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Abstract

In this work, we establish existence results for the following fourth-order Kirchhoff-type elliptic problem with Hardy
potential

M
(∫

Ω

|∆u|pdx
)
∆2

pu− a

|x|p
|u|p−2u = λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω.

Precisely, by using the classical Hardy inequality and critical point theory, we prove the existence of multiple weak
solutions for the fourth-order Kirchhoff-type elliptic problem with Hardy potential.
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1 Introduction

Consider the following fourth-order Kirchhoff type elliptic problems with Hardy potential

M
(∫

Ω

|∆u|pdx
)
∆2

pu− a

|x|p
|u|p−2u = λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 1) containing the origin and with smooth boundary ∂Ω, 1 < p < N,∆2
pu =

∆(|∆u|p−2∆u) is an operator of fourth order, so-called p-biharmonic operator, λ is a positive parameter, M : [0,+∞[→
R is a continuous function, and f : Ω× R → R is an L2-Carathéodory function.

Kirchhoff [30] first introduced a model given by the equation

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

|∂u
∂x

|dx
)∂2u

∂x2
= 0, (1.2)
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which extends the classical D’Alembert’s wave equation by considering the effects of the changes in the length of the
strings during the vibrations. After that, many authors studied the following nonlocal elliptic boundary value problem

−M
(∫

Ω

|∇u|2dx
)
∆u(x) = f(x, u), in Ω,

u = 0, on∂Ω.

(1.3)

Problems like this are called the Kirchhoff type problems. In recent years, Kirchhoff type boundary value problems
have been investigated in many papers, we refer to [1, 11, 14, 18, 20, 21, 23, 33, 37, 39, 45], in which the authors have
used different methods to discuss the existence of solutions for nonlocal problems.

On the other hand, fourth-order boundary value problems which describe the deformations of an elastic beam in an
equilibrium state whose both ends are simply supported have been extensively studied in the literature. The studying
of existence and multiplicity of solutions for fourth-order problems which arise in the study of static equilibrium of an
elastic body, has drawn the attention of many authors, see [6, 7, 19, 22, 24, 26, 32, 34, 35, 36, 40]. For example, Candito
and Livrea in [7] by using critical point theory, established the existence of infinitely many weak solutions for a class of
elliptic Navier boundary value problems depending on two parameters and involving the p-biharmonic operator. Liu et
al. in [36] employing variational methods, studied the existence and multiplicity of nontrivial solutions for fourth-order
elliptic equations. In [19, 26] based on variational methods and critical point theory, the existence of multiple solutions
for (p1, . . . , pn)-biharmonic systems was discussed. Molica Bisci and Repovs̆ in [40] exploiting variational methods,
investigated the existence of multiple weak solutions for a class of elliptic Navier boundary problems involving the
p-biharmonic operator, and presented a concrete example of an application. In [32], by using variational methods the
existence and multiplicity of solutions for the following p-biharmonic equation

∆(|∆u|p−2∆u)− div(|∆u|p−2∇u) = λf(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a sufficiently smooth boundary ∂Ω, λ > 0, µ > 0 and
f, g : Ω× RN → R are two L1-Carathéodory functions, were established.

The following fourth-order elliptic equations of Kirchhoff type

∆2u−
(
a+ b

∫
Ω

|∇u|2dx
)
∆u(x) = λf(x, u), x ∈ Ω,

u = ∆u = 0, on ∂Ω,

which is related to the following stationary analogue of the equation of Kirchhoff type

utt +∆2u−
(
a+ b

∫
Ω

|∇u|2dx
)
∆u(x) = λf(x, u), x ∈ Ω,

has been studied by some researchers recently. Nonlocal fourth-order equations models the bending equilibrium of
simply supported extensible beams on nonlinear foundations. Recently, many researchers have paid their attention to
fourth-order Kirchhoff-type problems, we refer the reader to [12, 25, 38, 46] and the references therein. In [46], using
the mountain pass theorem, Wang and An established the existence and multiplicity of solutions for the following
fourth-order nonlocal elliptic problem{

∆2u−M
(∫

Ω
|∇u|2dx

)
∆u = λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω.

In particular, in [12] using variational methods and critical point theory, multiplicity results of nontrivial and
nonnegative solutions for a perturbed fourth-order Kirchhoff type elliptic problem were established.

Stationary problems involving singular nonlinearities, also the associated evolution equations, describe naturally
several physical phenomena and applied economical models, see [16, 17, 44] and the references therein. For instance,
nonlinear singular boundary value problems arise in the context of chemical heterogeneous catalysts and chemical
catalyst kinetics, in the theory of heat conduction in electrically conducting materials, singular minimal surfaces, as
well as in the study of non-Newtonian fluids and boundary layer phenomena for viscous fluids. Moreover, nonlinear
singular elliptic equations are also encountered in glacial advance, intransport of coal slurries down conveyor belt
sandin several other geophysical and industrial contents; see Callegari and Nachman [5]. Singular elliptic problems
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have been intensively studied in the last decades. Among others, we mention the works [2, 10, 13, 27, 28, 29, 31, 41,
42, 43, 47, 48, 49]. Xie and Wang in [48] proved that the problem

∆2
pu =

|u|p−2u

|x|2p
+ g(λ, x, u), in Ω,

u = ∆u = 0, on ∂Ω,

has infinitely many solutions with positive energy levels. Ferrara and Molica Bisic in [13] studied the existence of
solutions for the elliptic problem with Hardy potential

−∆pu = µ
|u|p−2u

|x|p
+ λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω.

(1.4)

Huang and Liu in [27] studied the sign-changing solutions for p-biharmonic equations with Hardy potential

∆2
pu− a

|x|2p
|u|p−2u = f(x, u), in Ω,

u = ∆u = 0, on ∂Ω,
(1.5)

by using the method of invariant sets of descending flow. For instance, in [41] using variational methods and critical
point theory the existence of at least three solutions for the following p-biharmonic equation with Hardy potential of
Kirchhoff-type

M
(∫

Ω

|∆u|pdx
)
∆2

pu− a

|x|2p
|u|p−2u = λf(x, u) + µg(x, u), in Ω,

u = ∆u = 0, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 3) containing the origin and with smooth boundary ∂Ω, 1 < p < N
2 was

discussed. In [49] the authors, by using critical point theory, have investigated the existence of infinitely many weak
solutions for a fourth-order Kirchhoff type elliptic problems with Hardy potential.

Motivated by the above facts, in the present paper, using two kinds of multi critical points theorems obtained in
[3, 4] which we recall in the next section (Theorems 2.2, 2.1), we establish the existence of at least three and two
weak solutions for the problem (1.1), see Theorems 3.1 - 3.2 Some recent results are extended and improved. Some
examples are presented to demonstrate the applications of our main results.

2 Preliminaries

Let X be the space W 2,p(Ω) ∩W 1,p
0 (Ω) endowed with the norm

∥u∥ =
(∫

Ω

|∆u|pdx
)1/p

.

Since 1 < p < N , we recall classical Hardy’s inequality, which says that∫
Ω

|u(x)|p

|x|p
≤ 1

H

∫
Ω

|∇u|pdx (∀u ∈ X) (2.1)

where H := ((N − p)/p)p; see, for instance, the paper [15]. Set p∗ := pN/(N − p) then By the Sobolev embedding
theorem there exists a positive constant C such that

∥u∥Lp∗ (Ω) ≤ C∥u∥, (∀u ∈ X), (2.2)

C :=
1

N
√
π

( N !Γ(N2 )

2Γ(Np )Γ(N + 1 + N
p )

) 1
N (

N(p− 1)

N − p
)1−

1
p . (2.3)

Fixing q ∈ [1, p∗[, again from the Sobolev embedding theorem, there exists a positive constant cq such that

∥u∥Lq(Ω) ≤ cq∥u∥, (∀u ∈ X), (2.4)
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and, in particular, the embedding X ↪→ Lq(Ω) is compact. Due to (2.3), as simple consequence of Holder’s inequality,
it follows that

cq ≤ |Ω|
p∗−q
p∗q

N
√
π

( N !Γ(N2 )

2Γ(Np )Γ(N + 1 + N
p )

) 1
N (

N(p− 1)

N − p
)1−

1
p ,

where Γ denotes the Gamma function and |Ω| is the Lebesgue measure of Ω. Define the functionals Φ,Ψ : X → R by

Φ(u) =
1

p
M̂(∥u∥p)− a

p

∫
Ω

|u(x)|p

|x|p
dx,

Ψ(u) = −
∫
Ω

F (x, u(x))dx,

(2.5)

where

M̂(t) =

∫ t

0

M(s)ds, t ≥ 0,

F (x, t) =

∫ t

0

f(x, ξ)dξ, Ω× R.

It is easy to show that the functionals Φ and Ψ are well defined and continuously Gâteaux differentiable and whose
derivative are

Φ′(u)(v) = M
(∫

Ω

|∆u(x)|pdx
)∫

Ω

|∆u(x)|p−2∆u(x)∆v(x)dx−

a

∫
Ω

|u(x)|p−2

|x|p
u(x)v(x)dx

(2.6)

and

Ψ′(u)(v) = −
∫
Ω

f(x, u(x))v(x)dx (2.7)

for every u, v ∈ X. In this article, we assume that the following conditions hold,

(H1) M : [0,+∞[→ R is a continuous function such that there are two positive constants m0 and m1 such that

m0 ≤ M(t) ≤ m1, ∀t ≥ 0. (2.8)

(F) There exist positive constant γ < p and a positive real function α(x) ∈ L∞(Ω) such that

F (x, t) ≤ α(x)(1 + |t|γ) for a.e. x ∈ Ω, ∀t ∈ R. (2.9)

Define the functional I : X → R given by I = Φ + λΨ. By the conditions (H1) and (F), it is easy to see that
I ∈ C1(X,R) and a critical point of I corresponds to a weak solution of the problem (1.1). Our main tools are two
multiple critical points theorem without the Palais-Smale condition, the first one due to Bonanno in [11] and the
second one an equivalent formulation [4, Theorem 2.3] of Ricceri’s three critical points theorem [3, Theorem 1], which
are recalled below.

Theorem 2.1. (see [4, Theorem 2.1] ). Let X be a reflexive real Banach space, and let Φ,Ψ : X → R be two sequen-
tially weakly lower semicontinuous functions. Assume that Φ is (strongly) continuous and satisfies lim∥u∥−→∞ Φ(u) =
∞. Assume also that there exist two constants r1 and r2 such that

(i) infX Φ < r1 < r2,

(ii) φ1(r1) < φ2(r1, r2),

(iii) φ1(r2) < φ2(r1, r2),

where

φ1(r) = inf
u∈Φ−1(−∞,r)

Ψ(u)− inf
u∈Φ−1(−∞,r)ω

Ψ(u)

r − Φ(u)
,
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φ2(r1, r2) = inf
u∈Φ−1(−∞,r1)

sup
u1∈Φ−1[r1,r2[

Ψ(u)−Ψ(u1)

Φ(u1)− Φ(u)
,

Then, for each

λ ∈
] 1

φ2(r1, r2)
,min{ 1

φ1(r1)
,

1

φ1(r2)
}
[
.

the functional Φ + λΨ has two local minima which lie in Φ−1(−∞, r1) and Φ−1(r1, r2), respectively.

Theorem 2.2. (see [3, Theorem 2.3]). Let X be a separable and reflexive real Banach space. Φ : X → R is a
continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative
admits a continuous inverse on X∗; Ψ : X → R is a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Suppose that

(j) lim∥u∥→∞(Φ(u) + λΨ(u)) = ∞,

(jj) There are a real number r, and u0, u1 ∈ X such that Φ(u0) < r < Φ(u1),

(jjj) infu∈Φ−1(−∞,r) Ψ(u) >
(Φ(u1)− r)Ψ(u0) + (r − Φ(u0))

Φ(u1)− Φ(u0)
.

Then there exists an open interval Λ ⊆ [0,∞] and a positive real number ρ such that, for each λ ∈ Λ, the equation

Φ′(u) + λΨ′(u) = 0,

has at least three weak solutions whose norms in X are less than ρ.

We refer to [9] in which Theorems 2.1 and 2.2 have been successfully employed to the existence of two solutions
and three solutions of the a nonlocal elliptic system.

3 Main results

Pick s > 0 such that B(0, s) ⊂ Ω, where B(0, s) denotes the ball with center at 0 and radius of s. Let

L =
2πN/2

Γ
(
N
2

) ∫ s

s
2

∣∣∣∣12(N + 1)

s3
r − 24N

s2
+

9(N − 1)

s

1

r

∣∣∣∣p rN−1dr. (3.1)

Define the function v by

v(x) =


0, x ∈ Ω \B(0, s),
1
h

(
4
s3 ρ

3 − 12
s2 ρ

2 + 9
sρ− 1

)
, x ∈ B(0, s) \B(0, s

2 ),
1
h , x ∈ B(0, s

2 )

(3.2)

with ρ = dist(x, 0) =
√∑N

i=1 x
2
i and h is positive constant. Clearly v ∈ X. Let

B(η) =

∫
Ω

F (x, v(x))dx−
∫
Ω

sup
∥t∥Lq(Ω)≤η

F (x, t)dx.

Now we are ready to state our main results for the problem (1.1).

Theorem 3.1. Assume that (H1) holds and 0 < a < m0H (with H is as in (2.1)). Suppose that there are three
positive constants h, η1, η2 with

ηp1
cpq

<
L

hp
<

(m0H − a)

m1Hcpq
ηp2 (3.3)
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such that

m1L

hp

∫
Ω

sup
∥t∥Lq(Ω)≤η1

F (x, t)dx <
(m0H − a)ηp1

cpqH
B(η1), (3.4)

m1L

hp

∫
Ω

sup
∥t∥Lq(Ω)≤η2

F (x, t)dx <
(m0H − a)ηp2

cpqH
B(η1). (3.5)

Then, for each

λ ∈

]
m1L

phpB(η1)
,
(m0H − a)

pHcpq
min{ ηp1∫

Ω
sup∥t∥Lq(Ω)≤η1

F (x, t)dx
,

ηp2∫
Ω
sup∥t∥Lq(Ω)≤η2

F (x, t)dx
}

[
there exists a positive real number ρ such that the problem (1.1) has at least two weak solutions ui ∈ X, i = 1, 2 whose
norms in C0(Ω) are less than some positive constant ρ.

Proof . Our aim is to apply Theorem 2.1. Let Φ,Ψ be the functionals defined in (2.5). From the above, we know
that the Gâteaux derivative of Φ and Ψ are given by (2.6) and (2.7), respectively. Note that Φ(0) = Ψ(0) = 0. By
(H1), it follows that

(m0H − a)

pH
∥u∥p ≤ Φ(u) ≤ m1

p
∥u∥p. (3.6)

Therefore, (3.6) implies that
lim

∥u∥−→∞
Φ(u) = +∞,

it means Φ is coercive. Moreover, from the weakly lower semicontinuity of the norm, and the monotonicity and
continuity of M̂ , we known that Φ is sequentially weakly lower semicontinuous. The functional Ψ has compact

derivative, hence it is sequentially weakly upper semicontinuous. Put r1 =
(m0H − a)ηp1

cpqpH
and r2 =

(m0H − a)ηp2
cpqpH

. Let

the function v be defined by (3.2). Direct calculations show

∂v(x)

∂xi
=

{
0, x ∈ (Ω \B(0, s)) ∪B(0, s

2 ),
1
h

(
12ρxi

s3 − 24xi

s2 + 9xi

sρ

)
, x ∈ B(0, s) \B(0, s

2 )

and

∂2v(x)

∂x2
i

=

{
0, x ∈ (Ω \B(0, s)) ∪B(0, s

2 ),
1
h

(
12(x2

i+ρ2)
s3ρ − 24

s2 +
9(ρ2−x2

i )
sρ3

)
, x ∈ B(0, s) \B(0, s

2 ).
(3.7)

By (3.7) and (3.1) we have

N∑
i=1

∂2v(x)

∂x2
i

=

{
0, x ∈ (Ω \B(0, s)) ∪B(0, s

2 ),
1
h

(
12ρ(N+1)

s3 − 24N
s2 + 9(N−1)

sρ

)
, x ∈ B(0, s) \B(0, s

2 ),

and ∫
Ω

|∆v(x)|pdx =

(
1

h

)p
2πN/2

Γ
(
N
2

) ∫ s

s
2

∣∣∣∣12(N + 1)

s3
r − 24N

s2
+

9(N − 1)

s

1

r

∣∣∣∣p rN−1dr =
L

hp
. (3.8)

Thus, we have by (2.8) and (3.8) that

(m0H − a)L

pHhp
≤ Φ(v(x)) ≤ m1L

php
. (3.9)

Consequently, in view of (3.3) we get
r1 < Φ(v(x)) < r2. (3.10)

Furthermore, by (3.10) we have

φ2(r1, r2) = inf
u∈Φ−1(−∞,r1)

sup
u1∈Φ−1[r1,r2[

Ψ(u)−Ψ(u1)

Φ(u1)− Φ(u)
≥ inf

u∈Φ−1(−∞,r1)

Ψ(u)−Ψ(v)

Φ(v)− Φ(u)
. (3.11)
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On the other hand, from (3.3) and (3.4), one has∫
Ω

F (x, v(x))dx > B(η1) >

m1

p

(m0H−a)
pH

∫
Ω

sup
∥t∥Lq(Ω)≤η1

F (x, t)dx >

∫
Ω

sup
∥t∥Lq(Ω)≤η1

F (x, t)dx. (3.12)

By (2.4) and (3.6), we obtain

Φ−1(]−∞, r1[) = {u ∈ X : Φ(u) < r1}

⊂
{
u ∈ X :

(m0H − a)

pH
∥u∥p < r1

}
⊂

{
u ∈ X : ∥u∥Lq(Ω) < cq

( pHr1
m0H − a

)1/p
= η1

}
.

(3.13)

Therefore, the combination of (3.12) and (3.13) implies

Ψ(u)−Ψ(v)

Φ(v)− Φ(u)
=

∫
Ω
F (x, v)dx−

∫
Ω
F (x, u)dx

Φ(v)− Φ(u)

≥
∫
Ω
F (x, u)dx−

∫
Ω
sup∥u∥Lq(Ω)≤η1

F (x, u)dx

Φ(v)− Φ(u)

≥
∫
Ω
F (x, u)dx−

∫
Ω
sup∥u∥Lq(Ω)≤η1

F (x, u)dx

Φ(v)

≥
∫
Ω
F (x, u)dx−

∫
Ω
sup∥u∥Lq(Ω)≤η1

F (x, u)dx
m1

p ∥v∥pp

=
php

m1L
B(η1).

(3.14)

By (3.11) and (3.4), we have

φ2(r1, r2) ≥
php

m1L
B(η1). (3.15)

Similarly, for every u ∈ X such that Φ(u) ≤ r, where r is a positive real number, one has

∥u∥Lq(Ω) ≤ cq∥u∥p ≤ cqr
(m0H−a)

pH

. (3.16)

By virtue of Φ being sequentially weakly lower semicontinuous, then Φ−1(∞, r)w = Φ−1(∞, r). Consequently,

φ1(r) = inf
u∈Φ−1(∞,r)

Ψ(u)− inf
Φ−1(∞,r)w

Ψ(u)

r − Φ(u)

≤
Ψ(0)− inf

Φ−1(∞,r)w
Ψ(u)

r − Φ(0)

≤
− inf

Φ−1(∞,r)w
Ψ(u)

r

≤

∫
Ω
sup∥u∥Lq(Ω)≤

cqr

(m0H−a)
pH

F (x, u)dx

r
.

(3.17)

It implies that

φ1(r1) ≤
∫
Ω
sup∥t∥Lq(Ω)≤η1

F (x, t)dx

r1
=

pHcpq
(m0H − a)ηp1

∫
Ω

sup
∥t∥Lq(Ω)≤η1

F (x, t)dx <
php

m1L
B(η1), (3.18)

φ1(r2) ≤
∫
Ω
sup∥t∥Lq(Ω)≤η2

F (x, t)dx

r2
=

pHcpq
(m0H − a)ηp2

∫
Ω

sup
∥t∥Lq(Ω)≤η2

F (x, t)dx <
php

m1L
B(η1). (3.19)
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By (3.15) -(3.19), we conclude

φ1(r1) ≤ φ2(r1, r2), φ1(r2) ≤ φ2(r1, r2), (3.20)

Therefore, the conditions (i), (ii), and (iii) in Theorem 2.1 are satisfied. Consequently, by above facts, the functional
Φ + λΨ has two local minima u1, u2 ∈ X, which lie in Φ−1(∞, r1) and Φ−1[r1, r2), respectively. Since I = Φ + λΨ ∈
C1, u1, u2 ∈ X are the solutions of the equation

Φ′(u) + λΨ′(u) = 0.

Then u1, u2 ∈ X are the weak solutions of problem (1.1). Since Φ(ui) < r2, i = 1, 2, by (2.3) and (3.6)

∥ui∥Lq(Ω) < cq
( pHr2
m0H − a

)1/p
= η2, i = 1, 2;

which implies there exists a positive real number ρ such that the norms of ui,∈ X, i = 1, 2,∈ C0(Ω) are less than some
positive constant ρ. This completes the proof. □

Theorem 3.2. Assume that (F ) and (H1) hold and 0 < 2a < m0H (with H is as in (2.1)). Suppose that there are
two positive constants h, η with

ηp

cpq
<

L

hp
(3.21)

such that

(k) F (x, t) ≥ 0 ∀x ∈ Ω\B(0, s/2) and for all t ∈ [0,
1

h
],

(kk)
m1L

hp
|Ω| sup

(x,t)∈Ω×{t∈R:∥t∥Lq(Ω)≤cq

(
pHr

m0H−a

)1/p
}
F (x, t) <

(m0H − a)ηp

Hcpq

∫
B(0,s/2)

F (x, 1
h )dx.

Then, there exists an open interval Λ ⊆ [0,∞] and a positive real number ρ such that, for each λ ∈ Λ, the problem
(1.1) has at least three weak solutions ui ∈ X, i = 1, 2, 3 whose norms are less than ρ.

Proof . By (k) and (3.6), we have

Φ(u) + λΨ(u) =
1

p
M̂(∥u∥p)− a

p

∫
Ω

|u(x)|p

|x|p
dx− λ

∫
Ω

F (x, u(x))dx

≥ (m0H − a)

pH
∥u∥p − a

pH
∥u∥p − λ

a

p

∫
Ω

α(x)(1 + |u(x)|γ)

≥ (m0H − 2a)

pH
∥u∥p − λ∥α∥∞(|Ω|+ k1∥u∥γ),

(3.22)

where k1, are positive constant. Since γ < p, (3.22) implies that

lim
∥u∥−→∞

Φ(u) + λΨ(u) = ∞, (3.23)

The same as in (3.2), defining a function v(x). Choosing r =
(m0H − a)ηp

pHcpq
, by (3.21) we conclude

Φ(v) ≥ (m0H − a)

pH
∥v∥pp =

(m0H − a)

pH

L

hp
> r.



Existence of three solutions for fourth-order Kirchhoff type elliptic problems with Hardy potential 19

By (kk) and the definitions of v, one has

|Ω| sup

(x,t)∈Ω×{t∈R:∥t∥Lq(Ω)≤cq

(
pHr

m0H−a

)1/p
}

F (x, t) <
(m0H − a)hpηp

m1LHcpq

∫
B(0,s/2)

F (x,
1

h
)dx

=
(m0H − a)ηp

pHcpq

∫
B(0,s/2)

F (x, 1
h )dx

m1L
php

≤ (m0H − a)ηp

pHcpq

∫
Ω\B(0,s/2)

F (x, v(x))dx+
∫
B(0,s/2)

F (x, 1
h )dx

m1L
php

≤ (m0H − a)ηp

pHcpq

∫
Ω
F (x, v(x))dx

Φ(v(x))
.

(3.24)

For every u ∈ X such that Φ(u) ≤ r, and x ∈ Ω, one has By (2.4) and (3.6), we obtain

Φ−1(]−∞, r[) = {u ∈ X : Φ(u) < r}

⊂
{
u ∈ X :

(m0H − a)

pH
∥u∥p < r

}
⊂

{
u ∈ X : ∥u∥Lq(Ω) < cq

( pHr

m0H − a

)1/p
= η

}
.

(3.25)

So

sup
u∈Φ−1(−∞,r)

(−Ψ(u)) ≤ sup
u∈Φ−1(−∞,r)

∫
Ω

F (x, u)dx

≤ sup
∥u∥Lq(Ω)≤η

∫
Ω

F (x, u)dx

≤
∫
Ω

sup
∥u∥Lq(Ω)≤η

F (x, u)dx

≤ |Ω| sup
(x,u)∈Ω×{u∈X:∥u∥Lq(Ω)≤η

}F (x, u)dx

≤ (m0H − a)ηp

cpqpH

∫
Ω
F (x, v(x))

Φ(v(x))

= r
−Ψ(v)

Φ(v)
,

(3.26)

Therefore,

inf
u∈Φ−1(−∞,r)

Ψ(u) > r
Ψ(v(x))

Φ(v(x))
.

Note that Φ(0) = Ψ(0) = 0, we conclude that

inf
u∈Φ−1(−∞,r)

Ψ(u) >

(
Φ(v(x))− r

)
Ψ(0) +

(
r − Φ(0)

)
Ψ(v(x))

Φ(v(x))− Φ(0)
.

Hence, above facts, Φ and Ψ satisfy all conditions of Theorem 2.2; then the conclusion directly follows from
Theorem 2.2. □

We end this paper by giving the following examples to illustrate Theorems 3.1 and 3.2, respectively.

Example 3.3. Consider the problem

M
(∫

Ω

|∆u|2dx
)
∆2u− 0.0001

|x|2
u = λf(x, u) in Ω

u = ∆u = 0 on ∂Ω,

(3.27)
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where Ω := {x ∈ R3 : |x| < 1} and M(t) = 1 +
sin(t)

100
, t ≥ 0, and define f(x, t) = cos(2

√
x2
1 + x2

2 + x2
3)cos(t) for

every (x, t) ∈ Ω × R. By the expression of f we have F (x, t) = cos(2
√
x2
1 + x2

2 + x2
3)sin(t) for every (x, t) ∈ Ω × R.

Taking η1 = 13 and η2 = 20, h = 2, p = 2 since in this case, H =
(

3−2
2

)2

= 0.25, by simple calculations we observe

that all conditions in Theorem 3.1 are satisfied. Therefore, for each λ ∈]182.84, 447.3[ the problem (3.27) has at least
two weak solutions.

Example 3.4. Consider the problem

M
(∫

Ω

|∆u|2dx
)
∆2u− 0.01

|x|2
u = λf(x, u) in Ω

u = ∆u = 0 on ∂Ω,

(3.28)

where Ω := {x ∈ R3 : |x| < 1} and M(t) = 2 − t

4t+ 1
, t ≥ 0 and define f(x, t) =

cos(t)

2 + (x2
1 + x2

2 + x2
3)

for every

(x, t) ∈ Ω × [0, 1]. By the expression of f we have F (x, t) =
sin(t)

2 + (x2
1 + x2

2 + x2
3)

for every (x, t) ∈ Ω × [0, 1]. Choose

η = 27 and h = 1, p = 2. We get H =
(

3−2
2

)2

= 0.25. By simple calculations then all conditions in Theorem 3.2 are

fulfilled. Then there exist an open interval Λ ⊆ [0,∞] and a positive real number ρ such that, for each λ ∈ Λ, the
problem (3.28) has at least three weak solutions.
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[16] M. Ghergu and V. Rădulescu, Singular Elliptic Problems, Bifurcation & Asymptotic Analysis, Oxford Lecture
Series in Mathematics and Its Applications, vol. 37, Oxford University Press, New York, 2008.
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