‘ _ Z P][Vm][l']kgk
k=N+1
mN
N+1 k—N-1
< ™Y | PR lel
k=N+1
mN
< T Pl
k=N+1
and
1 m! m!
PPl = | X Tl X ke
acAl™(n) acAl™(N)
m! m!
< > Slal= Y0 el
acAl™(N) acAl™(N)
m! 1
< Y Dl =mleln Y o
aeZy, la|=m ’ aeZy, |a|=m '
. 1 N™
We notice that Z IR hence

OCEZE7 |a|=m

1 m 1 m
PVl < mtllelge >0 — = N™ ol

aeZy, |a|=m

This leads to

mN
s A I E A Dl I
k=N+1
< Y mN = NNl

el ™ (m = DN || g

From , (5.9), (5.12), we deduce that (5.3) is true. Lemma 5.2 is proved. O

By the same proof with Lemma 5.2 we have the following Lemma

35

(5.10)

(5.11)

(5.12)
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Lemma 5.3. Let m, N € N\ {1}, x = (z1,--- ,72n) € R?YN  and ¢ € R, |¢| < 1. Then

=m

2N m N
(ZWﬁZ Py, )et + N TR [, €, (5.13)
=1 k

where the coefficients P,Lm] [€1, -+ ,xk—1], m < k < N depending on (x1, - ,Tk—1) are defined by the formula 1)
(.5) and

|[Riiwel| < @m— 12" N o (5.14)
[2)|gen =  ax EAR

Now, we assume that
(™), pn € CNF3([0,1] % [0,T7] x R x R2),
Dsp(x,t,y,21,22) > ps >0, Dapq(z,t,y,21,22) >0, for all (z,t,21,22,23) € [0,1] x [0,T%] x R x R3..

We also use the notations

pelul(wt) = plul (o) + 2 [u](,1),
plal(e,t) = g (st 1), () |2 e (0]
mldet) = g (ot ), Ju@)?, Jua(0)?) .

Let ug € W1(M,T) be a unique weak solution of problem (Pp) (as in Theorem 3.5) corresponding to € = 0, i.e.,

~ uy — MNAug — % (Dspfuo](t)uog) = Fo, 0 <z <1,0<t < T,
(Po) \ wo(0,) = uo(1,£) = 0,
uo(x,0) = to(x), uy(x,0) = 41 (x).

Considering the sequence of weak solutions u,, 1 < r < N, of the following problems:

ull — NAul — % (Dspfuo] (B) ure(t)) = Fr, 0 <2 <1,0<t < T,

(P) ] ur(0,8) = ur(1,1) =0,
ur(xao) = U,/r(x,o) = 0,
up € Wi (M, T),

where F,., 1 <r < N, are defined by the recurrence formulas

0
f+ o (Difuol(1) r=o,
5 Ox
— (T =U1), =1,
Fo=] gy (Wrtuet) " (5.15)
0 _
% \I’7'+u0w\II7'+ ' Z ' u]L\I/l ) QSTSN,
1<i,j<N, i+j=r
with
U, = PN, Dipl + ol [N — 1, Dy, (5.16)
v, = PN, Dyp) + ol [N —1,Dypu1), 1 <7 < N,
defined by the formulas
Dy plug], X r=0,
PN, D1y = S - D"Difug)®,[m, N, i,6D,5%), 1<r<N, (5.17)
m!

MGZ?’P 1<|m|<r
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in which
= - - - Slm Slm [m 2 2
&,[m, N, 7,61, 5?] = Z P1£1 Uiy, - 7uk171]P]£2 MO 701(%)71]]3&3 Na® .. ’02311], (5.18)
(k1,k2,k3)EA,.(m,N)
and -

Ar(m,N) = {(kl,kg,kg) S Zi Ty § kl S N,mg § kg S N,m3 § kg S N,k‘l +k‘2 +k‘3 = 7‘}, (519)
m= (ma, o ms) € T3, fm| = my 4+ mg, ml = m!-omgl, D™ = DDPDYS, and 60 = (00, of),
72 = (ng), e ,US\),), are defined by

2<U0,U1>, 1= ].,
2(ug, u;) + (uj,ui—j), 2<i<N,

o > o
Z(uj,ui_j>, N+1<i:<2N,
j=1
2(Vug, Vuy), =1,

@ 2(Vug, Vu;) + Z<VUJ‘,VU¢,]'>, 2<i1 <N,

o; = ‘ j=1

> (Vuy, Vui_j), N+1<i<2N.

j=1
Then, we have the following lemma.

Lemma 5.4. Let p[r” [N,Dyp] = pw [N, Dy ug, i, 71, 53], 0 < r < N, be the functions defined by formulas -

N
5.20). Let h = ZuTsT. Then we have
r=0

N
Diplh] = Dupafuo) + Y p[N, Dupile” + N R [Dpu, e, (5.21)
r=1
N —
Dsplh] = Dspluo] + Z PN, Daprle” + Nt RY) [Dspu, ],
r=1
with HRE\I,} [Dlu,s]H + HRE\I,} [Dg,LL,E]H < C, where C is a constant depending only on N, T, f, D1, D3,

L2 (0,T;L2) L2 (0,T;L2)

ur, 0 <r < N.

Proof of Lemma 5.4. (i) In the case of N = 1, the proof of (5.21]) is easy, hence we omit the details. We only prove

N
the case of N > 2. Let h = ug + Z wiet = ug + hy. We rewrite as below
i=1
Diulh] = Dipfuo + h] = Dip (x,t,h(x,t), b2, HVh(t)||2) (5.22)

= Dlu(l‘,t,uo-f'hla“U0+h1||27”VUO+Vh1||2>
= f(z,t,uo + ha, uol® + &2, [ Vuol” + &),

where & = |Jug + m|* — luol®, & = |[Vuo + Viu|® = | Vol .

By using Taylor’s expansion of the function Dj pfug + k1] around the point [uo] = (2, ¢, uo, |uoll”, | Vuo|*) up to
order N 4+ 1, we obtain

DIM[UO + hl] = DlM[UO] + DBDI,U/['U/O]hl + D4D1M[U0}fg + D5D1M[U0}f3 (523)
1 m msa M3
- Z %DleM[uO]hl 152 53 +R§\];)[D1/’Lahla§2a€3]a

m:(mlf'wm?,)GZi,
2<|m|<N



38

where

RE\}) [Dlﬂ/a h17€27€3]

D™Dy i(0)

mez3, Im|=N+1

€N+1R§3) [-Dluu h17£2>§375]7

= D"™Dypu(x, t,up + Ohy, |uol|® + 02, || Vuol|” + 0&3).

By the formula ([5.3)), it follows that

k:ml
and
R ]| < (o = DN <1,
where @ = (u1,- -+ ,un), ||Ullgy = Jmax, |u;| , and in the formula ([5.25) we shorten p,gml] [h1] instead of p,gml] [ug,---

On the other hand,

Son, Duong, Ngoc, Long

N+1 /!
> ([ a-ororpipean) e

N m N
i=1

2N
€2 = llug + hu |l — lluoll® = 2(uo, ha) + |ha)® = Y otV
=t 2N )
& = |Vuo + Vha|* = |Vuol® =2(Vuo, Vii) + [|Vhe|* = Y 0P,
=1

with agl), 0§2), 1 <4 < 2N are defined by 1D By the formula 1D it follows from 1) that

2N m2 N
= (Z%‘”Ei) = > Pl + MR )
i=1 k=m2
2N . ms N
= (Z%W) = > Pl + R )
i=1 k=ms3
where
=[m =[m 1 1 ma! 1)\ ¥t
Pl = P ol = Y e (o)
aeAE:n?]
Blmsl _ plmal @ (@) _ ms! @\
Pes] = By o] = Z gl apq! (01 )
acAlms]
k—1
flggms] = {ani:a1+~-~+ak_1=ms, Ziaizk}, s=2,3,
i=1
and

(2mgy — 1)2m2 N™2t1

ma
5'(1)HR2N . lel <1,

(2my — 1)2ms Nmatl H&@)H SEES!
R2N

(UY)’ e 70;2)’
max azm , r=1,2.
1<i<2N

(5.24)

(5.25)

(5.26)

auk—1]~

(5.27)

(5.28)

(5.29)
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Therefore, it follows from ((5.25)), (5.28)), that

N N
h’lnlé‘gﬂzggnz :< Z Pé?l][hl]ﬁﬁ) ( Z P[m2] ) ( Z Pm3] >+5N+1RE:,”][1I, &(1),5(2),6]

ki=m1 ko=mg kz=ms3

N N N _ B B
= > > Y BB el B glet Rt 4 N TR, 61, 5 ]
k1:m1 kQ:’ﬂl2 k‘3:’ﬂ7,3

3N
= > P B ] P gs] | & + N PR, 80, 72 ]
r=|m| \(ki,k2,k3)€A.(m,N)

=3 &, m, N, @6, d@e" + N TR, 31, 53 ¢]

r=|m|
N 3N
= ér[m,N,ﬁ,&(l),E(z)}e’"+6N+1( S @ m N, D, ¢@)er N4 R, &<1>,&<2>,s]>
r=|m| r=N+1
N
=3 &,[m, N, @5V, 6@ + N RY [m, 7,60, 5@ ¢, (5.30)
r=|m|
where
3N
RYIm,@,dV,6@ el = Y &[m,N, a6V, 6PN 4 R (7,610,524, (5.31)
r=N+1

R[m][—' -'(1) "(2) ] R[ml] (Z P[m2] ) (Z Pms )

k=ma k=mg
mi N mi 2N ma
+ R[mQ] 71, (Zu € ) ( Z Plgma][ ) + Rm3 72, (Zu € > (Z a§1)€i>
k=mg i=1
m = (mq,---,m3) € Z3, |m| = m1 + -4 mg, m! = my!---mgl, D = Dy D™D where ®,[m, N, 7,51, 53]

and A, (m, N) are deﬁned by (5.18] - Hence, we deduce from (5.23)), (5.24), (5.30) that

Diplug + hi) =Diplug] + Y ﬁDmDm[uO]thfS’”E%”s + N R D1, b, 6o, s, €]
1<|m|<N '
m:(ml,m,mg)ezi

N
1 T =1 — r
:Dllu‘[u()] + Z ﬁDley’[UO} Z (I)r[mvauao—(l)ao—(z)]g

mezy, 1<|m|<N r=|m)|
1 * . o
+ 5N+1 Z EDmDLU/[uO]REV] [m7ua0(1)70(2)75] + €N+1R§\$) [Dlua h1a§27£375]
mezZd, 1<|m|<N

1 N
— —pm b 7 2(1) =2(2)1.r
=D pfug] + Z m'D Dy pfug] Z ®,.[m, N,u,5, 5%

mezZ, 1<|m|<N r=|m|

1 * = —
4 gV tt Z ﬁDmDm[UO]REv] (m,@,&", 53, ] +R§3)[D1ﬂ’h1’§2’§3’€]
meZ3 , 1<|m|<N .

1 T - = = r
:DLLL[UO] + Z Z EDle/J,[Uo](pr[m, N7 u, 0(1)7 0(2)] €

r=1 \1<|m|<r

1 * S oo -
e > D" Dupluol Ry, @, 60,57 e + RY [Dips by, 2, 6o,
mEZi, 1<|m|<N .
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N
=Diplug) + > | Y mDleu[uo]Q[ (N, i, 7,6 | e+ N RYD p, €]

r=1 \1<|m|<r
—me [N, Dyple” + N RWUD, ], (5.32)

where

RUID i, e] = 3 EDleu[uo]R[ lm, 0,60, &) + RO Dy, hy, &, &3, €], (5.33)
mezy, 1<|m|<N

with p[ ][N, D] = p[r][N, Dy psug, @, 71, 73], 0 < r < N, are defined by 1Dl , and

HRE& [Dlu,s]"Lw(O e (5.34)

where C is a constant depending only on N, T, Dyu, u,, r =0,1,--- , N. Hence, the formula (5.21)); is proved.
(ii) In the case of Dsu[h](x,t), applying the formulas (5.17))-(5.20) with Diu = Dsu, we obtain formulas

N
Dsulh] =Y pl [N, Dsule” + N Ry [Dsp, €], (5.35)
r=0
and HRE\l,] [D3M,E]H < C, where C is a constant depending only on N, T, D3y, u,, 7 =0,1,--- | N.

L= (0,T; L2)
Therefore the formula 2 is proved. This completes the proof of the lemma 5.4. O

Remark 5.5. Lemma 5.4 is a generalization of a formula contained in [I7] (formula (4.44), p. 263) and it is useful to
obtain the following Lemma 5.5. These Lemmas are the key to obtain the asymptotic expansion of the weak solution
u = ue of order N + 1 in a small parameter ¢.
N
Let u = u. € W1 (M, T) be a unique weak solution of the problem (P;). Then v = u — Z ure” = u — h satisfies
r=0
the problem

VA L Dyl b(0)0) = A (Dot hI(E) — DoaeB)(0)) el + 2 [Dagilo + B)(0) — Dy R)(0)
+E.(z,1), 0<z<1l,0<t<T,

v(0,t) = v(1,¢) =0,
v(z,0) =v'(z,0) =0,

(5.36)
where
Eo(e,t) = [+ o [Dypelh#) — Dipuol(9)] + o [(Dspe A1) — Dsplug)(t)) el + - (Dl ZFa (537
e\&, 1) = o 1He 1H{Uo o 3He 3 [Uo o 14[uo](
Lemma 5.6. Under the assumptions (Hy), (Hz(N)) and (H3), there exists a constant C, such that
||E6HL°°(O,T;L2) < CueNt, (5.38)
where C, is a constant depending only on N, T, u, pi1, uy, 0 <17 < N.
Proof . In the case of N =1, the proof is easy. The details are omitted. We only consider N > 2.
By using formulas (5.21)); for the functions Dy p[h] and Dy [h]
N
Diplh] = Diplug] = 3~ [N, Dapile” + N R (D e, (5.39)
r=1

Dl,ul[h] = HIN — 1, Dl,ul]ET + ENRE\lr]il[Dlul,E].

ﬁmi
bﬁ
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We rewrite €Dy iy [h] as follows

eDyps[h Zp[l] —1,Dym)e” + eNTRY Dy, ] (5.40)

Hence, we deduce from 1 and (| - that
Dipe[h](t) = Dipfuo](t) =Dip[h](t) — Dipluo)(t) + eD1pa[h]

N
=" PN, Dyple” + eNFIRY [Dpr, e +ZP[1] —1, Dymle” +eNTIRY Dy €]
r=1 r=1

tllﬁz

(P[Tl] [N, Dyl + iy [N =1, Dl,ul]) e +eNt! (RR]] [Dip, €] + RE\I/]_l[DIMIaE])

r=1
N
=3 (PPN Dipl + o [N = 1, Dygur] ) & + N RY [Dip, Dion e, (5.41)
r=1
where o . .
R [Dis, Dy el = Ry [Dap €] + RN Dy €] (5.42)

is bounded in L°°(0,T; L?) by a constant depending only on N, T, Dy, D1, u,, 0 < r < N. This implies

) 0 -
(PN Dip) + oL [N = 1, D)) & + N R [D1p, D

] =
Sl

a% [ Dyprelh](8) — Diptluol(®) ] =

r=1
N
9 o+ N119 50
— ;%\P,«e +¢ %RN [Dyp, Dypy, €], (5.43)
where W,., 1 <7 < N are defined by (5.16);. Similarly,
N —
Dapie[R)(t) = Dapafuo](t) = > (plIN, Dap] + 'L [N = 1, Dggua]) & + ¥ R [Dypa, Dpu ]
r=1
N
= Z U,.e" + €N+1R§\}) [Dgu, Dspq, E], (544)
r=1

where U,., 1 < r < N are defined by (5.16)5. Hence

N N
(Dspie [B](t) — Dapluo) (t)) he = (Z q;) (Z u) + N, R [Dap, Dypon, €]

N

N
=3 (uoa¥y)e" + (Z U,e" ) (Z umH) + eV, R [Dsp, Dapun, €]
r=1

r=1

(upe¥,.) " + Z Z uj, Vi | e+ €N+1hgg}?§\}) [Dsp, D3y, €]
1<4,j<N, i+j=r

2N
’LLOI 5 +Z Z sz‘lfi ET+ Z Z ’Lsz\I/i e”

1<4,<N, itj=r r=N+1 \1<ij<N, itj=r

p%z

5
Il
—

Dllﬂz

.3
Il
-

N+1th§\1])[

+

£ D3, D3y, €]
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N
= (uoz¥1) € + Z U0z ¥y + Z uje Vi | "
r=2 1<i,5<N, i+j=r
2N
+eMH Y S wp W | N 4 b R [Dapr, Dypn €]

r=N+1 \1<i,j<N, i+j=r

= (up V1) e+ Z Uoz ¥y + Z U | e

r=2 1<i, <N, itj=r

+€N+1R§\?)[D3ILL7D3N17\IJI"” a\I/NaUOa"' 7UN,€],

where
2N
Rg\%) [Dspt, Dapa, Wi, -+, Uy ug, -+ un, €] = Z Z wj, U | e Nt +hER§\17)[D3/,L,D3/J/1,€]. (5.45)

r=N-+1 \1<i,j<N, i+j=r

We deduce that

d d N9 i
o (DapeW) = Dapluol) ] = 5 (o, W)+ 3 0 (oot 30wyl ¢
r=2 1<i,j<N, i+j=r
o -
+5N+1%R§3)[D3,UJ, D3,l11, \111, e 7\PN7 Ug, -+, UN, E]' (546)

Combining (5.15)), (5.37), (5.43), and (5.46)), we then obtain

N

0 0 0
Bo(,t) =f 5= [Dypielh](t) = Draluo)(0)] + - [(Dpel)(#) ~ Dypluol (1)) bl + - [Dapluo)(1)] = D Fre”
r=0
N
8 0 -
g 67 NH%RE\P[DM,DlMl@]
P N
+ 55 (o: ¥ Z 027 > up¥ie
=0 1<i,j<N, i+j=r
N
+ﬂ“iﬁ@ Dapr, Wy, 0 e ]+£W[]M—ZFT
O N 3, U3y, ¥1, , ¥ N, UQ, ,UN, E oz 1| U0 r&
r=0

= (f + a% (D1 o] ()] — Fo) + (fm [T + uos W1 ] — Fl) 3

a I T
+Z (97 U, +ug, Uy + 4 Z 4 sz\lli —F,.|e
1<i,j<N, i+j=r
N+1 0 ol A (2)
te o [ [Dip, Dy, el + Ry [Dsp, Dypi, W, - -, Uy, ug, - auN75]:|
a R()[,LL /’L17\III7' 7\IINau07"'7uNa€]7

where

Rs?)[ﬂ,ﬂlalplv"' S Un,ug, -, UN,€] R( )[Dl,UqDlva ]+R( )[Dg,LL,DSMla\Illa"' s UN, ug, -+ 7uN75]' (547)

By the functions u, € W1(M,T), 0 <r < N, we obtain from ([5.42)), (5.45) and (5.47) that

[ Eell oo (0,1;02) < CoeNt, (5.48)
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where C, is a constant depending only on N, T, u, 1, 4y, 0 <7 < N.

This completes thee proof. [J
N

43

Now, we estimate v = u — Zursr. By multiplying the two sides of (5.36|) by v’, we verify without difficulty that

r=0

A0S0+ [ el ds <50+ [ ok (s)17 s
:/0 ds/o b'g(a:,s)vz(a:,s)dx—i—Q/O (E.(s),v'(s))ds
=2 [ (Duplo -+ H(s) = Dupilhl(s), (9}
0

2 / (Dspielo + BI(s) — Dspiclhl(s)) ha (s), o (s))ds

=J1+ Jo + J3 + Jy, (5.49)
where A, = min{1, \, .} and
2 t
SO = WO + [Vo@e o) +3 [ o) ds
0
t
_ ) (5.50)
S(t) = [0/ (O + [loa(t)] +/0 [[vz.(s)]I” ds,
be(x,t) = Dspc[v + h](¢).
We estimate the integrals on the right-hand side of (5.49)) as follows.
Estimating J1. Note that
Wow,t) = DaDapic[v+hl(t) + Dipclv + hJ(t) (v/(£) + B () + 2DaDgpic[v + h)(£)(w(t) + h(t), v (£) + 1 (1))
+2D5 Dspclv + h](£)(ve (t) + ha (1), v, (£) + i (1)),
and
N
oz (t) + ha (D] < lloa (@) + D" lura(D)] < (N +2)M = M.
r=0
Hence
(@, )] < Kar (i ) [+ og(8) + Ao ()] + 4 02 (8) + ha ()] v (8) + o (£)]] (5.51)
< Kar (g ) (1+ M, +4MZ) = by,
where Kyr, (@, 1) = Kar, (1) + Kar, (11). We deduce from (5.51)), the term Jp is estimated as follows
¢ 1 ~ t
Jy = / ds/ bL(x,s)v2(x,s)dx < by, / S(s)ds. (5.52)
0 0 0
Estimating Jo. By (5.38]), (5.50]), we obtain
t t
Ty =2 / (EL(s),0/(s))ds < TC22N+2 4 / §(s)ds. (5.53)
0 0

Estimating J3. We have

[Dagiclo + Bl t) = Duprell(a, O < Kag, (o) [Jo(a, )]+ [[[o 4+ 21> = 1A17] + s + hall® = 1)) |

N

< Ko () (14 4M) (e (D) < K, (4, p2) (1 4 4M)

(5.54)
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1 A
Using the inequality 2ab < Ba® + Bb27 Va,b e R, V5 >0, with § = 5 and (|5.50)), (5.54]), the term J3 is estimated

as follows
Jy = —2/0(Dl,ug[v—i—h](s)—Dlug[h](s),v;(s»ds (5.55)
< 9K, (o gur) (14 4M,) / V/S(s) leL (s)1) ds
2
S —

t_ A t
S () (4 LY [ (s 5 [ o) ds
0 0

Estimating Jy. Similarly

Ti = =2 [ (Daglo 1) = DagelBl(s) ) (5 s (5.56)
< 2K, () (1 4+ 4M.) M, / V/S(s) s (s)]] ds
2
< Z

t, A t
S (upn) 1+ DL 022 [ Sy + 5 [ ) d.
0 0

Combining (5.49)), (5.50), (5.52)), (5.53)), (5.55) and (5.56)), we then obtain

¢
S(t) < TG (M)e2NT2 4 (M) / S(s)ds, (5.57)
0
1 1 ~ 2, 2 9 .
where (1 (M) = )\—C*, (M) = ™ 1+ba, + XKM* (p, 1) (1 +4M,)" (1 + M2)| . Using Gronwall’s lemma, we get
from (5.57)) that - -
S(t) < T¢(M)e*N 2 exp (T¢(M)) = TD3, 2NV T2, (5.58)

hence, it leads to

[ollvw, 7y < 3VTCU(M) exp (TG (M))eN+ = O,
or

< CpeNtL (5.59)

W1 (T)

Finally, we have the following theorem.

Theorem 5.7. Let (Hy), (HZ(N)) and (Hs) hold. Then there exist constants M > 0 and T > 0 such that, for every
e € (0,1), Problem (P:) has a unique weak solution u. € W1(M,T) satisfying the asymptotic estimation up to order
N+1 asin , where the functions u,, 7 =0,1,--- , N are the weak solutions of the problems (PT), r=0,1,---,N
respectively, and Cr is a constant depending only on N, T, f, u, p1, ., 7 =0,1,--- ' N.

b )
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