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Abstract

In this paper, we characterize the boundedness and compactness of product type operators, including Stević-Sharma
operator Tν1,ν2,φ, from weak vector valued derivative Besov space wEp

β(X) into weak vector-valued Besov space

wBp
β(X). As an application, we obtain the boundedness and compactness characterizations of the weighted composition

operator on the weak vector valued derivative Besov space.
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1 Introduction

Let D denote the open unit disc in C, ∂D its boundary, H(D) be the space of all analytic functions h : D → D
and H∞(D) the space of all bounded analytic functions with the norm ∥f∥∞ = supz∈D |f(z)|. Let S(D) be the class
of all analytic self-maps on D. For ν ∈ H(D) and φ ∈ S(D), the weighted composition operator MνCφ is given
by MνCφh(z) = ν(z)(h ◦ φ)(z), for h ∈ H(D) and z ∈ D. Then for ν = 1, we have the composition operator Cφ

and φ(z) = z, gives us the multiplication operator Mν . So MνCφ, is a product-type operator. This operator plays
an important role in the isometry theory of Banach spaces. An extensive study concerning the theory of weighted
composition operators has been established during the past four decades on various settings. We refer to standards
references [4, 16, 24] for various aspects about the theory of composition operators acting on analytic function spaces,
especially the problems of relating operator-theoretic properties of Cφ to function theoretic properties of φ.

The differentiation operator D, is defined by Dh = h′, for h ∈ H(D). Note that D is typically unbounded on
many familiar spaces of analytic functions. The differential operator plays an important role in various fields such as
dynamical system theory and operator theory. In six ways, we can consider the products of any three operators of
Cφ,Mν and D, i.e.,

MνCφ, CφMν ,MνD,DMν , CφD,DCφ. (1.1)
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Similarly, in six ways we obtain the products of three operators Mν , Cφ and D, i.e.,

MνCφD,CφMνD,MνDCφ, CφDMν , DMνCφ, DCφMν . (1.2)

During recent years, there has been a great interest in studying these product-type operators between analytic
function spaces. The boundedness and compactness of the products DCφ and CφD of composition operators and
differentiation operators between Bergman spaces and Hardy spaces were first studied by Hibschweiler and Portnoy in
[9] and then on Hardy spaces by Onho [15]. Also the authors [20, 21] characterized the boundedness and compactness
of the products DMν and MνD from H∞ and mixed norm spaces to Zygmund spaces and Bloch type spaces. For
more information on these operators, we refere to [9, 12, 13, 15, 17].

In order to treat above product-type operators in a unified manner, Stević and co-workers for the first time in [17],
introduced the so called Stević-Sharma operator Tν1,ν2,φ as follows:

Tν1,ν2,φh = Mν1
Cφh+Mν2

CφDh = ν1h ◦ φ+ ν2h
′ ◦ φ, h ∈ H(D). (1.3)

One of the reasons that the Stević-Sharma operator is important for investigation is that, this operator includes
many product-type operators and we can obtain all operators in (1.1) and (1.2) from Tν1,ν2,φ by fixing ν1, ν2 and φ.
More specially:

MνCφ = Tν,0,φ, CφMν = Tν◦φ,0,φ, MνD = T0,ν,id, CφD = T0,1,φ,

DCφ = T0,φ′,φ, MνCφD = T0,ν,φ, CφMνD = T0,ν◦φ,φ, MνDCφ = T0,νφ′,φ,

CφDMν = Tν′◦φ,ν◦φ,φ′ , DMνCφ = Tν′,νφ′,φ, DCφMν = T(ν′◦φ)φ′,(ν◦φ)φ′,φ. (1.4)

Under some conditions, Stević et al. [17] characterized the boundedness and compactness of the Stević-Sharma
operator on the weighted Bergman space. Quite recently, Zhang and Liu [23] presented the boundedness and com-
pactness of the operator Tν1,ν2,φ from Hardy spaces to Zygmund-type spaces. Liu and Yu [21] gave the complete
characterizations for the boundedness and compactness of the operator Tν1,ν2,φ from Hardy spaces to the logarithmic
Bloch spaces. Liu and co-workers [22] investigated the compactness of the operator Tν1,ν2,φ on logarithmic Bloch
spaces. For further results about the Stević-Sharma operator on various holomorphic function spaces, we refer to
[1, 18, 19] and references therein.

However, to the best of our knowledge, there are very few investigations about the Stević-Sharma operator in the
setting of spaces of vector-valued holomorphic functions. The investigation of holomorphic functions spaces in the
vector-valued framework always brings new insights and it often requires the development of entirely new techniques
compared to the scalar-valued setting. To this end, we first recall our function spaces to work on. Let dm be the
normalized area measure on D, to have the total mass 1. Then for 1 ≤ p < ∞ and −1 < β < ∞, the weighted Bergman
space Lp

β(D), consists of all analytic functions h ∈ H(D), such that

∥h∥pLp
β
:=

∫
D
|h(z)|p(1− |z|2)βdm(z) < ∞.

In addition, the analytic Besov type space Bp
β(D), is the space of all functions h ∈ H(D), for which

∥h∥pBp
β(D)

=

∫
D
|h′(z)|p(1− |z|2)βdm(z) + |h(0)| < ∞.

Furthermore, the analytic function h ∈ H(D), is considered to be in derivative Besov space Ep
β(D), if the norm

∥h∥pEp
β(D)

= ∥h′∥pBp
β
+ |h(0)| = ∥h′′∥pLp

β
+ |h′(0)|+ |h(0)|

be finite. Let X be a complex Banach space. The corresponding weak version vector-valued derivative Besov space
wEp

β(X) consists of the analytic functions h : D → X for which

∥h∥wEp
β(X) = sup

δ∗∈BX∗
∥δ∗ ◦ h∥Ep

β(D) < ∞.

Meanwhile, the weak vector-valued Besov space wBp
β(X) consists of the analytic functions h : D → X for which

∥h∥wBp
β(X) = sup

δ∗∈BX∗
∥δ∗ ◦ h∥Bp

β(D) < ∞.
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Here and in the sequel, X∗ is the dual space of X and BX∗ = {δ∗ ∈ X∗ : ∥δ∗∥X∗ ≤ 1} is the closed unit ball of
X∗. In fact, such weak version spaces wE(X) can be introduced under more general conditions on any Banach spaces
E consisting of holomorphic functions, see [2, 3, 6, 10, 11, 14] and references therein.

The main concern of the present paper is to discuss the boundedness and compactness of the operator Tν1,ν2,φ from
weak vector valued derivative Besov spaces into weak vector valued Besov type spaces. Then as conclusions, according
to (1.4), we have characterizations for the boundedness and compactness of product-type operators in (1.1) and (1.2)
on these spaces. Also as another interesting result, we have a characterization for the boundedness and compactness
of weighted composition operator MνCφ from wEp

β+p(X) into wEp
β(X).

Throughout this paper, we use A ⪯ B or B ⪰ A for non-negative quantities A and B to mean A ≤ CB for some
inessential constant C > 0. Similarly, we use the notation A ≍ B if both A ⪯ B and B ⪰ A hold.

2 Boundedness of product type operators from Ep
β+p(X) into Bp

β(X)

In this section, our first plan is to find some equivalent statements for the boundedness of some product type opera-
tors include Stević-Sharma operator, from wEp

β(X) into wLp
β(X). Then we consider the boundedness of two operators

Mν1
Cφ and Mν2

CφD, from Ep
β+p(D) into Bp

β(D), to obtain the conditions for studying Tν1,ν2,φ = Mν1
Cφ +Mν2

CφD

between these two spaces. Finally as a conclusion, we characterize the boundedness of MνCφ : wEp
β+p(X) 7→ wEp

β(X).

For a point ξ in ∂D, the boundary of the unit disk and ϵ > 0, we define the Carleson set ρ(ξ, ϵ) := {z ∈ D : |ξ−z| <
ϵ}. Let β > −1 and ζ be a positive Borel measure on D. For 0 < p < ∞, it is well known (see [24, Section 2.4]) that

the embedding Lp
β(D) ⊂ Lp(D, dζ) is bounded ⇔ sup

ξ∈∂D,ϵ>0

ζ(ρ(ξ, ϵ))

ϵβ+2
< ∞ (2.1)

and

the embedding Lp
β(D) ⊂ Lp(D, dζ) is compact ⇔ lim

ϵ→0
sup
∂D

ζ(ρ(ξ, ϵ))

ϵβ+2
= 0. (2.2)

We say that ζ is an β-Carleson measure if either side of (2.1) holds. Also, we say that ζ is a compact β-Carleson
measure if either side of (2.2) holds.

The connection between composition operators and Carleson measures comes from the standard identity (see [7,
P. 163]) ∫

D
(h ◦ φ)(z)(1− |z|2)βdm(z) =

∫
D
h(z) dζ(z) (2.3)

valid for φ ∈ S and Borel functions h ≥ 0 on D. Here, dζ denotes the pullback measure defined by

ζ(E) =

∫
φ−1(E)

(1− |z|2)βdm(z)

for Borel sets E ⊂ D. In particular, one can easily observe from (2.3) that Cφ : Lp
β(D) → Lp

β(D) is (compact) bounded

if and only if ζ is (compact) β-Carleson measure for Lp
β(D).

Assume 1 ≤ p < ∞ and −1 < β. Let φ be a self map on D, and ν ∈ H(D). Denote by Zφ,v the number of zeros of
φ(z)− v on D. Then Kβ,ν(φ) on D, is defined as follows:

Kβ,ν(φ, v) =
∑

(1− |z|2)β |ν(z)|p|φ′(z)|p−2,

when, repeated by multiplicity, the sum extends over the zeros of φ − v. In particular, for v /∈ φ(D), we have that
Kβ,ν(φ) = 0. Also for ν = 1, β = 0 and p = 2, we get Zφ,v. Now define the measure ζβ,ν on D, by dζβ,ν(v) =:
Kβ,ν(φ)dm(v).

Lemma 2.1. [8] Let p ≥ 1, β > −1 and i ∈ N. Then for any h ∈ Lp
β(D), we have that

|h(i)(z)| ⪯
∥h∥Lp

β(D)

(1− |z|2)
2+β
p +i

.
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Next lemma, will hepl us to provide easier conditions for consider the boundedness property of product type
operators, on desired spaces.

Lemma 2.2. Suppose that 2 + β < p < ∞. Then for any h ∈ Ep
β(D), we get that

|h(i)(z)| ⪯ ∥h∥Ep
β(D) i = 0, 1. (2.4)

|h(i+2)(z)| ⪯
∥h∥Ep

β(D)

(1− |z|2)
2+β
p +i

, i ≥ 0. (2.5)

Proof . For any h ∈ Ep
β(D), h′′ ∈ Lp

β(D), it follows from [24] that |h′′(z)| ⪯
∥h′′∥Lp

β
(D)

(1−|z|2)
2+β
p

. Then for p > 2 + β, we have

|h′(z)− h′(0)| =
∣∣∣∣ ∫ z

0

h′′(w)dw

∣∣∣∣ ⪯ ∫ 1

0

|z|∥h′′∥Lp
β(D)

(1− |tz|2)
2+β
p

dt ⪯ ∥h′′∥Lp
β(D).

Thus
|h′(z)| ⪯ ∥h′′∥Lp

β(D) + |h′(0)| (2.6)

It follows that |h′(z)| ⪯ ∥h∥Ep
β(D). On the other hand, (2.6) yields that

|h(z)− h(0)| ⪯
∫ 1

0

|z||h′(tz)|dt ⪯ ∥h′′∥Lp
β(D) + |h′(0)|.

Therefore
|h(z)| ⪯ ∥h′′∥Lp

β(D) + |h′(0)|+ |h(0)|

and this gives us |h(z)| ⪯ ∥h∥Ep
β(D). For any h ∈ Ep

β(D), we have that f ′′ = f (2) ∈ Lp
β(D). So inequality (2.5) holds

from Lemma 2.1. □

As a result of the above lemma, one can see that Ep
β(D) ⊂ H∞ ⊂ Bp

β(D) ⊂ Lp
β(D). Also we obtain ∥h∥∞ ⪯ ∥h∥Ep

β(D)
and ∥h′∥∞ ⪯ ∥h∥Ep

β(D).

Theorem 2.3. Suppose that β > −1, p > β + 2, ν ∈ H(D) and φ ∈ S(D). Then the following statements are
equivalent:

(a) Operator MνCφ : wEp
β(X) → wLp

β(X) is bounded.

(b) Operator MνCφ : Ep
β(D) → Lp

β(D) is bounded.
(c) ν ∈ Lp

β(D).

Proof . (a) ⇒ (b). Suppose that MνCφ : wEp
β(X) → wLp

β(X) be bounded and h ∈ Zp
β(D). If δ ∈ X with ∥δ∥ = 1

and consider the function g : D → X, g(z) = δh(z) for z ∈ D then we have

(δ∗ ◦ g)′(z) = (δ∗ ◦ δh)′(z) = lim
w→z

δ∗(δh(w))− δ∗(δh(z))

w − z

= lim
w→z

h(w)δ∗(δ)− h(z)δ∗(δ)

w − z
= h′(z)δ∗(δ).

It follows that (δ∗ ◦ g)′′(z) = (h′(z)δ∗δ)′(z) = h′′(z)δ∗(δ). Then

sup
||δ∗||X∗≤1

∥δ∗ ◦ g∥pEp
β(D)

= sup
||δ∗||X∗≤1

∫
D
(|(δ∗ ◦ g)′′(z)|p(1− |z|2)βdm(z) + |(δ∗ ◦ g)′(0)|+ |(δ∗ ◦ g)(0)|

= sup
||δ∗||X∗≤1

(

∫
D
|h′′(z)δ∗(δ)|p(1− |z|2)βdm(z) + |δ∗(δ)h′(0)|+ |δ∗(δ)h(0)|

=

∫
D
|h′′(z)|p(1− |z|2)βdm(z) + |h′(0)|+ |h(0)| = ∥h∥pZp

β(D)
< ∞.
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Consequently, ∥g∥p
wEp

β(X)
= sup||δ∗||X∗≤1 ∥δ∗ ◦ g∥pZp

β(D)
= ∥h∥pEp

β(D)
. This implies that g ∈ wEp

β(X), therefore the

boundedness of MνCφ : wEp
β(X) → wLp

β(X), gives us

∥MνCφg||wLp
β(X) ⪯ ∥g∥wEp

β(X) = ∥h∥Ep
β(D). (2.7)

In a similar way, we obtain

∥MνCφg∥pwLp
β(X)

= sup
||δ∗||X∗≤1

∥δ∗ ◦MνCφg∥pLp
β(D)

= sup
||δ∗||X∗≤1

(

∫
D
|(δ∗νCφg)(z)|p(1− |z|2)βdm(z))

= sup
||δ∗||X∗≤1

(

∫
D
|(δ∗νCφ(δh))(z)|p(1− |z|2)βdm(z) (2.8)

= sup
||δ∗||X∗≤1

(

∫
D
|δ∗(δ)(νCφh)(z)|p(1− |z|2)βdm(z)

=

∫
D
|(νCφh)(z)|p(1− |z|2)βdm(z) = ∥MνCφh∥pLp

β(D)
.

So, from (2.7) and (2.8) we get that ∥MνCφh∥Lp
β(D) ⪯ ∥h∥Ep

β(D). Then MνCφ : Ep
β(D) → Lp

β(D) is bounded.

(b)⇒ (c). Let MνCφ : Ep
β(D) → Lp

β(D) be bounded. Then if we choose function h = 1, we have that ∥ν∥Lp
β(D) < ∞.

So ν ∈ Lp
β(D).

(c)⇒ (a). Suppose that ν ∈ Lp
β(D), then ∥ν∥Lp

β(D) < ∞ and for any h ∈ Ep
β(D), Lemma 2.2 gives us

||MνCφh||Lp
β(D) ⪯ ∥h∥∞∥ν∥Lp

β(D) ⪯ ∥h∥Ep
β(D). (2.9)

But for h ∈ wEp
β(X) and δ∗ ∈ X∗ such that ∥δ∗∥ ≤ 1, we have that δ∗ ◦ h ∈ Ep

β(D). Then (2.9) gives us

∥MνCφ(δ
∗ ◦ h)∥Lp

β(D) ⪯ ∥δ∗ ◦ h∥Ep
β(D) ⪯ sup

||δ∗||X∗≤1

∥δ∗ ◦ h∥Ep
β(D) = ∥h∥wEp

β(X).

Therefore,

||MνCφh||wLp
β(X) = sup

∥δ∗||≤1

∥δ∗ ◦ (MνCφ(h)||Lp
β(D) = sup

||δ∗||≤1

||MνCφ(δ
∗ ◦ h)||Lp

β(D)

⪯ ∥h∥wEp
β(X).

This completes the proof. □

Theorem 2.4. Suppose that β > −1, p > β + 2, ν ∈ H(D) and φ ∈ S(D). Then the following statements are
equivalent:

(a) Operator MνCφD : wEp
β(X) → wLp

β(X) is bounded.

(b) Operator MνCφD : Ep
β(D) → Lp

β(D) is bounded.
(c) ν ∈ Lp

β(D).

Proof . (a)⇔(b). It is similar to the proof of Theorem 2.3.

(b)⇒(c). If MνCφD : Ep
β(D) → Lp

β(D) be bounded, by choosing h = z, we get that ν ∈ Lp
β(D).

(c)⇒(b). Let ν ∈ Lp
β(D), then by using Lemma 2.2, for any analytic function h ∈ Ep

β(D) we get that

∥MνCφDh∥Lp
β(D) = ∥ν(z)h′(φ(z))∥Lp

β(D) ⪯ ∥h′∥∞∥ν∥Lp
β(D) ⪯ ∥h∥Ep

β(D).

This implies the boundedness of MνCφD : Ep
β(D) → Lp

β(D). □
The following lemma comes from [8], which is vital to prove our main results.
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Lemma 2.5. For any β > −1 and p > 0, we have that∫
D
|h(z)|p(1− |z|2)βdm(z) ⪯

[
|h(0)|p +

∫
D
|k(z)|p(1− |z|2)βdm(z)

]
and

|h(0)|p +
∫
D
|k(z)|p(1− |z|2)βdm(z) ⪯

∫
D
|h(z)|p(1− |z|2)βdm(z)

for all analytic functions h ∈ H(D), where

k(z) = (1− |z|2)h′(z) z ∈ D.

Remark 2.6. As a result of the above lemma, we can observe that k ∈ Lp
β(D) if and only if k′ ∈ Lp

β+p(D).

Lemma 2.7. [5] Let φ ∈ S(D), ν ∈ H(D), −1 < β < ∞ and 1 < p < ∞. Then we have the following equivalent
statements:

(a) MνCφ : Lp
β(D) → Lp

β(D) is bounded.

(b) supx∈D
∫
D

(1−|x|)β+2(1−|z|2)β
|1−xφ(z)|2(α+2) |ν(z)|pdm(z) < ∞.

Theorem 2.8. Let β > −1, p > β + 2, ν ∈ H(D) and φ ∈ S(D). Then the following statements are equivalent:

(a) Operator MνDCφ : Ep
β+p(D) → Lp

β(D) is bounded.
(b) Operator Mνφ′Cφ : Bp

β+p(D) → Lp
β(D) is bounded.

(c) Operator Mνφ′Cφ : Lp
β(D) → Lp

β(D) is bounded.

(d) supx∈D
∫
D

(1−|x|)β+2(1−|z|2)β
|1−xφ(z)|2(β+2) |νφ′(z)|pdm(z) < ∞.

Proof .(a)⇒(b). If MνDCφ : Ep
β+p(D) → Lp

β(D) be bounded, then for any h ∈ Ep
β+p(D) we have that ∥ν(z)φ′(z)h′ ◦

φ(z)∥Lp
β(D) ⪯ ∥h∥Ep

β+p(D). This implies that ∥Mνφ′CφDh∥Lp
β(D) ⪯ ∥h∥Ep

β+p(D). Now for an arbitrary analytic function

g ∈ Bp
β+p(D), such that g(0) = 0, define the function k(z) :=

∫ z

0
g(w)dw. Then k′(z) = g(z) ∈ Bp

β+p(D) and
k(0) = k′(0) = 0, so ∥Mνφ′CφDk∥Lp

β(D) ⪯ ∥k∥Ep
β+p(D). It follows that ∥Mνφ′Cφg∥Lp

β(D) ⪯ ∥g∥Bp
β+p(D), therefore

Mνφ′Cφ : Bp
β+p(D) → Lp

β(D) is bounded.

(b)⇒(c). If Mνφ′Cφ : Bp
β+p(D) → Lp

β(D) be bounded, then by Lemma 2.5, for any g ∈ Bp
β+p(D),

∥Mνφ′Cφg∥Lp
β(D) ⪯ ∥g∥Bp

β+p(D) = ∥g′∥Lp
β+p(D) + |g(0)| ⪯ ∥g∥Lp

β(D).

(c)⇔(d). It is clear according to Lemma 2.7.

(c)⇒(a). For an arbitrary h ∈ Ep
β+p(D), we have that h′ ∈ Bp

β+p(D), then h′′ ∈ Lp
β+p(D), then by Lemma 2.5,

h′ ∈ Lp
β(D). So the boundedness of Mνφ′Cφ : Lp

β(D) → Lp
β(D), and Lemma 2.5, give us

∥νφ′h′ ◦ φ∥Lp
β(D) ⪯ ∥h′∥Lp

β(D) ⪯ ∥h′′∥Lp
β+p(D) + |h′(0)| ⪯ ∥h∥Ep

β+p(D).

Therefore

∥MνDCφh∥Lp
β(D) = ||νφ′h′ ◦ φ||Lp

β(D) ⪯ ∥h∥Ep
β+p(D).

The proof is complete. □

The previous theorems help us to consider the boundedness of Stević-Sharma operator Tν1,ν2,φ from weak vector
valued derivative Besov space into weak vector valued weighted Bergman space.

Theorem 2.9. Suppose that β > −1, p > β + 2, ν1, ν2 ∈ H(D) and φ ∈ S(D).Then the following statements are
equivalent:

(a) Operator Tν1,ν2,φ : wEp
β(X) → wLp

β(X) is bounded.

(b) Operator Tν1,ν2,φ : Ep
β(D) → Lp

β(D) is bounded.
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(c) ν1, ν2 ∈ Lp
β(D).

Proof . (a)⇔ (b). It’s similar to the proof of Theorem 2.3.

(b)⇒ (c). By choosing h1 = 1, we get that

∥Tν1,ν2,φ(h1)∥Ep
β(D) = ∥ν1∥Lp

β(D) < ∞. (2.10)

Also by putting h2 = z, we obtain

∥Tν1,ν2,φ(h2)∥Lp
β(D) = ∥ν1φ+ ν2∥Lp

β(D) < ∞. (2.11)

But (2.10) gives us ∥ν1φ∥Lp
β(D) ⪯ ∥φ∥∞∥ν1∥Lp

β(D) < ∞. Hence, by the triangle inequality, (2.10) and (2.11), we

have that
∥ν2∥Lp

β(D) ⪯ ∥ν2 ± ν1φ∥Lp
β(D) ⪯ ∥ν2 + ν1φ∥Lp

β(D) + ∥ν1φ∥Lp
β(D) < ∞. (2.12)

(c)⇒ (b). By an application of Theorems 2.3 and 2.4 and the triangle inequality, it is obvious. □

As an application of the above theorem, we obtain characterizations for the boundedness of all product type
operators in (1.1) and (1.2) between the mentioned spaces.

Corollary 2.10. Suppose that β > −1, p > β + 2 , ν ∈ H(D) and φ ∈ S(D). Then the following statements are
equivalent:

(a) Operator DMνCφ : wEp
β(X) → wLp

β(X) is bounded.

(b) Operator DMνCφ : Ep
β(D) → Lp

β(D) is bounded.
(c) ν′, νφ′ ∈ Lp

β(D).

By using Theorems 2.3 and 2.8, we can characterize the boundedness of MνCφ from derivative Besov space Ep
β+p(D)

into Besov type space Bp
β(D).

Theorem 2.11. Suppose that β > −1, p > β + 2, ν ∈ H(D) and φ ∈ S(D). Then we have the following equivalent
statements:

(a) The operator MνCφ : Ep
β+p(D) → Bp

β(D) is bounded
(b) ν′ ∈ Lp

β(D) and

sup
x∈D

∫
D

(1− |x|2)β+2(1− |z|2)β

|1− xφ(z)|2(β+2)
|ν(z)φ′(z)|pdm(z) < ∞. (2.13)

(c) ν′ ∈ Lp
β(D) and operator Mνφ′Cφ : Lp

β(D) → Lp
β(D) is bounded.

Proof . (a)⇒(b). Let MνCφ : Ep
β+p(D) → Bp

β(D) be bounded, then for h = 1, we get that ||ν||Bp
β(D) < ∞. So

ν′ ∈ Lp
β(D), and by using Theorem 2.3, for any h ∈ Zp

β+p(D), we have that

∥MνDCφh∥Lp
β(D) ⪯ ∥MνDCφh±Mν′Cφh∥Lp

β(D)

⪯ ∥Mν′Cφh+MνDCφh∥Lp
β(D) + ∥Mν′Cφh∥Lp

β(D)

⪯ ∥MνCφh∥Bp
β(D) + ∥Mν′Cφh∥Lp

β(D) ⪯ ∥h∥Ep
β+p(D).

Then the equivalent parts (a) and (c) of Theorem 2.8, completes the proof.

(b)⇒(a). Let ν′ ∈ Lp
β(D). Then according to Theorem 2.3, Mν′Cφ : Zp

β+p(D) → Lp
β(D) is bounded. Also by

assuming (2.13), and applying Theorem 2.8, we obtain the boundedness of MνDCφ : Ep
β+p(D) → Lp

β(D). In addition,

we know that the point evalution map at φ(0) on Ep
β+p(D) is a linear bounded functional, hence

∥MνCφh∥Bp
β(D) = ∥(νh ◦ φ)′(z)∥Lp

β(D) + |ν(0)h(φ(0))|

⪯ ∥Mν′Cφh∥Lp
β(D) + ∥MνDCφh∥Lp

β(D) + |ν(0)||h(φ(0))|

⪯ ∥h∥Ep
β+p(D) + ∥h∥Ep

β+p(D) + ∥h∥Ep
β+p(D) ⪯ ∥k∥Ep

β+p(D).

(b)⇔(c). According to Lemma 2.7, it is obvious. □
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Theorem 2.12. Suppose that β > −1, p > β + 2, ν ∈ H(D) and φ ∈ S(D). Then operator MνCφD : Ep
β+p(D) →

Bp
β(D) is bounded, if and only if ν ∈ Bp

β(D) and ηβ,ν = ζβ,ν ◦ φ−1 be a (β + p)- Carleson measure.

Proof . Let MνCφD : Ep
β+p(D) → Bp

β(D) is bounded. Then by setting h = z, we have that ν ∈ Bp
β(D). Now for any

g ∈ Lp
β+p(D), define functions l(z) =

∫ z

0
g(v)dv and h(z) =

∫ z

0
l(v)dv. Then h(z) ∈ Ep

β+p(D) and h′(0) = h(0) = 0, so

∥MνCφDh∥Bp
β(D) = ∥ν′h′ ◦ φ+ νφ′h′′ ◦ φ∥Lp

β(D) + |ν(0)h′(φ(0))| ⪯ ∥h∥Ep
β+p(D). (2.14)

Then by using the triangle inequality, (2.14), Lemma 2.2 and change of variable formula v = φ(z), we get that∫
D
|h′′(v)|pdηβ,ν(v) =

∫
D
|h′′(v)|pKβ,ν(φ)dm(v)

=

∫
D
|h′′(φ(z)|p|ν(z)|p|φ′(z)|p−2(1− |z|2)α|φ′2(z)|dm(z)

= ∥νφ′h′′ ◦ φ∥Lp
β(D) = ∥νφ′h′′ ◦ φ± ν′h′ ◦ φ∥Lp

β(D)

⪯ ||MνCφDh||Bp
β(D) + ∥h′∥∞||ν′||Lp

β(D) ⪯ ∥h∥Ep
β+p(D)

=

∫
D
|h′′(z)|p(1− |z|2)β+pdm(z). (2.15)

It follows that ∫
D
|g(z)|pdηβ,ν ⪯ ∥g∥Lp

β+p(D). (2.16)

So, (2.1) completes the proof.

Conversely, let g ∈ Ep
β+p(D), and ηβ,ν be a measure of (β + p)-Carleson. Then g′′ ∈ Lp

β+p(D) and from the details
in (2.1), we get that

∥νφ′g′′ ◦ φ∥Lp
β(D) =

∫
D
|g′′(z)pdηβ,ν(z) ⪯ ∥g′′∥Lp

β+p(D) ⪯ ∥g∥Ep
β+p(D). (2.17)

So (2.14), (2.17), Lemma 2.2 and assumption ν ∈ Bp
β(D), give us

∥MνCφDg∥Bp
β(D) ⪯ ∥ν′g′ ◦ φ∥Lp

β(D) + ∥νφ′g′′ ◦ φ∥Lp
β(D) + |ν(0)g′(φ(0))|

⪯ ∥g′∥∞∥ν′∥Lp
β(D) + ∥g∥Ep

β+p(D) + |ν(0)|∥g′∥∞
⪯ ∥g∥Ep

β+p(D).

□

Theorem 2.13. Suppose that β > −1, p > β + 2, ν1, ν2 ∈ H(D), φ ∈ S(D) and also

sup
x∈D

∫
D

(1− |x|)β+2(1− |z|2)β

|1− xφ(z)|2(β+2)
|ν1φ′(z)|pdm(z) < ∞.

Then we have the following equivalent statements:

(a) Operator Tν1,ν2,φ : wEp
β+p(X) → wBp

β(X) is bounded.

(b) Operator Tν1,ν2,φ : Ep
β+p(D) → Bp

β(D) is bounded.
(c) ν1, ν2 ∈ Bp

β(D) and ηβ,ν2 = ζβ,ν2 ◦ φ−1 be a (β + p)-Carleson measure.

Proof . (a)⇔(b). It is similar to the proof of Theorem 2.3.

(b)⇒(c). By choosing h1 = 1, we obtain

||Tν1,ν2,φ(h1)||Bp
β(D) = ||ν1||Bp

β(D) < ∞.
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Also we assumed that supx∈D
∫
D

(1−|x|2)β+2(1−|z|2)β
|1−xφ(z)|2(β+2) |ν1φ′(z)|pdm(z) < ∞, therefore Theorem 2.11, gives us the

boundedness of Mν1
Cφ : Ep

β+p(D) → Bp
β(D). Then with the boundedness of Tν1,ν2,φ : Ep

β+p(D) → Bp
β(D), for any

analytic function h ∈ Ep
β+p(D), we get that

∥MνCφDh∥Bp
β(D) ⪯ ∥MνCφDh±MνCφh∥Bp

β(D)

⪯ ∥Tν1,ν2,φh∥Bp
β(D) + ∥MνCφh∥Bp

β(D)

⪯ ∥h∥Ep
β+p(D).

Therefore, the results follows from Theorem 2.12.

(c)⇒(a). By the hypothesis, Theorem 2.12 and Theorem 2.11, we have the boundedness of operators MνCφD :
Ep
β+p(D) → Bp

β(D) and MνCφ : Ep
β+p(D) → Bp

β(D). Then for any analytic function h ∈ Ep
β+p(D) we get that

∥Tν1,ν2,φh∥Ep
β(D ⪯ ∥MνCφh∥Ep

β(D) + ∥MνCφDh∥Ep
β(D) ⪯ ∥h∥Ep

β+p(D). Hence the proof is complete. □

Remark 2.14. As an application of Theorem 2.13, one can investigate boundedness of the differences of the product-
type operators from wEp

β+p(X) into wBp
β(X), as we have the following relations:

Mν1CφD −Mν2DCφ = T0,ν1−ν2φ′,φ, Mν1CφD − CφDMν2 = T−ν′
2◦φ,ν1−ν2◦φ,φ

Mν1
CφD − CφMν2

D = T0,ν1−ν2◦φ,φ, Mν1
DCφ − CφMν2

D = T0,ν1φ′−ν2◦φ,φ,

Mν1
CφD −DCφMν2

= T−φ′ν′
2◦φ,ν1−φ′ν2◦φ,φ, Mν1

CφD −DMν2
Cφ = T−ν′

2,ν1−ν2φ′,φ.

By using (1.2) and applying Theorem 2.13, we get the following result for the boundedness of operator weighted
composition operator MνCφ : wEp

β+p(X) → wEp
β(X).

Theorem 2.15. Suppose that β > −1, p > β + 2, ν ∈ H(D), φ ∈ S(D) and also

sup
x∈D

∫
D

(1− |x|2)β+2(1− |z|2)β

|1− xφ(z)|2(β+2)
|ν′φ′(z)|pdm(z) < ∞.

Then we have the following equivalent statements:

(a) Operator MνCφ : wEp
β+p(X) → wEp

β(X) is bounded.

(b) Operator MνCφ : Ep
β+p(D) → Ep

β(D) is bounded.
(c) Operator DMνCφ = Tν′,νφ′,φ : Ep

β+p(D) → Bp
β(D) is bounded.

(d) ν′, νφ′,∈ Bp
β(D) and ηβ,νφ′ = ζβ,νφ′ ◦ φ−1 be a (β + p)-Carleson measure.

3 Compactness of product-type operators from wEp
β(X) into wBp

β(X)

In this section we are going to characterize the compactness of Stević-Sharma operator Tν1,ν2,φ : wEp
β+p(X) →

wBp
β(X). Also as a result we have the compactness of operator weighted composition operator MνCφ : wEp

β+p(X) →
wEp

β(X).

Lemma 3.1. [4] Let 2 < p < ∞, −1 < β, φ ∈ S(D) and ν ∈ H(D). Suppose that MνCφ is a bounded operator
weighted composition operator on Lp

β(or Bp
β , or Zp

β). Then MνCφ is compact on Lp
β(or Bp

β , or Ep
β) if and only if

for any bounded sequence {hn}∞0 in Lp
β(or Bp

β , or Ep
β) such that {hn}∞0 → 0 uniformly on compact subsets on D as

n → ∞, we have ||MνCφ(hn)||Lp
β
→ 0, (||MνCφ(hn)||Bp

β
→ 0, or ||MνCφhn||Ep

β
→ 0).

Lemma 3.2. [5] Let 2 < p < ∞, φ ∈ S(D) and ν ∈ H(D). Then MνCφ is compact on Lp
β if and only if

lim
|a|→1−

∫
D
(

1− |a|2

|1− aφ(v)|2
)2|ν(v)|pdm(v) = 0.

Theorem 3.3. Suppose that β > −1, p > β + 2, ν ∈ H(D) and φ ∈ S(D). Then we have the following equivalent
statements.
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(a) Operator MνCφ : Ep
β+p(D) → Bp

β(D) is compact.

(b) ν′ ∈ Lp
β(D) and Mνφ′Cφ : Lp

β(D) → Lp
β(D) is compact.

(c) ν′ ∈ Lp
β(D) and lim|a|→1−

∫
D(

1−|a|2
|1−aφ(v)|2 )

2|ν(v)|pdm(v) = 0.

Proof . (a)⇒ (b). Let MνCφ : Ep
β+p(D) → Bp

β(D) be compact. Then MνCφ : Ep
β+p(D) → Bp

β(D) is bounded and

according to Theorem 2.11, operators MνDCφ : Ep
β+p(D) → Lβ(D) and Mνφ′Cφ : Lp

β(D) → Lp
β(D) are bounded.

Now assume that the bounded sequence {hn}∞n=0 ⊂ Lp
β(D) converges uniformly to 0, on compact subsets of D.

Then {h′
n}∞n=0 ⊂ Lp

β+p(D), so {hn}∞n=0 ⊂ Bp
β+p(D). By Define sn(z) :=

∫ z

0
hn(t)dt, we have that s′n ∈ Bp

β+p(D),
sn(0) = s′n(0) = 0 and sn ∈ Ep

β+p(D) and {sn}∞n=0 → 0 uniformly on compact subsets of D. Therefore

∥Mνφ′Cφ(hn)∥Lp
β(D) = ∥νφ′hn ◦ φ∥Lp

β(D)

= ∥νφ′s′n ◦ φ∥Lp
β(D) = ∥MνDCφsn∥Lp

β(D)

⪯ ∥sn∥Ep
β+p(D) = ∥s′n∥Bp

β+p(D) + |sn(0)|

= ∥hn∥Bp
β+p(D) = ∥h′

n∥Lp
β+p(D) + |hn(0)| ⪯ ∥hn∥Lp

β(D) → 0.

This implies that ∥Mνφ′Cφ(hn)∥Lp
β(D) → 0. Also by Theorem 2.11, we get ∥ν∥Bp

β(D) < ∞, and this completes the

proof.

(b)⇔ (c). According to Lemma 3.2, it is clear.

(b) ⇒ (a). If Mνφ′Cφ : Lp
β(D) → Lp

β(D) be compact. Then Mνφ′Cφ : Lp
β(D) → Lp

β(D) is bounded. Now let

{hn}∞n=0 ⊂ Ep
β+p(D) converges uniformly to 0, on compact subsets of D. Then {h′

n}∞n=0 ⊂ Bp
β+p(D), and for any n ∈ N,

h′′
n ∈ Lp

β+p(D) so by Lemma 2.5, {h′
n}∞n=0 ⊂ Lp

β(D) converges uniformly to 0, on compact subsets of D. So

∥MνDCφhn∥Lp
β(D) = ∥νφ′h′

n ◦ φ||Lp
β(D)

= ∥Mνφ′Cφh
′
n∥Lp

β(D) ⪯ ∥h′
n∥Lp

β(D)

⪯ ||h′′
n||Lp

β+p(D) + |h′(0)| ⪯ ∥hn∥Ep
β+p(D). (3.1)

Also we have assumed that ν′ ∈ Lp
β(D). So

||Mν′Cφhn||Lp
β(D) = ∥ν′hn ◦ φ∥Lp

β(D) ⪯ ∥ν′∥Lp
β(D)∥hn∥Ep

β+p(D) ⪯ ∥hn∥Eβ+p(D). (3.2)

On the other hand, standard estimates show that evaluation at φ(0), is a linear bounded functional on Ep
β+p(D),

hence

|ν(0)hn(φ(0))| ⪯ ∥hn∥Ep
β+p(D) (3.3)

Therefore (3.1), (3.2) and (3.3), give us

||MνCφhn||Bp
β(D) = ∥Mν′Cφhn +MνDCφhn∥Lp

β(D) + |ν(0)hn(φ(0)|

⪯ ∥Mν′Cφhn∥Lp
β(D) + ∥MνDCφhn∥Lp

β(D) + |ν(0)hn(φ(0)|

⪯ ∥hn∥Ep
β+p(D) → 0.

This implies compactness of MνCφ : Ep
β+p(D) → Bp

β(D). □

Theorem 3.4. Let Suppose that β > −1, p > β + 2, ν ∈ H(D) and φ ∈ S(D).Then operator MνCφD : Ep
β+p(D) →

Bp
β(D) is compact if and only if ν′ ∈ Lp

β(D) and ηβ,ν = ζ ◦ φ−1 be a compact (β + p)-Carleson measure.

Proof . Let MνCφD : Ep
β+p(D) → Bp

β(D) be compact. Then MνCφD : Ep
β+p(D) → Bp

β(D) is bounded and by Theorem

2.12, ν′ ∈ Lp
β(D) and ηβ,ν = ζ ◦ φ−1 is a (β + p)-Carleson measure. Now if {gn} be a bounded sequence in Lp

β+p(D)
that converges to 0 uniformly on compact subsets of D. Then similar to the proof of Theorem 2.12, we can see that∫

D
|g(z)|pdηβ,ν ⪯ ∥g∥Lp

β+p(D) → 0.
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So (2.2) yields that ηβ,ν = ζ ◦ φ−1 is a compact (β + p)-Carleson measure.
For the converse part, assume that ηβ,ν = ζ ◦ φ−1 is a compact (β + p)-Carleson measure and ν′ ∈ Lp

β(D). Then

by Theorem 2.12, MνCφD : Ep
β+p(D) → Bp

β(D) is bounded. Also similar to the details of Theorem 2.12 (proof of

the converse part of this theorem), for any bounded sequence (hn)
∞
n=0 ∈ Ep

β+p(D), that converges uniformly to 0 on
compact subsets of D, we get that ||MνCφDhn||Bp

β(D) ⪯ ∥hn∥Ep
β+p(D) → 0. This gives us compactness of operator

MνCφD : Ep
β+p(D) → Bp

β(D). □
Similar to the proof of the previous theorems and by using Theorem 3.3 and Theorem 3.4, we obtain the following

equivalent statements for compactness of Stević-Sharma type operator Tν1,ν2,φ : wEp
β+p(X) → wBp

β(X).

Theorem 3.5. Suppose that β > −1, p > β + 2, ν1, ν2 ∈ H(D), φ ∈ S(D). Let

sup
x∈D

∫
D

(1− |x|)β+2(1− |z|2)β

|1− xφ(z)|2(β+2)
|ν1φ′(z)|pdm(z) → 0.

Then we have the following equivalent statements:

(a) Operator Tν1,ν2,φ : wEp
β+p(X) → wBp

β(X) is compact.

(b) Operator Tν1,ν2,φ : Ep
β+p(D) → Bp

β(D) is compact.

(c) ν1, ν2 ∈ Bp
β(D) and ηβ,ν2

= ζ ◦ φ−1 be an (β + p) compact Carleson measure.

As an application of Theorem 3.5 and by using (1.2), we obtain the following theorem.

Theorem 3.6. Suppose that β > −1, p > β + 2, ν,∈ H(D), φ ∈ S(D). Let

sup
x∈D

∫
D

(1− |x|2)β+2(1− |z|2)β

|1− xφ(z)|2(β+2)
|ν′φ′(z)|pdm(z) → 0.

Then we have the following equivalent statements:

(a) Operator MνCφ : wEp
β+p(X) → wEp

β(X) is compact.

(b) Operator MνCφ : wEp
β+p(X) → wBp

β(X) is compact.

(c) Operator DMνCφ = Tν′,νφ′,φ : Ep
β+p(D) → Bp

β(D) is compact.

(d) ν′, νφ′ ∈ Bp
β(D) and ηβ,νφ′ = ζ ◦ φ−1 be an (β + p) compact Carleson measure.
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