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Abstract

In this paper, we present a new criterion function for investigating the monotonicity of the ratio of two Abelian
integrals in piecewise-smooth differential systems, and then, apply it to deal with some examples. More precisely, we
consider the Abelian integrals of the form

Ik(h) =

∮
Γh

fk(x)ydx, k = 0, 1,

with Γh = ΓLh + ΓRh , where ΓLh = {(x, y) ∈ R2 | 1
2y

2 + Ψ2(x) = h, x < 0} and ΓRh = {(x, y) ∈ R2 | 1
2y

2 + Ψ1(x) =
h, x > 0}. We prove that the monotonicity of the presented criterion function implies the monotonicity of the ratio
I1(h)
I0(h)

and provide a few examples to explain the application of this criterion.
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1 Introduction

The Hilbert 16th problem was set by the German scientist David Hilbert as one of the 23 problems in mathematics
at the International Mathematics Conference held in France in 1900. The second part of this problem asks about the
number of limit cycles in polynomial systems of degree n and their relative positions [5]. The mathematician Arnold
simplified Hilbert’s 16th problem and turned it into an easier one that researches the number of roots of the Abelian
integrals. This simplified problem is closely related to the number of limit cycles of these systems and is known as the
weakened Hilbert 16th problem [1]. The statement of this problem is as follows. Consider the perturbed Hamiltonian
system

ẋ = Hy + ε p(x, y), ẏ = −Hx + ε q(x, y), (1.1)

where p and q are polynomials in x, y, and ε is a small positive parameter. Suppose that system (1.1) has a continuous
family of periodic orbits Γh continuously depending on the parameter h ∈ (h1, h2) defined by H(x, y) = h. Then, the
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Abelian integral associated with this system has the form

I(h) =

∮
Γh

q(x, y)dx− p(x, y)dy. (1.2)

The weak form of Hilbert’s 16th problem is to find the maximum number of isolated zeros of the Abelian integral
I(h) given in (1.2), and related to estimate the number of limit cycles of system (1.1). Assume that the Hamiltonian
system has the form

H(x, y) =
y2

2
+ Ψ(x),

where Ψ ∈ C2(a, b), with a, b ∈ R. Assume that the Abelian integral (1.2) can be written as

n∑
k=0

αkIk,

where αk are real constants, and the Ik have the form

Ik =

∫
Γh

fk(x)ydx, k = 0, 1, . . . ,m− 1,

with fk ∈ C1. Without loss of generality, suppose that I0(h) ̸= 0 and set P (h) = I1(h)
I0(h)

. Then, the monotonicity of

P (h) implies that if m = 2, then the Abelian integral (1.2) has at most one zero. There have been many works on
the monotonicity of P (h) for differential systems with smooth functions. Here, we recall some of them. In [11], the
authors obtained a criterion for investigating the monotonicity of two Abelian integrals having the form

Ik(h) =

∫
Γh

fk(x)g(y)dx,

where Γh is a compact component of the level curve {(x, y) : H(x, y) = h, h ∈ (h1, h2)} and H(x, y) has the form
H(x, y) = Ψ(x) + Φ(y). In [4], the authors generalized the idea of [11] for codimension n case, and gave an ef-
ficient algebraic criterion that provides a sufficient condition to study the Chebyshev property of the collection
{I1(h), I2(h), . . . , In(h)} of Abelian integrals, in which H(x, y) = ϕ(x) + ψ(y) or H(x, y) = A(x) + B(x)y2m. For
applicability and some results obtained by this criterion, we refer the reader to [12, 13, 14, 16, 17] and references
therein. In [9], the authors studied the monotonicity of the ratio of two Abelian integrals I0(h) =

∫
Γh
ydx and

I1(h) =
∫
Γh
xydx, where Γh is a compact component of the level curve

{(x, y) : H(x, y) = h, h ∈ (h1, h2)} ,

with H(x, y) = Ψ(x) + y2. They gave a new criterion for investigating the monotonicity of the ratio of the above
two Abelian integrals, and obtained some new Hamiltonian functions H(x, y) where Ψ(x) is a polynomial of degree
5 in x so that the ratio of the associated two Abelian integrals is monotone. They obtained the sufficient and
necessary conditions that the ratio of two Abelian integrals is monotone (see also [3, 6, 15]). In [7], the authors
obtained new criteria to determine the monotonicity of the ratio of two Abelian integrals having the forms

∫
Γh
f1(x)ydx

and
∫
Γh
f2(x)ydx or the forms

∫
Γh

f1(x)
y dx and

∫
Γh

f2(x)
y dx and Γh are the compact components of the level curves

{(x, y) : H(x, y) = h, h ∈ (h1, h2)}, where H(x, y) has the form y2

2 +Ψ(x) or ϕ(x)y
2

2 +Ψ(x). They gave new criteria
defined directly by the functions appearing in the above-mentioned Abelian integrals, and proved that the monotonicity
of the criteria implies the monotonicity of the ratio of the Abelian integrals. The weakened Hilbert 16th problem has
been extended to apply to systems of differential equations with piecewise-smooth functions. In [8], the authors
considered the general form of a piecewise near-Hamiltonian planar system as{

ẋ = Hy(x, y) + ε p(x, y),
ẏ = −Hx(x, y) + ε q(x, y),

(1.3)

where ε is a small parameter, and H, p, q are piecewise-smooth functions defined respectively by

H(x, y) =

{
H+(x, y), x > 0,
H−(x, y), x ⩽ 0,

p(x, y) =

{
p+(x, y), x > 0,
p−(x, y), x ⩽ 0,

q(x, y) =

{
q+(x, y), x > 0,
q−(x, y), x ⩽ 0.
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Figure 1: Periodic orbits of system (1.3)|ε=0.

Here, H±, p±, and q± are assumed to be analytic functions. Therefore, system (1.3) has two analytic subsystems,{
ẋ = H+

y (x, y) + ε p+(x, y),
ẏ = −H+

x (x, y) + ε q+(x, y)
(1a)

and {
ẋ = H−

y (x, y) + ε p−(x, y),
ẏ = −H−

x (x, y) + ε q−(x, y).
(1b)

Assume that system (1.3)|ε=0 satisfies the following assumptions:

Assumption (I). It has a continuous family of periodic orbits around the origin.

Assumption (II). There exists an interval Ω = (h1, h2) and two points A(h) = (0, a(h)) and B(h) = (0, b(h))
such that for h ∈ Ω, H+(A(h)) = H+(B(h)) = h and H−(A(h)) = H−(B(h)) = h, where b(h) < 0 < a(h).

Assumption (III). The right subsystem (1a)|ε=0 has an orbital arc ΓRh starting from A(h) and ending at B(h)
defined as H+(x, y) = h, x > 0; the left subsystem (1b)|ε=0 has an orbital arc ΓLh starting from B(h) and ending at
A(h) defined as H−(x, y) = H−(B(h)) = h, x ⩽ 0.

Under the above assumptions, the unperturbed system (1.3)|ε=0 has a continuous family of non-smooth periodic
orbits Γh = ΓRh ∪ ΓLh , h ∈ Ω. For definiteness, we let that the orbits Γh for h ∈ Ω orientate clockwise; see Fig. 1.

The authors of [8], by defining a bifurcation function, obtained the following theorem.

Theorem 1.1. Under the Assumptions (I)-(III), the first-order Melnikov function of system (1.3) takes the form

I(h) :=
H+
y (A)

H−
y (A)

[
H−
y (B)

H+
y (B)

∫
ΓR
h

(q+dx− p+dy) +

∫
ΓL
h

(q−dx− p−dy)

]
, h ∈ Ω. (1.4)

Further,

(i) if I(h) has k zeros in h on the interval Ω with each having an odd multiplicity, then (1.3) has at least k limit
cycles bifurcating from the period annulus for 0 < ε≪ 1;

(ii) if I(h) has at most k zeros in h on the interval Ω, taking into account the multiplicity, then there are at most k
limit cycles of (1.3) bifurcating from the period annulus.

Inspired by [2], we consider the classical Hamiltonian function given by

H(x, y) :=
y2

2
+ Ψ(x) :=

{
H+(x, y) = y2

2 +Ψ1(x), x > 0,

H−(x, y) = y2

2 +Ψ2(x), x ⩽ 0,
(1.5)

where Ψ1 and Ψ2 are analytic in some open intervals (α1, A1) and (α2, A2), respectively, and zero belongs to (α1, A1)∩
(α2, A2) satisfying Ψ1(0) = Ψ2(0) = 0. We also assume that the following hypothesis is satisfied

xΨ′
1(x) > 0, for all x ∈ (0, A1),

xΨ′
2(x) > 0, for all x ∈ (α2, 0).

(H1)
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Under the above hypothesis (H1), (0, 0) is a local minimum of H. Therefore, there exists a punctured neighborhood
of the origin foliated by periodic orbits and these assumptions on H imply the Assumptions (II) and (III). On the
other hand, H+

y (x, y) = H−
y (x, y) = y, then formula (1.4) can be written as

I(h) =

∫
ΓR
h

(q+dx− p+dy) +

∫
ΓL
h

(q−dx− p−dy), h ∈ Ω, (1.6)

with ΓRh = {(x, y) ∈ R2 | H+(x, y) = h, x > 0} and ΓLh = {(x, y) ∈ R2 | H−(x, y) = h, x ≤ 0}. The coefficients of p±

and q± are considered as parameters of the problem. If we take p± = yp+(x) = y
n∑
i=0

aix
i and q± = yq+(x) = y

n∑
i=0

bix
i,

then, by rescaling, the integral (1.6) splits as a combination of

c0I0(h) + c1I1(h) + . . .+ cn−1In−1(h),

where ci depends on the initial parameters, and

Ii(h) =

∫
ΓL
h

xiydx+

∫
ΓR
h

xiydx, i = 0, 1, 2, . . . , n− 1.

Here, we suppose that

Ii(h) =

∫
ΓR
h

fi(x)ydx+

∫
ΓL
h

fi(x)ydx, i = 0, 1, . . . , n− 1,

where fi(x) are analytic functions. Now, we assume one of {Ii(h) | i = 0, 1, . . . , n− 1} is non-vanishing, say I0(h), by
reindexing if necessary. Then, we can put

P (h) :=
I1(h)

I0(h)
, Q(h) :=

I2(h)

I0(h)
.

Therefore, in the case n = 2, the monotonicity of the ratio of P (h) implies that I(h) has a unique zero. Also, in
the case n = 3, if one of P (h) and Q(h), for instance P (h), is monotonic, then the number of zeros of I(h) is equal to
the number of intersection points of the straight line {(P,Q)|Q = a0 + a1P} and the curve {(P,Q)|Q = −a2Q(h(P ))}
on PQ-plane, where h = h(P ) is the inverse function of P = P (h). This shows that the study on the monotonicity of
the ratio of two Abelian integrals is very important to determine the number of zeros of the Melnikov function I(h).
It follows from (H1) that there exists an analytic function σ such that for all x ∈ (α2, 0), Ψ2(x) = Ψ1(σ(x)). Note
that σ(0) = 0 and xσ(x) < 0 for all x ∈ (α2, 0). Along the curve Γh (see Fig. 2), we show the branches of ΓLRh (ΓRh
and ΓLh ) by

yR+(x, h) :=
√

2(h−Ψ1(x)), yR−(x, h) := −
√

2(h−Ψ1(x)),

yL+(x, h) :=
√
2(h−Ψ2(x)), yL−(x, h) := −

√
2(h−Ψ2(x)).

Also, we have the following properties.

Lemma 1.2. Suppose that the functions H+ and H− have the form (2) and the condition (H1) holds. Then we have
yL−(x) = yR−(σ(x)) < 0 and yL+(x) = yR+(σ(x)) > 0 for all x ∈ (α2, 0) where α2 < x < 0 < σ(x) < A1.

Here, we consider the ratio of two Abelian integrals

P (h) =
I1(h)

I0(h)
, (1.7)

with

I0(h) =

∫
ΓR
h

f0(x)ydx+

∫
ΓL
h

f0(x)ydx, I1(h) =

∫
ΓR
h

f1(x)ydx+

∫
ΓL
h

f1(x)ydx,

where fi(x) ∈ C1(α2, A1) for i = 0, 1. To ensure that the denominator of P (h) is nonzero, we assume the following
hypothesis:

f0(x)f0(σ(x)) > 0, for all x ∈ (α2, 0), (1.8)
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Figure 2: Notation related to piecewise smooth closed curve.

which implies that

I0(h) =

∫ 0

α2(h)

f0(x)(y
L
+(x)− yL−(x))dx−

∫ 0

α2(h)

f0(σ(x))(y
R
+(σ(x))− yR+(σ(x)))

Ψ′
2(x)

Ψ′
1(σ(x))

dx ̸= 0.

The authors of [2] generalized the criterion obtained in [9] for piecewise-smooth differential systems and studied
the monotonicity of the ratio of two integrals in piecewise-smooth differential systems. We give a summary of the
results obtained there in the following theorem.

Theorem 1.3. Assume that H(x, y) has the form (1.5), and the hypotheses (H1) and (H2) hold. Then ξ′(x) > 0
(resp. ξ′(x) < 0) for x ∈ (α2, 0) implies that P ′(h) < 0 (resp. P ′(h) > 0) for h ∈ (h1, h2), where

ξ(x) =
f1(x)Ψ

′
1(σ(x))− f1(σ(x))Ψ

′
2(x)

f0(x)Ψ′
1(σ(x))− f0(σ(x))Ψ′

2(x)
. (1.9)

In this paper, we generalize some of the results obtained in [7] for piecewise-smooth differential systems. Our main
results are stated in the next section.

2 The main results and proofs

In this section, inspired by [10], we deduce a criterion on the monotonicity of the ratio of two Abelian integrals in
piecewise-smooth differential systems. Our main results are the following.

Lemma 2.1. Let Γh = ΓLh + ΓRh , where

ΓLh =

{
(x, y) ∈ R2 : Ψ2(x) +

y2

2
= h, x ≤ 0

}
,

ΓRh =

{
(x, y) ∈ R2 : Ψ1(x) +

y2

2
= h, x > 0

}
.

Then, for k = 0, 1, we have ∮
Γh

fk(x)ydx =

∫
ΓL
h

g−k (x)

y
dx+

∫
ΓR
h

g+k (x)

y
dx,

where

g−k (x) = Ψ′
2(x)

∫ x

0

fk(t)dt, g+k (x) = Ψ′
1(x)

∫ x

0

fk(t)dt.
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Proof . We can write∮
Γh

fk(x)ydx =

∫
ΓL
h

fk(x)ydx+

∫
ΓR
h

fk(x)ydx

=

∫
ΓL
h+

−−−→
A2α1

fk(x)ydx+

∫
ΓR
h +

−−−→
α1A2

fk(x)ydx

=

∮
ΓL
h+

−−−→
A2α1

yd

(∫ x

0

fk(t)dt

)
+

∮
ΓR
h +

−−−→
α1A2

yd

(∫ x

0

fk(t)dt

)
= −

∮
ΓL
h+

−−−→
A2α1

(∫ x

0

fk(t)dt

)
dy −

∮
ΓR
h +

−−−→
α1A2

(∫ x

0

fk(t)dt

)
dy

= −
∮
ΓL
h

(∫ x

0

fk(t)dt

)(
−ψ

′
2(x)

y
dx

)
−
∮
ΓR
h

(∫ x

0

fk(t)dt

)(
−ψ

′
1(x)

y
dx

)
=

∮
ΓL
h

ψ′
2(x)

∫ x
0
fk(t)dt

y
dx+

∮
ΓR
h

ψ′
1(x)

∫ x
0
fk(t)dt

y
dx

=

∫
ΓL
h

g−k (x)

y
dx+

∫
ΓR
h

g+k (x)

y
dx.

□

In the next theorem, we introduce a criterion function for studying the monotonicity of the ratio of two Abelian
integrals as follows

Jk(h) =

∫
ΓL
h

g−k (x)

y
dx+

∫
ΓR
h

g+k (x)

y
dx, k = 0, 1,

where g−k ∈ C1((α2, 0),R) and g+k ∈ C1((0, A1),R). Let

Gk(x) =
g−k (x)

ψ′
2(x)

−
g+k (σ(x))

ψ′
1(σ(x))

, k = 0, 1, x ∈ (α2, 0).

Theorem 2.2. Assume that (H1) and the following hypothesis are satisfied:

G0(x) < 0, G′
0(x) > 0, ∀x ∈ (α2, 0). (H2)

Let S(h) = J1(h)
J0(h)

and τ(x) = G1(x)
G0(x)

. Then τ ′(x) > 0 (resp. τ ′(x) < 0) in (α2, 0) implies S′(h) < 0(resp. S′(x) > 0)

in (0, h2).

Proof . If x ∈ (α2, 0) then σ(x) ∈ (A1, 0) and ψ2(x) = ψ1(σ(x)) for any x ∈ (α2, 0). Hence, σ′(x) =
ψ′

2(x)
ψ′

1(σ(x))
. Note

that σ′(x) < 0 for x ∈ (α2, 0). Assume α2(h) and A1(h) be the intersection of the curves ΓLh and ΓRh with the x-axis.
Then α2 < α2(h) < 0 < A1(h) < A1. For k = 0, 1 we have

Jk(h) =

∫ 0

α2(h)

g−k (x)

yL+(x, h)
dx+

∫ A1(h)

0

g+k (x)

yR+(x, h)
dx+

∫ 0

A1(h)

g+k (x)

yR−(x, h)
dx+

∫ α2(h)

0

g−k (x)

yL−(x, h)
dx.

By the change of variable x 7→ σ(x), we can write

Jk(h) =

∫ 0

α2(h)

g−k (x)

yL+(x, h)
dx+

∫ α2(h)

0

g+k (x)

yR+(x, h)
× ψ′

2(x)

ψ′
1(σ(x))

dx+

∫ 0

α2(h)

g+k (x)

yR−(x, h)
× ψ′

2(x)

ψ′
1(σ(x))

dx+

∫ αh(h)

0

g−k (x)

yL−(x, h)
dx.

Since

yR+(σ(x), h) :=
√
2(h−Ψ1(σ(x))) =

√
2(h−Ψ2(x)) = yL+(x, h),

yR−(σ(x), h) := −
√

2(h−Ψ1(σ(x))) = −
√

2(h−Ψ2(x)) = −yL+(x, h),
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we can express Jk(h) as follows:

Jk(h) =

∫ 0

α2(h)

g−k (x)

yL+(x, h)
dx+

∫ α2(h)

0

g+k (x)

yL+(x, h)

ψ′
2(x)

ψ′
1(σ(x))

dx+

∫ 0

α2(h)

g+k (x)

−yL+(x, h)
ψ′
2(x)

ψ′
1(σ(x))

dx+

∫ αh(h)

0

g−k (x)

−yL+(x, h)
dx

=

∫ 0

α2(h)

g−k (x)

yL+(x, h)
dx−

∫ 0

α2(h)

g+k (x)

yL+(x, h)

ψ′
2(x)

ψ′
1(σ(x))

dx−
∫ 0

α2(h)

g+k (x)

yL+(x, h)
(
ψ′
2(x)

ψ′
1(σ(x))

dx+

∫ 0

α2(h)

g−k (x)

yL+(x, h)
dx

= 2

∫ 0

α2(h)

[
g−k (x)− g+k (x)

ψ′
2(x)

ψ′
1(σ(x))

]
1

yL+(x, h)
dx

= 2

∫ 0

α2(h)

ψ′
2(x)Gk(x)

yL+(x, h)
dx,

where

Gk(x) =
g−k (x)

ψ′
2(x)

−
g+k (σ(x))

ψ′
1(σ(x))

, k = 0, 1.

Noting that for any x ∈ (α2, 0), y
L
+(x, h) > 0, ψ′

2(x) < 0, and G0(x) < 0 for any x ∈ (α2, 0), we have that

J0(h) = 2

∫ 0

α2(h)

ψ′
2(x)G0(x)

yL+(x, h)
dx > 0.

To prove the monotonicity of S(h), we only need to show that for any constant c, the integral

K(h) = J1(h)− cJ0(h) = 2

∫ 0

α2(h)

ψ′
2(x) (G1(x)− cG0(x))

yL+(x, h)
dx, (2.1)

has at most one zero for h ∈ (0, h2). Without loss of generality, we may assume that τ ′(x) > 0. This assumption

implies that G1(x)
G0(x)

is monotonically increasing, thus G1(x) − cG0(x) has at most one zero in (α2, 0). If the function

G1(x)−cG0(x) has no zero in (α2, 0), then K(h) in (2.1) has no zero, and the proof is finished. Hence, we may assume
that the function G1(x)− cG0(x) has exactly one zero in (α2, 0). Denote this zero by c∗ ∈ (α2, 0), then

G1(x)− cG0(x)

 = 0, x = c∗,
< 0, x ∈ (c∗, 0),
> 0, x ∈ (α2, c

∗).

Let h∗ = ψ2(c
∗) ∈ (0, h2). Then, for h ∈ (0, h∗], we have c∗ ≤ α2(h) < 0 and K(h) > 0, that is, the function K(h)

has no zero in h ∈ (0, h∗]. When h > h∗, then α2 < α2(h) < c∗ < 0 and we can write K(h) in (2.1) as follows:

K(h) = 2

∫ c∗

α2(h)

ψ′
2(x)(G1(x)− cG0(x))

yL+(x, h)
dx+ 2

∫ 0

c∗

ψ′
2(x)(G1(x)− cG0(x))

yL+(x, h)
dx

= −2

∫ yL+(c∗,h)

0

(G1(x
L(y, h))− cG0(x

L(y, h)))dy + 2

∫ 0

c∗

ψ′
2(x)(G1(x)− cG0(x))

yL+(x, h)
dx.

Differentiating K(h) with respect to h gives that

K ′(h) =2

∫ 0

yL+(c∗,h)

[
G′

1(x
L(y, h))− cG′

0(x
L(y, h))

]
× ∂xL(y, h)

∂h
dy

− 2

∫ 0

c∗

ψ′
2(x)[G1(x)− cG0(x))

(yL+(x, h))
2

×
∂yL+(x, h)

∂h
dx− 2[G1(c

∗)− cG0(c
∗)]×

∂yL+(c
∗, h)

∂h

=2

∫ 0

yL+(c∗,h)

G′
1(x)− cG′

0(x)

ψ′
2(x)

dy + 2

∫ 0

c∗

−ψ′
2(x)(G1(x)− cG0(x))

(yL+(x, h))
3

dx

=2

∫ α2(h)

c∗

G′
1(x)− cG′

0(x)

yL+(x, h)
dx+ 2

∫ 0

c∗

−ψ′
2(x)(G1(x)− cG0(x))

(yL+(x, h))
3

dx.
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We will prove that K ′(h) < 0 for h ∈ (0, h2). Since
(
G1(x)
G0(x)

)′
> 0, G′

1G0 − G′
0G1 > 0, thus G′

1G0 > G′
0G1. This

implies that G′
1 <

G′
0G1

G0
since G0 < 0 by the assumption. Now, we can write

G′
1(x)− cG′

0(x) <
G1(x)

G0(x)
G′

0(x)− cG′
0(x) = G′

0(x)

[
G1(x)

G0(x)
− c

]
< 0, ∀x ∈ (α2, 0).

We conclude that K ′(h) < 0, that is, K(h) has at most one zero in h ∈ (0, h2). This completes the proof of
Theorem 2.2. □

Remark 2.3. By Lemma 2.1, the monotonicity of S(h) implies that the function P (h) defined in (1.7) is monotone
in (0, h2).

3 Applications

In this section, we provide some examples to show the application of our main results.

Example 3.1. Consider

H(x, y) =

{
H+(x, y) = 1

2 y
2 + 1

2 x
2 − 1

3 x
3, x > 0,

H−(x, y) = 1
2 y

2 + 1
2 x

2, x ⩽ 0.
(3.1)

Applying Theorem 2.2, we will study the monotonicity of the function

S(h) =
J1(h)

J0(h)
=

∫
ΓL
h

g−1 (x)
y dx+

∫
ΓR
h

g+1 (x)
y dx∫

ΓL
h

g−0 (x)
y dx+

∫
ΓR
h

g+0 (x)
y dx

,

where the semi-orbits ΓLh and ΓRh are defined for h ∈ (0, 16 ); see Fig. 3. It is easy to see that the function x 7→ σ(x)
defined by the implicit relation

Ψ2 = Ψ1 ◦ σ ⇐⇒ 1

2
x2 =

1

2
σ2 − 1

3
σ3, (3.2)

satisfies − 1√
3
< x < 0 < σ(x) < 1. We also see that

xΨ′
1(x) = x2(1− x) > 0, ∀x ∈ (−∞, 1) \ {0},

xΨ′
2(x) = x2 > 0, ∀x ̸= 0.

So, the hypothesis (H1) holds. We choose f0(x) = 1 and f1(x) = x. Then

g−1 (x) = ψ′
2(x)

∫ x

0

f1(t)dt = x

∫ x

0

tdt =
x3

2
,

g+1 (x) = ψ′
1(x)

∫ x

0

f1(t)dt = x(1− x)

∫ x

0

tdt =
x3

2
(1− x),

g−0 (x) = ψ′
2(x)

∫ x

0

f0(t)dt = x

∫ x

0

dt = x2,

g+0 (x) = ψ′
1(x)

∫ x

0

f0(t)dt = x(1− x)

∫ x

0

dt = x2(1− x).

Therefore,

G0(x) =
g−0 (x)

ψ′
2(x)

− g+0 (σ(x))

ψ′
1(σ(x))

=
x2

x
− σ2(1− σ)

σ(1− σ)
= x− σ < 0,

G′
0(x) = 1− σ′ > 0,
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Figure 3: The level curves of Example 3.1.

for x ∈ (− 1√
3
, 0) and the hypothesis (H2) holds. Since

G1(x) =
g−1 (x)

ψ′
2(x)

− g+1 (σ(x))

ψ′
1(σ(x))

=
x3

2

x
−

σ3

2 (1− σ)

σ(1− σ)
=
x2

2
− σ2

2
,

we have

τ(x) =
x+ σ

2
, τ ′(x) =

1 + σ′

2
.

It follows from (3.2) that x = −σ
√
1− 2

3σ. Therefore,

τ ′(x) =
1

2

(
1 +

x

σ(1− σ)

)
=

(1− σ) + x

2(1− σ
=

1− σ −
√
1− 2

3σ

2(1− σ)
.

Consider the function

f(σ) = 1− σ −
√
1− 2

3
σ,

so that f(0) = 0 and f(1) = − 1√
3
< 0. We will investigate the sign of this function on the interval (− 1√

3
, 0). By

differentiating, we find that

f ′(σ) =
2(σ − 4

3 )

(1 + 3
√
1− 2

3σ)
√

1− 2
3σ

< 0.

Since f is monotonically decreasing with respect to σ, we get that f(1) = − 1√
3
< f(σ) < f(0) = 0. Hence,

τ ′(x) < 0 for any x ∈ (− 1√
3
, 0). Using Theorem 2.2 we obtain that S′(h) > 0 for any h ∈ (0, 16 ).

Example 3.2. Consider

H(x, y) =

{
H+(x, y) = 1

2 y
2 − 1

3 x
3 + x, x > 0,

H−(x, y) = 1
2 y

2 − 1
3 x

3 + x2 − x, x ⩽ 0.
(3.3)

We will show that

S(h) =
J1(h)

J0(h)
=

∫
ΓL
h

g−1 (x)
y dx+

∫
ΓR
h

g+1 (x)
y dx∫

ΓL
h

g−0 (x)
y dx+

∫
ΓR
h

g+0 (x)
y dx

,

for h ∈ (0, 23 ) is monotone. The semi-orbits ΓLh and ΓRh are defined for h ∈ (0, 23 ); see Fig. 4. We have

Ψ2 = Ψ1 ◦ σ ⇐⇒ N1(x, σ) = −1

3
x3 + x2 − x+

1

3
σ3 − σ = 0, (3.4)

where 1− 3
1
3 = x∗ < x < 0 < σ(x) < 1. Moreover,

xΨ′
1(x) = x(1− x2) > 0, ∀x ∈ (0, 1),

xΨ′
2(x) = −x(x− 1)2 > 0, ∀x ∈ (1− 3

1
3 , 0).
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Figure 4: The level curves of Example 3.2.

and the hypothesis (H1) is satisfied. Now choose the functions f0(x) = 1 and f1(x) = x2. Then,

g−1 (x) = ψ′
2(x)

∫ x

0

f1(t)dt = −(x− 1)2
∫ x

0

t2dt = −x
3

3
(x− 1)2,

g+1 (x) = ψ′
1(x)

∫ x

0

f1(t)dt = (1− x2)

∫ x

0

t2dt =
x3

3
(1− x2),

g−0 (x) = ψ′
2(x)

∫ x

0

f0(t)dt = −(x− 1)2
∫ x

0

dt = −x(x− 1)2,

g+0 (x) = ψ′
1(x)

∫ x

0

f0(t)dt = (1− x2)

∫ x

0

dt = x(1− x2),

and

G0(x) =
g−0 (x)

ψ′
2(x)

− g+0 (σ(x))

ψ′
1(σ(x))

= x− σ < 0, G′
0(x) = 1− σ′ > 0,

for x ∈ (1− 3
1
3 , 0) and the hypothesis (H2) is satisfied. We now compute

G1(x) =
g−1 (x)

ψ′
2(x)

− g+1 (σ(x))

ψ′
1(σ(x))

=
x3

3
− σ3

3
,

τ(x) =
G1(x)

G0(x)
=

1

3
(x2 + xσ + σ2).

Since σ depends on x, we get

τ ′(x) =
x3 + 2(σ − 1)x2 − (2σ + 1)x+ σ2 + σ

−3(1 + σ)
≡ W1(x, σ)

−3(1 + σ)
.

We compute the resultant between N1(x, σ) in (3.4) and W1(x, σ) with respect to σ and obtain that

Res(N1,W1, σ) = x2(x7 − 20

3
x6 + 21x5 − 38x4 + 42x3 − 27x2 + 8x− 16

3
). (3.5)

Using Sturm’s Theorem, we deduce that the polynomial

x7 − 20

3
x6 + 21x5 − 38x4 + 42x3 − 27x2 + 8x− 16

3
, (3.6)

has no zero in (1− 3
1
3 , 0). So W1(x, σ) and N1(x, σ) have no common zeros in (1− 3

1
3 , 0). Indeed, W1(x, σ) < 0 and

τ ′(x) > 0 for any x ∈ (1− 3
1
3 , 0). Now, Theorem 2.2 implies that S(h) is monotone for h ∈ (0, 1

12 ).

Example 3.3. Consider

H(x, y) =

{
H+(x, y) = 1

2 y
2 − 1

24 (3x
4 − 8x2 + 6), x > 0,

H−(x, y) = 1
2 y

2 − 1
192 (24x

4 − 50x2 + 27), x ⩽ 0.
(3.7)
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We show that the function

S(h) =
J1(h)

J0(h)
=

∫
ΓL
h

g−1 (x)
y dx+

∫
ΓR
h

g+1 (x)
y dx∫

ΓL
h

g−0 (x)
y dx+

∫
ΓR
h

g+0 (x)
y dx

,

is monotone in h ∈ (0, 1
24 ). The semi-orbits ΓLh and ΓRh in this example are defined for h ∈ (0, 1

24 ); see Fig. 5. We have

Ψ2 = Ψ1 ◦ σ ⇐⇒ N2(x, σ) =
1

8
x8 − 25

96
x6 +

9

64
x4 − 1

8
σ8 +

1

3
σ6 − 1

4
σ4 = 0, (3.8)

with − 3
4 < x < 0 < σ(x) < 1. Since

xΨ′
1(x) = x4(x2 − 1)2 > 0, ∀x ∈ (0, 1),

xΨ′
2(x) = x4(x2 − 9

16
)(x2 − 1) > 0, ∀x ∈ (−3

4
, 0),

the hypothesis (H1) holds. Now, we choose the functions f0(x) = 1 and f1(x) = x3. Then

Figure 5: The level curves of Example 3.4.

g−1 (x) = ψ′
2(x)

∫ x

0

f1(t)dt = x3(x2 − 9

16
)(x2 − 1)

∫ x

0

t3dt =
1

4
x7(x2 − 9

16
)(x2 − 1),

g+1 (x) = ψ′
1(x)

∫ x

0

f1(t)dt = x3(x2 − 1)2
∫ x

0

t3dt =
1

4
x7(x2 − 1)2,

g−0 (x) = ψ′
2(x)

∫ x

0

f0(t)dt = x3(x2 − 9

16
)(x2 − 1)

∫ x

0

dt = x4(x2 − 9

16
)(x2 − 1),

g+0 (x) = ψ′
1(x)

∫ x

0

f0(t)dt = x3(x2 − 1)2
∫ x

0

dt = x4(x2 − 1)2,

and

G0(x) =
g−0 (x)

ψ′
2(x)

− g+0 (σ(x))

ψ′
1(σ(x))

= x− σ < 0, G′
0(x) = 1− σ′ > 0,

for x ∈ (− 3
4 , 0) and the hypothesis (H2) holds. We have

G1(x) =
g−1 (x)

ψ′
2(x)

− g+1 (σ(x))

ψ′
1(σ(x))

=
x4

3
− σ4

3
.

We get

τ(x) =
G1(x)

G0(x)
=

1

4
(x+ σ)(x2 + σ2), τ ′(x) =

W2(x, σ)

64σ3 (σ2 − 1)
2 ,

where

W2(x, σ) = 16σ9 + 32xσ8 +
(
48x2 − 32

)
σ7 − 64xσ6 +

(
−96x2 + 16

)
σ5 + 32xσ4 + 48x2σ3

+
(
48x7 − 75x5 + 27x3

)
σ2 +

(
32x8 − 50x6 + 18x4

)
σ + 16x9 − 25x7 + 9x5.
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We compute the resultant between N2(x, σ) in (3.8) and W2(x, σ) with respect to σ and obtain that

Res(N2,W2, σ) =
−7x20

169075682574336
K2(x),

where

K2(x) =− 17303797119546556416x46 + 250911382720676364288x44 − 1729445412281335676928x42

+ 7500466460396266979328x40 − 22856896790542491844608x38 + 51823785315669579362304x36

− 90371050818741941649408x34 + 123581449074990259824660x32 − 133784180147841029737308x30

+ 114677307119444399894781x28 − 77045002412045809005144x26 + 39632289800414361531012x24

− 15002171537223785559456x22 + 4001793060740844419358x20 − 844949019290918206728x18

+ 279627062108940351456x16 − 126844502727089175588x14 + 32392450653602202093x12

− 2093327701236455936x10 + 327889671064596480x8 − 448111019837214720x6

+ 3083746919694336x4 + 30636835652763648x2 + 2580375195353088.

From Sturm’s Theorem, we see that the polynomial K(x) has no zero in (− 3
4 , 0). So W2(x, σ) and N2(x, σ) have

no common zeros in (− 3
4 , 0) and by Theorem 2.2, S(h) is monotone in h ∈ (0, 1

24 ).

Example 3.4. Consider

H(x, y) =

{
1
2 y

2 − 1
3x

3 + 1
2x

2, x > 0,
1
2 y

2 + 1
16807x

2(2401x2 + 2401x4 − 1029x3 − 1421x2 + 112x+ 288), x ⩽ 0.
(3.9)

We show that the function

S(h) =
J1(h)

J0(h)
=

∫
ΓL
h

g−1 (x)
y dx+

∫
ΓR
h

g+1 (x)
y dx∫

ΓL
h

g−0 (x)
y dx+

∫
ΓR
h

g+0 (x)
y dx

,

is monotone in h ∈ (0, 16 ). The semi-orbits ΓLh and ΓRh in this example are defined for h ∈ (0, 16 ); see Fig. 6. Also,

Ψ2 = Ψ1 ◦ σ ⇐⇒ N3(x, σ) =
1

7
x7 +

1

7
x6 − 3

49
x5 − 29

343
x4 +

16

2401
x3 +

288

16807
x2 +

1

3
σ3 − 1

2
σ2 = 0, (3.10)

where − 4
7 < x < 0 < σ(x) < 1. We have

xΨ′
1(x) = −x2(x− 1) > 0, ∀x ∈ (0, 1),

xΨ′
2(x) = x2(x+

4

7
)3(x− 3

7
)2 > 0, ∀x ∈ (−4

7
, 0).

Thus, the hypothesis (H1) holds. Now, choose the functions f0(x) = 1 and f1(x) = x2. Then

g−1 (x) = ψ′
2(x)

∫ x

0

f1(t)dt = x2(x− 4

7
)3(x− 3

7
)2

∫ x

0

t2dt =
1

3
x4(x− 4

7
)3(x− 3

7
)2,

g+1 (x) = ψ′
1(x)

∫ x

0

f1(t)dt = −x(x− 1)

∫ x

0

t2dt = −1

3
x4(x− 1),

g−0 (x) = ψ′
2(x)

∫ x

0

f0(t)dt = x2(x− 4

7
)3(x− 3

7
)2

∫ x

0

dt = x2(x− 4

7
)3(x− 3

7
)2,

g+0 (x) = ψ′
1(x)

∫ x

0

f0(t)dt = −x(x− 1)

∫ x

0

dt = −x2(x− 1),

and, for x ∈ (− 4
7 , 0) we have G0(x) = x − σ < 0, G′

0(x) = 1 − σ′ > 0. Hence, the hypothesis (H2) is satisfied. Next,
we compute

τ(x) =
G1(x)

G0(x)
=
σ2 + σx+ x2

3
, τ ′(x) =

W3(x, σ)

50421 (x− 1)
,
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Figure 6: The level curves of Example 3.4.

where

W3(x, σ) =− 16807x6 + (−33614σ − 14406)x5 + (−28812σ + 5145)x4 + (10290σ + 5684)x3

+ (11368σ + 33278)x2 + (16135σ − 34190)x− 17959σ.

The resultant between N3(x, σ) in (3.10) and W3(x, σ) with respect to σ is given by

Res(W3, N3, σ) =
−x2

100842
K3(x),

where

K3(x) =− 547146968897910864x20 − 1954096317492538800x19 − 1875932464792837248x18

+ 1295286701880768576x17 + 4295090412676372442x16 + 3079524763670566722x15

− 1697976225600279534x14 − 4097075130928955910x13 − 2260505507341693962x12

− 442488715458751269x11 + 2209988706934004913x10 + 3888994893764985732x9

+ 2447153169061768944x8 − 1724047389021142927x7 − 6013298897467269219x6

− 26296274718665532x5 + 2902087535161414334x4 + 3176139737322402900x3

− 2036094102632248218x2 − 1645007996775259508x+ 1048493313487181388.

Sturm’s Theorem implies that the polynomial K3(x) has no zero in (− 4
7 , 0). SoW3(x, σ) and N3(x, σ) have no common

zeros in (− 4
7 , 0). Applying Theorem 2.2, we conclude that S(h) is monotone in h ∈ (0, 16 ).

Example 3.5. Consider

H(x, y) =

{
H+(x, y) = y2

2 − x2

20 (4x
3 − 15x2 + 20x− 10), x > 0,

H−(x, y) = y2

2 + x2

45 (9x
3 − 15x2 − 5x+ 15), x ⩽ 0.

(3.11)

We show that the function

S(h) =
J1(h)

J0(h)
=

∫
ΓL
h

g−1 (x)
y dx+

∫
ΓR
h

g+1 (x)
y dx∫

ΓL
h

g−0 (x)
y dx+

∫
ΓR
h

g+0 (x)
y dx

,

is monotone for h ∈ (0, 4
45 ). The semi-orbits ΓLh and ΓRh in this example are defined for h ∈ (0, 4

45 ); see Fig. 7. We
have

Ψ2 = Ψ1 ◦ σ ⇐⇒ N4(x, σ) =
1

5
x5 − 1

3
x4

1

9
x3 +

1

3x2
+

1

5
σ5 − 3

4
σ4 + σ3 − 1

2
σ2 = 0, (3.12)

where − 2
3 < x < 0 < σ(x) < 1. Also,

xΨ′
1(x) = −x2(x− 1)3 > 0, ∀x ∈ (0, 1),

xΨ′
2(x) = x2(x− 1)2(x+

2

3
) > 0, ∀x ∈ (−2

3
, 0).



14 Asheghi, Kazemi, Mohammad

Figure 7: The level curves of Example 3.5.

Thus, the hypothesis (H1) holds. Let f0(x) = 1 and f1(x) = x2. Then

g−1 (x) = ψ′
2(x)

∫ x

0

f1(t)dt = x(x− 1)2(x+
2

3
)

∫ x

0

t2dt =
1

3
x4(x− 1)2(x+

2

3
),

g+1 (x) = ψ′
1(x)

∫ x

0

f1(t)dt = −x(x− 1)3
∫ x

0

t2dt = −1

3
x4(x− 1)3,

g−0 (x) = ψ′
2(x)

∫ x

0

f0(t)dt = x(x− 1)2(x+
2

3
)

∫ x

0

dt = x2(x− 1)2(x+
2

3
),

g+0 (x) = ψ′
1(x)

∫ x

0

f0(t)dt = −x(x− 1)3
∫ x

0

dt = −x2(x− 1)2,

and for x ∈ (− 2
3 , 0) we have G0(x) = x − σ < 0 and G′

0(x) = 1 − σ′ > 0 . Hence, the hypothesis (H2) is satisfied.
Next, we compute

τ(x) =
G1(x)

G0(x)
=
σ2 + σx+ x2

3
, τ ′(x) =

W4(x, σ)

9σ(σ − 1)
,

where

W4(x, σ) =− 3σ5 + (6x− 9)σ4 + (−18x+ 9)σ3 + (18x− 3)σ2

+
(
−6x4 + 8x3 + 2x2 − 10x

)
σ − 3x2 (x− 1)

2

(
x+

2

3

)
.

The resultant between N4(x, σ) in (3.14) and W4(x, σ) with respect to σ is given by

Res(W4, N4, σ) =
−x4

777600000
K4(x),

where

K4(x) =− 1934917632x21 + 7255941120x20 + 83980800x19 − 17731146240x18 − 48065740200x17 + 168002281845x16

+ 2931568200x15 − 406114723620x14 + 261742158360x13 + 393831940830x12 − 431084163956x11

− 163954269780x10 + 309289609260x9 + 12766683285x8 − 115053566580x7 + 10804892940x6

+ 21267175860x5 − 2705984280x4 − 1342118160x3 + 6342300x2 − 57153600x+ 33242400.

Sturm’s Theorem implies that the polynomial K4(x) has no zero in (− 2
3 , 0). So W4(x, σ) and N4(x, σ) have no

common zeros in (− 2
3 , 0). Applying Theorem 2.2, we conclude that S(h) is monotone in h ∈ (0, 4

45 ).

Example 3.6. Consider

H(x, y) =

{
H+(x, y) = y2

2 + 1
42x

2(7x4 + 54x3 + 159x2 + 216x+ 120), x > 0,

H−(x, y) = y2

2 + 1
2058x

2(2401x4 − 2058x3 − 4263x2 + 448x+ 1440), x ⩽ 0.
(3.13)
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Figure 8: The level curves of Example 3.6.

We show that the function

S(h) =
J1(h)

J0(h)
=

∫
ΓL
h

g−1 (x)
y dx+

∫
ΓR
h

g+1 (x)
y dx∫

ΓL
h

g−0 (x)
y dx+

∫
ΓR
h

g+0 (x)
y dx

,

is monotone in h ∈ (0, 8
21 ). The semi-orbits ΓLh and ΓRh in this example are defined for h ∈ (0, 8

21 ); see Fig. 8. Note
that

Ψ2 = Ψ1 ◦ σ ⇐⇒ N5(x, σ) = 0, (3.14)

where

N5(x, σ) =
7

6
x6 − x5 − 29

14
x4 +

32

147
x3 +

240

343
x2 − 1

6
σ6 +

9

7
σ5 − 53

14
σ4 +

36

7
σ3 − 20

7
σ2

and − 4
7 < x < 0 < σ(x) < 3

7 . We have

xΨ′
1(x) =

x2

7
(x+ 1)(7x+ 10)(x+ 2)2 > 0, ∀x ∈ (0,

3

7
),

xΨ′
2(x) = 7x2(x− 10

7
)(x− 3

7
)(x+

4

7
)2 > 0, ∀x ∈ (−4

7
, 0).

Thus, the hypothesis (H1) holds. Now, choose the functions f0(x) = 1 and f1(x) = x. Then

g−1 (x) = ψ′
2(x)

∫ x

0

f1(t)dt =
x

7
(1− x)(10− 7x)(2− x)2

∫ x

0

tdt =
x3

14
(1− x)(10− 7x)(2− x)2,

g+1 (x) = ψ′
1(x)

∫ x

0

f1(t)dt = 7x(x− 10

7
)(x− 3

7
)(x+

4

7
)2

∫ x

0

tdt =
7

2
x3(x− 10

7
)(x− 3

7
)(x+

4

7
)2,

g−0 (x) = ψ′
2(x)

∫ x

0

f0(t)dt =
x

7
(1− x)(10− 7x)(2− x)2

∫ x

0

dt =
x2

7
(1− x)(10− 7x)(2− x)2,

g+0 (x) = ψ′
1(x)

∫ x

0

f0(t)dt = 7x(x− 10

7
)(x− 3

7
)(x+

4

7
)2

∫ x

0

dt = 7x2(x− 10

7
)(x− 3

7
)(x+

4

7
)2,

and

G0(x) = x− σ < 0, G′
0(x) = 1− σ′ > 0,

for x ∈ (− 4
7 , 0) and hence, the hypothesis (H2) is satisfied. Next, we compute

τ(x) =
G1(x)

G0(x)
=

1

2
(x+ σ), τ ′(x) =

W5(x, σ)

2σ (7σ − 10) (7σ − 3) (7σ + 4)
2 ,

where

W5(x, σ) =2401σ5 + 343x5 − 1715σ4 − 2205x4 − 2842σ3 + 5194x3

+ 224σ2 − 5292x2 + 480σ + 1960x.
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The resultant between N5(x, σ) in (3.14) and W5(x, σ) with respect to σ is given by

Res(W5, N5, σ) =
−x2

1333584
K5(x),

where

K5(x) =552213836842687391111007597x28 − 1883644856378754190022379960x27

− 5471835756324979050574901469x26 + 28445084880534378203062762476x25

− 5654134348931551517692611345x24 − 126129956295650250232677730104x23

+ 164336432417843098110307085945x22 + 187723126533533802031872319212x21

− 716984270351728977950020431588x20 + 1180124647197971742536923730104x19

− 1577235227802221733779196747780x18 + 597440738429532300699044868912x17

+ 718308276961496212248382283088x16 + 2591686059465472315521576028320x15

− 4864012798198011583700951709648x14 − 3362595185680239138978351328640x13

+ 8585844713431718735534889142464x12 + 603441591023684946447974734080x11

− 5683531198807713774265950432064x10 − 2460800574606330474249987526656x9

+ 5947428254135543071519507863552x8 + 320189545983017810261364414464x7

− 3541138465670160577034486994432x6 + 948882618263998795632279650304x5

+ 720462880579177519610025271296x4 − 12340780093040620854104801280x3

− 519606440221753974198780518400x2 + 296641724987874470951190528000x

− 54659698901936628328857600000.

Sturm’s Theorem implies that the polynomial Res(W5, N5, σ) has no zero in (− 4
7 , 0). So W5(x, σ) and N5(x, σ)

have no common zeros in (− 4
7 , 0). Using Theorem 2.2, we conclude that S(h) is monotone in h ∈ (0, 8

21 ).
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