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Abstract

In this paper, we present a new criterion function for investigating the monotonicity of the ratio of two Abelian
integrals in piecewise-smooth differential systems, and then, apply it to deal with some examples. More precisely, we
consider the Abelian integrals of the form

Ik(h) = - fk(a:)ydx, k= Oa 1,
h

with ', = Tk + T'F, where T, = {(z,y) € R? | 33> + Us(z) = h, 2 < 0} and T} = {(z,y) € R? | 3y* + ¥1(z) =
h, > 0}. We prove that the monotonicity of the presented criterion function implies the monotonicity of the ratio

2)83 and provide a few examples to explain the application of this criterion.
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1 Introduction

The Hilbert 16th problem was set by the German scientist David Hilbert as one of the 23 problems in mathematics
at the International Mathematics Conference held in France in 1900. The second part of this problem asks about the
number of limit cycles in polynomial systems of degree n and their relative positions [5]. The mathematician Arnold
simplified Hilbert’s 16th problem and turned it into an easier one that researches the number of roots of the Abelian
integrals. This simplified problem is closely related to the number of limit cycles of these systems and is known as the
weakened Hilbert 16th problem [I]. The statement of this problem is as follows. Consider the perturbed Hamiltonian
system

&=Hy+ep(xy), §=-—Hy+eq(zy), (1.1)

where p and ¢ are polynomials in z,y, and € is a small positive parameter. Suppose that system (1.1]) has a continuous
family of periodic orbits I'j, continuously depending on the parameter h € (hi, he) defined by H(z,y) = h. Then, the
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Abelian integral associated with this system has the form
I(h) = ]g q(x,y)dx — p(x, y)dy. (1.2)
h

The weak form of Hilbert’s 16th problem is to find the maximum number of isolated zeros of the Abelian integral
I(h) given in (1.2, and related to estimate the number of limit cycles of system (|1.1). Assume that the Hamiltonian
system has the form

H(z,y) = 5 + V().

where ¥ € C?(a,b), with a,b € R. Assume that the Abelian integral (1.2)) can be written as

n
g aply,
k=0

where oy, are real constants, and the I have the form

I, = fe(@)yde, k=0,1,...,m—1,
Fh

with fr € C'. Without loss of generality, suppose that Io(h) # 0 and set P(h) = 2%2; Then, the monotonicity of

P(h) implies that if m = 2, then the Abelian integral (1.2)) has at most one zero. There have been many works on
the monotonicity of P(h) for differential systems with smooth functions. Here, we recall some of them. In [I1], the
authors obtained a criterion for investigating the monotonicity of two Abelian integrals having the form

Ix(h) = g fr(@)g(y)dz,

where T'j, is a compact component of the level curve {(x,y): H(z,y) = h,h € (h1,h2)} and H(z,y) has the form
H(z,y) = U(z) + ®(y). In [M], the authors generalized the idea of [II] for codimension n case, and gave an ef-
ficient algebraic criterion that provides a sufficient condition to study the Chebyshev property of the collection
{I(h), Iz(h), ..., I,(h)} of Abelian integrals, in which H(z,y) = ¢(z) + ¢(y) or H(z,y) = A(x) + B(x)y*™. For
applicability and some results obtained by this criterion, we refer the reader to [12] 13| [14) [I6] [I7] and references
therein. In [9], the authors studied the monotonicity of the ratio of two Abelian integrals Iy(h) = fl‘h ydx and

Ii(h) = fl“h zydx, where T’y is a compact component of the level curve

{((E,y) : H(x,y) =h,h € (hlth)},

with H(z,y) = ¥(z) + y?. They gave a new criterion for investigating the monotonicity of the ratio of the above
two Abelian integrals, and obtained some new Hamiltonian functions H(x,y) where ¥(x) is a polynomial of degree
5 in z so that the ratio of the associated two Abelian integrals is monotone. They obtained the sufficient and
necessary conditions that the ratio of two Abelian integrals is monotone (see also [3, [6, [15]). In [7], the authors
obtained new criteria to determine the monotonicity of the ratio of two Abelian integrals having the forms ‘[Fh fi(x)ydx

and th fa(z)ydzx or the forms fl“h %dm and th %dm and I'y, are the compact components of the level curves

{(z,y) : H(x,y) = h, h € (h1,ha)}, where H(z,y) has the form % + U(x) or ¢(m)§ + U(z). They gave new criteria
defined directly by the functions appearing in the above-mentioned Abelian integrals, and proved that the monotonicity
of the criteria implies the monotonicity of the ratio of the Abelian integrals. The weakened Hilbert 16th problem has
been extended to apply to systems of differential equations with piecewise-smooth functions. In [8], the authors
considered the general form of a piecewise near-Hamiltonian planar system as

&= Hy(z,y) +ep(z,y),
{ ¥ =—H(z,y) +eq(z,y), (1.3)

where ¢ is a small parameter, and H, p, q are piecewise-smooth functions defined respectively by

[ Hf(z,y), =>0, | pM(zy), x>0, | qT(z,y), >0,
i) ={ 51| (@) ={ @ ={ LEv w20

H(z,y), =<0, ¥ p(z,y), =<0, 7
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Ay

A(h) = (0, a(h))

B(h) = (0,b(h))

Figure 1: Periodic orbits of system (1.3)|z=0-

Here, H*, p*, and ¢* are assumed to be analytic functions. Therefore, system (I.3)) has two analytic subsystems,

{ i:H;(l’,y)+5p+($7y)a (1a)
y=—H}(z,y) +eqt(z,y)
and
i = H, (z,y) +ep (z,9),
{ y=—-H_(x,y) +eq (x,y). )

Assume that system (1.3])|c—o satisfies the following assumptions:

Assumption (I). It has a continuous family of periodic orbits around the origin.

Assumption (II). There exists an interval Q = (hy, hs) and two points A(h) = (0,a(h)) and B(h) = (0,b(h))
such that for h € Q, HT(A(h)) = H*(B(h)) = h and H~ (A(h)) = H=(B(h)) = h, where b(h) < 0 < a(h).
Assumption (III). The right subsystem -—o has an orbital arc '} starting from A(h) and ending at B(h)

defined as H™(x,y) = h, x > 0; the left subsystem (ID])|.—o has an orbital arc I'} starting from B(h) and ending at
A(h) defined as H™ (z,y) = H (B(h)) = h, x < 0.

Under the above assumptions, the unperturbed system (|1.3))|.=o has a continuous family of non-smooth periodic
orbits ', = TRUTE h € Q. For definiteness, we let that the orbits T';, for h € Q orientate clockwise; see Fig.

The authors of [§], by defining a bifurcation function, obtained the following theorem.

Theorem 1.1. Under the Assumptions (I)-(I11), the first-order Melnikov function of system (1.3)) takes the form

Hy(A) | H, (B) - -
I(h):= Ho ) |15 (B) /Fﬁ(q"'dx —ptdy) + /Fﬁ (¢ dz—p dy)} ) h € Q. (1.4)

Further,

(i) if I(h) has k zeros in h on the interval © with each having an odd multiplicity, then has at least k limit
cycles bifurcating from the period annulus for 0 < e < 1;

(ii) if I(h) has at most k zeros in h on the interval Q, taking into account the multiplicity, then there are at most k
limit cycles of bifurcating from the period annulus.

Inspired by [2], we consider the classical Hamiltonian function given by

M

2

H(l‘,y) :%4—\1}(3;) ::{ H+(I7y) L+q/1($)’ ;p>()7

2
H(2,y) = L + Us(z), <0,

(1.5)

where ¥; and U5 are analytic in some open intervals (a1, A1) and («e, Ag), respectively, and zero belongs to (a1, A1) N
(a2, A) satisfying ¥4 (0) = U3(0) = 0. We also assume that the following hypothesis is satisfied

zW (z) > 0, forall € (0,A4;),

xWh(x) > 0, for all x € (ag,0). (H1)
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Under the above hypothesis (H1)), (0,0) is a local minimum of H. Therefore, there exists a punctured neighborhood
of the origin foliated by periodic orbits and these assumptions on H imply the Assumptions (I7) and (I1I). On the
other hand, H (x,y) = H, (x,y) = y, then formula (1.4) can be written as

10) = [ eyt + [ @de-pay).  hen (1.6

F’L
with TF = {(z,9) € R? | H* (z,y) = h, © >0} and 'Y = {(x,y) € R? | H (z,y) = h, < 0}. The coefficients of p*

. n .
and g% are considered as parameters of the problem. If we take p* = yp. (z) =y 3. a;2° and ¢ = yq, (v) =y > bx?,
i=0 i=0
then, by rescaling, the integral (1.6 splits as a combination of

Cofo(h) + Clll(h) + ...+ Cnflfnfl(h),

where ¢; depends on the initial parameters, and
Ii(h):/ xiydx—k/ clyde, i=0,1,2,...,n—1.
rr re
Here, we suppose that
Iz-(h):/ fi(x)ydx—l—/ fi(z)ydx, i=0,1,...,n—1,
oy T

where f;(x) are analytic functions. Now, we assume one of {I;(h) | i =0,1,...,n — 1} is non-vanishing, say Iy(h), by
reindexing if necessary. Then, we can put

Therefore, in the case n = 2, the monotonicity of the ratio of P(h) implies that I(h) has a unique zero. Also, in
the case n = 3, if one of P(h) and Q(h), for instance P(h), is monotonic, then the number of zeros of I(h) is equal to
the number of intersection points of the straight line {(P, Q)|Q = ao + a1 P} and the curve {(P, Q)|Q = —a2Q(h(P))}
on PQ-plane, where h = h(P) is the inverse function of P = P(h). This shows that the study on the monotonicity of
the ratio of two Abelian integrals is very important to determine the number of zeros of the Melnikov function I(h).
It follows from that there exists an analytic function ¢ such that for all z € (ag,0), ¥a(x) = ¥y(o(z)). Note
that o(0) = 0 and xzo(z) < 0 for all € (ag,0). Along the curve I';, (see Fig. , we show the branches of TR (T2
and T'F) by

vz, h) = /2(h = W (2)),

B
yi(m,h) = 4/2(h — Uy(x)), L

Yy,
y=(x, h) == —/2(h — Ua(z)).
Also, we have the following properties.

Lemma 1.2. Suppose that the functions H™ and H~ have the form and the condition (H1|) holds. Then we have
yE(z) = yB(o(x)) < 0 and y¥(z) = yf(o(z)) > 0 for all z € (a2,0) where as < z < 0 < o(z) < A;.

Here, we consider the ratio of two Abelian integrals

with
Iy(h) = / fo(z)ydx +/ fo(z)ydz, Li(h) = / f1(z)ydx —|—/ f1(z)ydz,
oy Ty ry ry
where f;(x) € C'(ag, A;) for i = 0,1. To ensure that the denominator of P(h) is nonzero, we assume the following

hypothesis:
fo(x)fo(o(z)) >0, forall =z € (ag,0), (1.8)
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Az(h)
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-y
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Figure 2: Notation related to piecewise smooth closed curve.

which implies that

’ /
fO(U(Z‘))(yf(U(x)) — yf(U(aj))) \IJ‘I/Q(x)

V(o)™ 7

1) = [ ke e - [

2(h) az(h)

The authors of [2] generalized the criterion obtained in [9] for piecewise-smooth differential systems and studied
the monotonicity of the ratio of two integrals in piecewise-smooth differential systems. We give a summary of the
results obtained there in the following theorem.

Theorem 1.3. Assume that H(z,y) has the form (1.5), and the hypotheses (HI)) and (H2|) hold. Then &'(z) > 0
(resp. &'(z) < 0) for x € (ag,0) implies that P’(h) < 0 (resp. P'(h) > 0) for h € (hy, ha), where

fi(@) ¥y (o(x)) = fi(o(x))¥5(x)

) = @ (0(2) — folo(2)Wh(a)

. (1.9)

In this paper, we generalize some of the results obtained in [7] for piecewise-smooth differential systems. Our main
results are stated in the next section.

2 The main results and proofs

In this section, inspired by [10], we deduce a criterion on the monotonicity of the ratio of two Abelian integrals in
piecewise-smooth differential systems. Our main results are the following.

Lemma 2.1. Let I'y, = Fﬁ + Fﬁ, where

TE =3 (z,y) € R?: Uy(x) +

[ Ss [S,

}

Ff:{(m,y)eRQ:\h(m)—i— =h, >0

Then, for kK = 0,1, we have

— +
felode = [ 2 gpy [ By,
Th r Y re Yy

where

gi () = i(x) / ", g (x) = W (x) / " (e,
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Proof . We can write

dx = d d
b Sy /Fﬁ fol@)y “/p;; fulw)yde

_ /F —T /F —(T
Bt ([ )+ o ([ s0)
e ([ p0w) o= ([ )

o~ ([ o) (-5a) - f ([ o) (442

TN G QY 0T

rE Y I Y

:/ 9 (@) 5 +/ 9% (),
r Yy rk Yy

In the next theorem, we introduce a criterion function for studying the monotonicity of the ratio of two Abelian

integrals as follows
- +
Jk.(h):/ Wdz+/ 5@ ko1,
rt v rg Y

J

O

where g, € C1((a2,0),R) and g;" € C1((0, A1), R). Let
g (#) g (o))

T h(a)  wi(o()

kE=0,1, € (as,0).

Theorem 2.2. Assume that (H1) and the following hypothesis are satisfied:

Go(z) <0, Gy(z) >0, Vz € (ag,0). (H2)

Let S(h) = 283 and 7(z) =
in (0, hg)

g;—gg. Then 7/(z) > 0 (resp. 7/(x) < 0) in (a2, 0) implies S’(h) < O(resp. S'(z) > 0)

Proof . If z € (a2,0) then o(x) € (A1,0) and Ya(x) = Y1(o(x)) for any = € (a2,0). Hence, o'(z) = d)ﬁég(@))). Note

that o’(x) < 0 for z € (a2,0). Assume as(h) and A;j(h) be the intersection of the curves ' and I'ff with the z-axis.
Then ay < ag(h) <0< Ay(h) < Ay. For k= 0,1 we have

AN C)) ) ) = g (2)
Jk(h)_/a )dx+/0 dx—i—/ dm+/0 - dx.

S(h) YR (2, h yR(z, h) Ay(n) YE(x, h)

By the change of variable 2 — o(z), we can write

Y g (@) ) g (z) Ps(x) ' gi(2) Us(x) ) g (z)
Jk(h)—/a )dx—l—/o o X )>dx—|—/a X ))dx—i—/o 7 dzx.

2(h) YR (b B(x,h) — Pi(o(z Ly Y h) i (o(z Y= (x, h)
Since
yR(o(z),h) == /2(h = U1 (o(x))) = /2(h — Us(x)) = yi (x, h),
yR(o(z), h) == —\/2(h — U1 (o(x))) = —\/2(h — Ua(x)) = —y¥ (2, h),
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we can express Ji(h) as follows:

0 g (@) 2 gt (@) Ph(a) O gl ¥y(x) onh) g (@)
Jk(h)—/ T )dac—i—/o ; L dzr + dar—l—/ —de

(z,h L (2, h) Yi(o(x)) as(h) —Y5(x, h) Yy (o(z)) 0 y (2, h)
AN ) . O gi@) () - O ghx) |, Ph(x) - R ) .
B /az(h) yﬁ(m,h)d /ocz(h) y% (z,h) 7!’1(0(33))61 / 2 vk (z, h)(%( (x))d " as(h) yﬁ(m,h)d
=2 ’ [ () — g/ (x) Vo(w) } ! dx

asthy L ¥ 1(o(@)] yX(z,h)

where

R Ca B4 1) R

Uy(x)  Pi(o(x))’

Noting that for any = € (a2,0), yX(z,h) > 0, ¥}(z) < 0, and Go(z) < 0 for any = € (az,0), we have that

_ o [° ¥h(a)Go(x)

To prove the monotonicity of S(h), we only need to show that for any constant ¢, the integral

0 2z 1(z) — cGy(z
K(0) = Ji(h)  ei) =2 | . i )(C;g(@) s, (21)

has at most one zero for h € (0,hs). Without loss of generality, we may assume that 7/(x) > 0. This assumption

glg is monotonically increasing, thus G1(z) — ¢Go(x) has at most one zero in (asg,0). If the function

G1(xz) — c¢Go(z) has no zero in (ag,0), then K (h) in (2.1) has no zero, and the proof is finished. Hence, we may assume
that the function G;(x) — ¢Go(x) has exactly one zero in (a,0). Denote this zero by ¢* € (ag,0), then

implies that

=0, T =c",
Gi(z) — cGo(z) ¢ <0, x € (c*,0),
>0, x € (ag,c*)

Let h* = 12(c*) € (0, ha). Then, for h € (0, h*], we have ¢* < as(h) < 0 and K(h) > 0, that is, the function K (h)
has no zero in h € (0,h*]. When h > h*, then ap < aa(h) < ¢* < 0 and we can write K(h) in (2.1]) as follows:

L @)(Ga) — Gola U () (Cr(x) — cColw)) |

K(h) = Q/M(h) yE @) Vi ”/ y+ . h) a
_ e Wy (@)(Ga () — cGo())
e I e g e

Differentiating K (h) with respect to h gives that

=}

IL
wm=2 [ (G ) eyt < Py
0,7 T ) — ¢ T L x, L 0*7
L[ G- e ~U4@)(Ga(x) — Golw)
_2/yi(ﬂ* h) V5 () d +2/ y+(x h))? I

B ) Gl (x) — Gl (x —¥s(2)(G1(z) — cGo()) .
_2~/c* y+(x h d +2/ y+ €T, h)) -
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/
We will prove that K'(h) < 0 for h € (0, ha). Since (%8;) > 0, G1Gy — G{Gy > 0, thus G1Gy > G{G;. This

implies that G} < Gg,fl since Gy < 0 by the assumption. Now, we can write

Gl(.I)
GQ(SL’)

Gi(z) — cGi(z) < Gy(z) — cGi(z) = Gy(z) [ - c} <0, Vze (a0).

We conclude that K'(h) < 0, that is, K(h) has at most one zero in h € (0,hy). This completes the proof of
Theorem O
Remark 2.3. By Lemma the monotonicity of S(h) implies that the function P(h) defined in (1.7) is monotone
in (0, hg)

3 Applications

In this section, we provide some examples to show the application of our main results.

Example 3.1. Consider

1.2 1,2
_ —ju+ge
H($7y)—{ H_(x,y):;vf—k%xz x < 0.

Applying Theorem we will study the monotonicity of the function

1 (x Tz
Jl(h) B fl"f 91y( )dm+frg 91; )dx

Jo(h) frﬁ gay("f) dl' + fF;R g(;ry(”c)dza

S(h) =

where the semi-orbits I'Z and ' are defined for h € (0, §); see Fig. |3l It is easy to see that the function z — o(x)

6
defined by the implicit relation
1 1 1
\112:\111 00<:>§$2:§UQ—§03, (32)

satisfies —% <z <0<o(z) <1l Wealso see that

oW (x) = 2%(1 — x) > 0, Vz € (—o0,1) \ {0},
2y (z) = 2% > 0, Vi # 0.

So, the hypothesis (H1)) holds. We choose fo(x) =1 and fi(z) = . Then

T T IS
o (@) = vh(@) [ nde = [ =G

x 3

g1 (z) = ¥ (x) /Of filt)dt = z(1 — x) /0' tdt = %(1 — ),
65 (&) = ¥4(2) / folt)t =« / it = o2,
6t (@) = ¥ (=) / folt)dt = x(1 — ) / dt = (1 — ).

Therefore,

ga(x)_gﬁ(a(x)):l’j_mzx_g<o,

T @) Plo@) ©  o(l-o)
Gy(z)=1—-0" >0,

Go(l’)
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(a) () ()

i
>

-
//:
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e

Figure 3: The level curves of Example @

for z € (7%70) and the hypothesis (H2)) holds. Since

)
=
—
8
S~—
Q
=
&
Q
=
—
3
—~
8
=
ol
M‘Qw
—
i
|
q
N~—
o
q
o

we have

2
1 1_ l—0c—4/1—-3%0
x)==(1+ 3: :( 0)+$: 37
2 o(l—o) 2(1-o0o 2(1-o0)
Consider the function
2
flo)=1—0—4/1- 30,
3
so that f(0) = 0 and f(1) = —% < 0. We will investigate the sign of this function on the interval (

differentiating, we find that
2(0— %
< 0.
2
3

)= )
(1"‘3\/1—%0)\/1— o
Since f is monotonically decreasing with respect to o, we get that f(1) = —

7/(x) < 0 for any x € (—%, 0). Using Theorem [2.2| we obtain that S’(h) > 0 for an

f'le

=8

h ).

=N

(0,

<

Example 3.2. Consider

+

H L3 4, x>0,
) ={ 51\

xvy) = %yQ - fi;
x,y):§y2—§x3+x2—x, x < 0.
We will show that N

g;(x) 91 (z)
Ji(hy e Pymdr ot [ Py de

W) " p Gt i,
h h

S(h) =

for h € (0, 2) is monotone. The semi-orbits I'% and 'Y’ are defined for & € (0, 2); see Fig. |4l We have

1 1
\1122\11100'<:>N1(.T,0'):—§$3+$2—$+§O’3—O’=O,

where 1 — 335 = 2* < < 0 < o(z) < 1. Moreover,
2V (2) = z(1 — 2%) > 0, vz € (0,1),
2V (z) = —z(z — 1)> > 0, Vz € (1 —33,0).

. By

< f(o) < f(0) = 0. Hence,
S

(3.4)



10 Asheghi, Kazemi, Mohammad

(a) (

<
3]
-~

Figure 4: The level curves of Example[3.2]

and the hypothesis (HI) is satisfied. Now choose the functions fo(z) =1 and f(z) = 2%. Then,

R L e
— vt [ nwa 1_x>/0’”t2dt:$;<1_x2),
— (o) [ ottt =~ =1 [t = —ata 17,

— (o) [ ol = (1~

g (@) gg(a(x))
Colo) = U@~ o)

for x € (1 — 3%,0) and the hypothesis (H2)) is satisfied. We now compute

x

dt = z(1 — z?),

N

and

=r—0<0, Gy(z)=1-0 >0,

g1 (@) _gi(o(x) 2> o°
A=) e 3 3
(z) = Ggg; é(ﬁ +20+07)

Since o depends on x, we get

7 )_x3+2(0—1)x2—(20+1)x+02+0: Wi(z,0)
T —3(1+0) " 31 40)

We compute the resultant between Ny (z,0) in (3.4) and Wi (z,0) with respect to o and obtain that

2 1
Res(Ny, Wi, 0) = 2%(2” — §0x6 + 212 — 382 + 4223 — 2727 + 8z — 36). (3.5)
Using Sturm’s Theorem, we deduce that the polynomial
20 16
7 — Exﬁ + 212° — 38z + 422° — 2722 + 8z — 3 (3.6)

/() > 0 for any = € (1 — 33,0). Now, Theorem implies that S(h) is monotone for h € (0, 35).

has no zero in (1 — 3%,0). So Wi (z,0) and Ny (xﬁ have no common zeros in (1 — 33,0). Indeed, Wi (z,0) < 0 and
2.2

Example 3.3. Consider

2—2&(395 — 822 +6) x>0,

Y
y? — 153 (242* — 502* + 27), x < 0. (3.7)
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We show that the function . + o)

J1(h) B fr}LL glyw dr + frh’? glyI dz

Jo(h) o (@) d(@) 57
o(h) Jor 28+ [ 8 dy

Y

S(h) =

is monotone in h € (0, 2;). The semi-orbits I'Y and I'F in this example are defined for & € (0, 5;); see Fig. [} We have
1 1 1
Uy =0 00 < No(z,0)=-a°— —2°+ —a* — 0"+ -0 — ~0" =0, (3.8)

with —3 <z <0 < o(z) < 1. Since

2V (z) = 2* (22 — 1)2 > 0, vz € (0,1),
9 3
zWh(z) = x4(x2—1—6)(x2—1) >0, Vr € (_Z’O)’
the hypothesis (HI]) holds. Now, we choose the functions fo(z) =1 and fi(x) = 23. Then
Y Y

Figure 5: The level curves of Example

91 () = Py / fit)dt = 232 — %)(mQ —1) /Ox 3dt = igﬂ(:g? — 3)(:;;2 —1),
(@) = wg(m)/o Fut)dt = 23 (2% — 1) /Ow £t — i:ﬁ(gﬂ _1p
g5 (@) = v (x) /O folt)dt = 2%(a? ~ D) (2~ 1) /Ow dt = *(a? ~ )(a 1),
ot (@) = ¢ (@) /O o)t = 23(2? — 1)2 Om dt = 24 (@? — 1)2,

and

for z € (—2,0) and the hypothesis (H2) holds. We have

We get

where

Wa(z,0) = 1607 +3220° + (482° — 32) 0 — 6420° + (—962° + 16) 0° + 3220" + 48 2%0*
+ (482" — 752° +272%) 0® + (322® — 502° + 182) o + 1627 — 2527 + 92°.
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We compute the resultant between No(x, o) in (3.8) and Wa(x, o) with respect to o and obtain that
—72%0
K
169075682574336 2(@),

Res(Ny, Wy, 0) =
where

Ks(z) = — 17303797119546556416 ¢ 4 250911382720676364288 2** — 1729445412281335676928 *
+ 7500466460396266979328 210 — 22856896790542491844608 23 + 51823785315669579362304 -3
— 90371050818741941649408 23* 4 123581449074990259824660 3% — 133784180147841029737308 2°°
+ 114677307119444399894781 28 — 77045002412045809005144 226 + 39632289800414361531012 22
— 15002171537223785559456 2% 4 4001793060740844419358 220 — 844949019290918206728 2'®
+ 279627062108940351456 216 — 126844502727089175588 ' + 32392450653602202093 212
— 2093327701236455936 10 + 327889671064596480 28 — 448111019837214720 z°
+ 3083746919694336 z* + 30636835652763648 % + 2580375195353088.

From Sturm’s Theorem, we see that the polynomial K (z) has no zero in (—3,0). So Wa(z,0) and Na(z, o) have
no common zeros in (—2,0) and by Theorem S(h) is monotone in h € (0, ).

Example 3.4. Consider

o y — + 1x2 xr > 0,
Hz,y) = { § U+ ook a?(240122 + 24012* — 10202° — 142127 + 1122 + 288), < 0. (8:9)

We show that the function N
1 (@) 1 (x)
Ju(h) _ oy B Jop 2 da

W) " p Gt g,
h h

S(h) =

is monotone in h € (0, %) The semi-orbits ' and T'f? in this example are defined for h € (0, %); see Iig. @ Also,

1 1 3 29 16 288 1 1
Uy =0, 00 <= N. Z 6_ 2 5 0 3 S0 e 23 g2 1
2T F1e0 3(@,0) = 7o’ + 7a° — g’ — gl Y e+ T T390 59 =0, (3.10)

where —1 <2 <0 < o(z) < 1. We have

2V (2) = —2%(x — 1) > 0, vz € (0,1),

4 4
2, (2) =x2(1:+?)3(1:—%)2 >0, Vre(-3,0)

Thus, the hypothesis holds. Now, choose the functions fy(x) = 1 and f;(z) = 22. Then
o7 (@) = Vi) [ "R = (e 2 2 / = e D 2P,
=i (z / filt (xfl)/wt2dt:flx4(x—l),
o 3
4 3 ¥ 4. 3
90 () = Pyl / fo(t)dt =z (z—?)ﬁ(a:—§)2/ dt = 2* (x—?)d(z—?)27
=) (z /fo t)dt = x—l/dt —z?(x — 1),

and, for z € (—32,0) we have Go(z) =z — 0 <0, Gj(z) =1 — 0o’ > 0. Hence, the hypothesis (H2) is satisfied. Next,
we compute
Gi(z) o +ox+a? Ws(z,0)

@)= Gm T 3 o T = 5oy (x—1)
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GV \Var VN ‘\
o WD P

%

Figure 6: The level curves of Example

where

Ws(x,0) = — 16807 2° + (33614 0 — 14406) 2° + (—28812 0 + 5145) z* + (10290 o + 5684) z*
+ (11368 o + 33278) 2% + (16135 0 — 34190) z — 17959 0.
The resultant between N3(x,0) in (3.10) and Ws(x, o) with respect to o is given by
100842

R&S(Wg,Ng,O’) K3(x)7

where

K3(x) = — 547146968897910864 2%° — 1954096317492538800 2% — 1875932464792837248 2'®
+ 1295286701880768576 ' + 4295090412676372442 x° 4 3079524763670566722 21
— 1697976225600279534 2'* — 4097075130928955910 23 — 2260505507341693962 2:'2
— 442488715458751269 21 + 2209988706934004913 210 4 3888994893764985732 2.°
+ 2447153169061768944 2® — 1724047389021142927 27 — 6013298897467269219 2.°
— 26296274718665532 2° 4 2902087535161414334 2% + 3176139737322402900 2>
— 2036094102632248218 22 — 1645007996775259508 x + 1048493313487181388.

Sturm’s Theorem implies that the polynomial K3(z) has no zero in (—2,0). So Ws(x,0) and N3(z,0) have no common

zeros in (—%,0). Applying Theorem we conclude that S(h) is monotone in h € (0, 3).

Example 3.5. Consider

+ _ v _ 3 _ 15,2 _
H(x’y):{ H*(z,y) = 5 (423 — 1522 + 202 — 10), = > 0,
2

20 ) (3.11)
+ 5(953 — 152* — bz +15), z<0.

We show that the function N
(@) (@)
Ji(h)  Jre P de+ [ B de
Jo(h) o () gz 5
o(h) S 28 dw + [ 2 da

Y

S(h) =

is monotone for h € (0, %). The semi-orbits I'Y and I'?* in this example are defined for h € (0, 4%); see Fig. We
have

1 1 41 1 1 1
Uy =T, 00 <= Ny(x,0) = g:r5 - §x4§x3 + 3.2 + 305 - 204 + 0% — 502 =0, (3.12)
where —2 < 2 <0 < o(x) < 1. Also,
20 (2) = —2%(x —1)* > 0, vz € (0,1),

2 2
oW (z) = 2%(x — 1)* (2 + g) >0, Vr e (—g,O).
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Figure 7: The level curves of Example

Thus, the hypothesis (HI) holds. Let fo(z) =1 and f;(z) = 2%. Then

o (@) = v3le) [ O =ato - 020+ ) [Pt = gate - 12+ ),

0

ot @) = vi(o) [ At = oo ~1)° [ it = - gat(e - 1,
g (z) = Yh(x) -/Ow fo(t)dt = z(x — 1)%(x + g) /Ox dt = 2(z —1)*(z + %)7
g0 (x) = wi(w)/o Jo(t)dt = —a(x — 1)3/0 dt = —22(z —1)?,

and for « € (—2,0) we have Go(z) =z — 0 < 0 and Gj(z) =1 — ¢’ > 0. Hence, the hypothesis (H2) is satisfied.
Next, we compute

Gi(z) o +ox+a? (2) = Wy(z,0)

Go(z) 3 T 90(c—1)’

T(z) =
where

Wy(z,0) = =30+ (62 —9)o* + (=182 +9) 0® + (182 — 3) 02

2
+ (—6x4+8x3 +22% -10z) 0 —32% (z — 1)? <x+ 3) .

The resultant between Ny(x,0) in (3.14) and Wy(x, o) with respect to o is given by

e

Res(Wy, Ny,0) = 777600000

K4 (x)7
where

Ky(x) = — 1934917632 22 + 7255941120 20 4 83980800 9 — 17731146240 2'® — 48065740200 7 + 168002281845 ¢
+ 2931568200 215 — 406114723620 214 + 261742158360 =% + 393831940830 212 — 431084163956 2!
— 163954269780 20 4 309289609260 2 + 12766683285 2° — 115053566580 7 + 10804892940 x.°
+ 21267175860 25 — 2705984280 2% — 1342118160 2> 4 6342300 22 — 57153600  + 33242400.

Sturm’s Theorem implies that the polynomial K4(z) has no zero in (—2,0). So Wy(z,0) and Ny(z,0) have no
2

common zeros in (—3,0). Applying Theorem we conclude that S(h) is monotone in h € (0, 55).

Example 3.6. Consider

H(z,y) = HF(x,y) = oy La?(Ta* + 5423 + 15922 + 2162 + 120), x>0, (3.13)
’ H™(z,y) = & + 50:52%(24012% — 20582% — 426322 + 448z + 1440),  z < 0. '

@NM
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(a) (v) (©)

Figure 8: The level curves of Example

We show that the function N
g; (93) 91 (37)
Ji(hy e Py dr ot [ Py de

W) " p w0y,
h h

S(h) =

is monotone in A € (0, &). The semi-orbits I'¥ and I'ff in this example are defined for h € (

Y

that
Uy =Ty 00 < Ns(x,0) =0,
where
7 29 32 240 1 9 53 36 20
N L6520 4 2% 5 28 2 16 0 5 20 4 3 _ 2
e e R VRVt e v S LA S VA A
and —2 <z <0< o(x) We have
x? 3
oV (z) = 7(33 +1)(7z +10)(x +2)* >0, Vz € (0, ?),
10 3 4 4
\I]/ — 2 _ _ _ 2 _ X
20y (z) = Tz°(z 7)(3: 7)(ac—i—7) >0, Vre( 77O)
Thus, the hypothesis (H1)) holds. Now, choose the functions fo(z) =1 and f1(z) = 2. Then
x 3
= h(x / flt)dt = 1 — 2)(10 — Tz)(2 — x)2/ tdt = %(1 — 2)(10 — 72)(2 — 2)2,
0
10 3 4 v 7 10 3 4
= (x / fit)dt = Tz (x — 7)(z - 7)(:8 + ?)2/0 tdt = §x3(x - 7)(z - ?)(:c + ?)2,
x 2
=z / olt)dt = £~ 2)(10 — 7o) (2 ~ x)Q/ dt =" (1~ 2)(10 - 72)(2 - 2)?,
0
10 3 4 r 10 3 4
- ¢1<x>/0 folt)it = Toe — L) =)+ [t =Ta e = Dha = Dla+ *
and
Go(z)=2—0<0, Gix)y=1-0">0,
for x € (—%, 0) and hence, the hypothesis (H2)) is satisfied. Next, we compute
G 1 W:
@)= S Lo ho), )= o(2:0) :
Go(z) 2 20 (To—10)(To —3) (7o +4)

where

Ws(z,0) =2401 0° + 343 25 — 17150 — 2205 2 — 2842 ¢° 4 5194 23

+ 22402 — 5292 2% + 480 ¢ + 1960 .

15

0, %); see Fig. Note

(3.14)



16

Asheghi, Kazemi, Mohammad

The resultant between Ns(z,0) in (3.14]) and Ws(z, o) with respect to o is given by

2

Res(Ws, N5, 0) = 1333584

K5('1:)7

where

have no common zeros in (—%,0). Using Theorem we conclude that S(h) is monotone in h € (0,

Ks(x) =552213836842687391111007597 x2® — 1883644856378754190022379960 227
— 5471835756324979050574901469 226 4 28445084880534378203062762476 225
— 5654134348931551517692611345 224 — 126129956295650250232677730104 223
+ 164336432417843098110307085945 22 + 187723126533533802031872319212 2%
— 716984270351728977950020431588 220 4 1180124647197971742536923730104 *°
— 1577235227802221733779196747780 '8 + 597440738429532300699044868912 2:'7
+ 718308276961496212248382283088 ¢ + 2591686059465472315521576028320
— 4864012798198011583700951709648 14 — 3362595185680239138978351328640 =3
+ 8585844713431718735534889142464 212 + 603441591023684946447974734080 !
— 5683531198807713774265950432064 210 — 2460800574606330474249987526656 =°
+ 5947428254135543071519507863552 2% + 320189545983017810261364414464 2"
— 3541138465670160577034486994432 2° + 948882618263998795632279650304 x5
+ 720462880579177519610025271296 ¢ — 12340780093040620854104801280 3

— 519606440221753974198780518400 22 + 296641724987874470951190528000
— 54659698901936628328857600000.

1.0). So Ws(x,0) and Ns(z,0)

Slurm’S TheOI’em implleS lhal lhe pOlynomial ReS(”EH N5,U) haS 1no zZero in (_ 7
)
21/°
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