A new subclass of analytic functions and some results related to Booth lemniscate

Zahra Orouji*

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran
(Communicated by Ali Jabbari)

Abstract

In this paper, we introduce the subclass $\mathcal{K} \mathcal{S}(\alpha)$ of univalent functions in \mathcal{A} and study some properties of this class. We apply matters of differential subordinations, to investigate some results concerning the subclasses $\mathcal{K} \mathcal{S}(\alpha)$ and $\mathcal{B S}(\alpha)$ of \mathcal{A}, where $\alpha \in[0,1)$.

Keywords: Starlike functions, Convex functions, Differential subordination, Booth lemniscate 2020 MSC: Primary 30C45; Secondary 30C80

1 Introduction

Let \mathcal{A} denote the class of analytic functions f on the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

and let S denote the subclass of \mathcal{A} consisting of all univalent functions. For a real number γ with $0 \leqslant \gamma<1$, a function $f \in \mathcal{A}$ is called starlike of order γ if

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\gamma, \quad(z \in \mathbb{U})
$$

and f is called convex of order γ if

$$
\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>\gamma, \quad(z \in \mathbb{U})
$$

we denote by $\mathcal{S}^{*}(\gamma)$ and $K(\gamma)$ the classes of starlike and convex functions of order γ, respectively. In particular we set $\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*}$ and $K(0) \equiv K$. It is clear that a function $f \in \mathcal{A}$ belongs to the class K if and only if $z f^{\prime}(z)$ belongs to the class \mathcal{S}^{*}. Suppose f be an analytic function in \mathbb{U} with $f^{\prime}(0) \neq 0$, then the function f is called close-to-convex if there exists a convex function g such that:

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>0, \quad(z \in \mathbb{U})
$$

[^0]We denote by \mathcal{C} the class of all close-to-convex functions in \mathbb{U}. Refer to [2, 8, 1, 10, 11] for various published papers dealing with mentioned classes.

Suppose that $\mathcal{H}=\mathcal{H}(\mathbb{U})$ be the class of all analytic functions in \mathbb{U} and n be a positive integer number and $a \in \mathbb{C}$. We set:

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}, f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots\right\} .
$$

Suppose that $\alpha \in[0,1$), in this paper (as seen in Piejko and Sokol [7]), we apply a family of univalent functions in \mathbb{U} as follows:

$$
\begin{equation*}
F_{\alpha}(z)=\frac{z}{1-\alpha z^{2}}=z+\sum_{n=1}^{\infty} \alpha^{n} z^{2 n+1}, \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

Note that for $\alpha \in[0,1)$:

$$
\operatorname{Re}\left\{\frac{z F_{\alpha}^{\prime}(z)}{F_{\alpha}}\right\}=\operatorname{Re}\left\{\frac{1+\alpha z^{2}}{1-\alpha z^{2}}\right\}>0, \quad(z \in \mathbb{U})
$$

then $F_{\alpha}(z)$ is starlike in \mathbb{U}. Also $F_{\alpha}(\mathbb{U})=D(\alpha)$, where

$$
D(\alpha)=\left\{x+i y \in \mathbb{C} \left\lvert\,\left(x^{2}+y^{2}\right)^{2}-\frac{x^{2}}{(1-\alpha)^{2}}-\frac{y^{2}}{\left(1+\alpha^{2}\right)}<0\right.\right\}
$$

when $\alpha \in[0,1)$ and

$$
D(1)=\{x+i y \in \mathbb{C} \mid x+i y \neq i t, \quad \forall t \in(-\infty, 1 / 2] \cup[1 / 2, \infty)\}
$$

The curve

$$
\left(x^{2}+y^{2}\right)^{2}-\frac{x^{2}}{(1-\alpha)^{2}}-\frac{y^{2}}{(1+\alpha)^{2}}=0, \quad((x, y) \neq 0)
$$

is called the Booth lemniscate of elliptic type. See 4] for more explanations. Let f and g belong to \mathcal{H}. The function f is subordinate to g, denoted by $f \prec g$, if there exists an analytic function w in \mathbb{U} with $w(0)=0$ and $|w(z)| \leqslant|z|<1$ such that $f(z)=g(w(z))$. Moreover if g is a univalent function in \mathbb{U}, then $f \prec g$ if and only if $f(0)=0$ and $f(\mathbb{U}) \subset g(\mathbb{U})$. Now we recall from (Kargar et al. 2017 [4]) the following definition.

Definition 1.1. Let $f \in \mathcal{A}$ and $\alpha \in[0,1)$. We say $f \in \mathcal{B S}(\alpha)$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)}-1 \prec F_{\alpha}(z)
$$

where $F_{\alpha}(z)$ is given by 1.2 .
Furthermore, we mention from 4 a main lemma as follows.
Lemma 1.2. If F_{α} is given by 1.2 , then we have:

$$
\frac{1}{\alpha-1}<\operatorname{Re}\left\{F_{\alpha}(z)\right\}<\frac{1}{1-\alpha}, \quad(z \in \mathbb{U})
$$

where $\alpha \in[0,1)$.
From Lemma 1.2, if $f \in \mathcal{B S}(\alpha)$ then:

$$
\begin{equation*}
\frac{\alpha}{\alpha-1}<\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\frac{2-\alpha}{1-\alpha}, \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

Therefore in particular, $\mathcal{B S}(0) \subset \mathcal{S}^{*}$. Now, we are interested to produce a new subclass of \mathcal{A} as follows.

Definition 1.3. Let $f \in \mathcal{A}, \alpha \in[0,1)$ and $F_{\alpha}(z)$ is given by 1.2$)$. Then $f \in \mathcal{K} \mathcal{S}(\alpha)$ if and only if

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec F_{\alpha}(z) \tag{1.4}
\end{equation*}
$$

Remark 1.4. From the Definition 1.1 and the Definition 1.3, $f \in \mathcal{K} \mathcal{S}(\alpha)$ if and only if $z f^{\prime} \in \mathcal{B S}(\alpha)$.
Remark 1.5. By Lemma 1.2 , if $f \in \mathcal{K} \mathcal{S}(\alpha)$ then

$$
\begin{equation*}
\frac{1}{\alpha-1}<\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\frac{1}{1-\alpha}, \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

Therefore in particular, $\mathcal{K} \mathcal{S}(0) \subset K$.
Corollary 1.6. Let $f \in \mathcal{A}$ and $\alpha \in[0,1)$, then $f \in \mathcal{K} \mathcal{S}(\alpha)$ if and only if there exists an analytic function w in \mathbb{U}, with $w(0)=0$ and $|w(z)|<1$, such that

$$
\begin{equation*}
f^{\prime}(z)=\exp \int_{0}^{z} \frac{F_{\alpha}(w(t))}{t} d t, \quad(z \in \mathbb{U}) \tag{1.6}
\end{equation*}
$$

Proof . Let $f \in \mathcal{K} \mathcal{S}(\alpha)$. So there exists an analytic function $w(z)$ in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ such that:

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=F_{\alpha}(w(z)), \quad(z \in \mathbb{U})
$$

Equivalently

$$
\frac{d}{d z} \log f^{\prime}(z)=\frac{F_{\alpha}(w(z))}{z}, \quad(z \in \mathbb{U})
$$

then we have

$$
f^{\prime}(z)=\exp \int_{0}^{z} \frac{F_{\alpha}(w(t))}{t} d t, \quad(z \in \mathbb{U})
$$

Now, if a function f satisfies the condition 1.6, it is easy considering that $f \in \mathcal{K} \mathcal{S}(\alpha)$.
As example with setting $w(z)=z$ in (1.6), we conclude that

$$
f(z)=\int_{0}^{z}\left(\frac{1+\sqrt{\alpha} t}{1-\sqrt{\alpha} t}\right)^{\frac{1}{2 \sqrt{\alpha}}} d t
$$

belongs to the class $\mathcal{K} \mathcal{S}(\alpha)$. For proving main results, we require to express some lemmas.
Lemma 1.7 (See [6]). Let h be convex in \mathbb{U} with $h(0)=a, \gamma \neq 0$ and $\operatorname{Re} \gamma \geqslant 0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma} \prec h(z),
$$

then

$$
p(z) \prec q(z) \prec h(z),
$$

where

$$
q(z)=\frac{\gamma}{n z^{\frac{\gamma}{n}}} \int_{0}^{z} h(t) t^{\left(\frac{\gamma}{n}\right)-1} d t
$$

The function q is convex and is the best (a, n)-dominant.

Lemma 1.8 (Miller and Mocanu [6]). Let h be starlike in \mathbb{U}, with $h(0)=0$ and $a \neq 0$. If $p \in \mathcal{H}[a, n]$ satisfies

$$
\frac{z p^{\prime}(z)}{p(z)} \prec h(z)
$$

then

$$
p(z) \prec q(z)=a \exp \left[n^{-1} \int_{0}^{z} h(t) t^{-1} d t\right],
$$

and q is the best (a, n)-dominant.
Lemma 1.9 (See [6]). Let h be convex, with $h(0)=1$ and $\operatorname{Re} h(z)>0$. If $p \in \mathcal{H}[1, n]$ satisfies

$$
p^{2}(z)+2 p(z) \cdot z p^{\prime}(z) \prec h(z)
$$

then

$$
p(z) \prec q(z)=\sqrt{Q(z)}
$$

where

$$
Q(z)=\frac{1}{n z^{\frac{1}{n}}} \int_{0}^{z} h(t) t^{\left(\frac{1}{n}\right)-1} d t
$$

and the function q is the best $(1, n)$-dominant.
Lemma 1.10 (Miller and Mocanu [6]). Let Q denote the set of functions q that are analytic and injective on $\overline{\mathbb{U}} \backslash E(q)$ where

$$
E(q):=\left\{\xi \in \partial \mathbb{U}: \lim _{z \rightarrow \xi} q(z)=\infty\right\}
$$

and $q^{\prime}(\xi) \neq 0$ for $\xi \in \partial \mathbb{U} \backslash E(q)$. Let $q \in Q$ with $q(0)=a$, and let

$$
p(z)=a+a_{n} z^{n}+\ldots
$$

be analytic in \mathbb{U} with $p(z) \not \equiv a$ and $n \geqslant 1$. If $p \nprec q$, then there exist $m \geqslant n \geqslant 1$ and points $z_{0} \in \mathbb{U}, \xi_{0} \in \partial \mathbb{U} \backslash E(q)$ so that $p\left(|z|<\left|z_{0}\right|\right) \subset q(\mathbb{U}), p\left(z_{0}\right)=q\left(\xi_{0}\right)$ and $z_{0} p^{\prime}\left(z_{0}\right)=m \xi_{0} q^{\prime}\left(\xi_{0}\right)$, and

$$
\operatorname{Re}\left\{\frac{z_{0} p^{\prime \prime}\left(z_{0}\right)}{p^{\prime}\left(z_{0}\right)}+1\right\} \geqslant m \operatorname{Re}\left\{\frac{z_{0} q^{\prime \prime}\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}+1\right\}
$$

Also, we require generalization of the Nunokawas lemma as following.
Lemma 1.11 (See [7]). Let p be an analytic function in \mathbb{U} with $p(z) \neq 0$ and

$$
p(z)=1+\sum_{n=m \geqslant 1}^{\infty} c_{n} z^{n}, \quad\left(c_{m} \neq 0\right)
$$

If there exists $z_{0} \in \mathbb{U}$ such that

$$
|\arg \{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \beta}{2}
$$

for some $\beta>0$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i \ell \beta
$$

where

$$
\ell \geqslant \frac{m}{2}\left(a+\frac{1}{a}\right) \geqslant m \quad \text { when } \quad \arg \left\{p\left(z_{0}\right)\right\}=\frac{\pi \beta}{2}
$$

and

$$
\ell \leqslant-\frac{m}{2}\left(a+\frac{1}{a}\right) \leqslant-m \quad \text { when } \quad \arg \left\{p\left(z_{0}\right)\right\}=-\frac{\pi \beta}{2}
$$

where

$$
\left\{p\left(z_{0}\right)\right\}^{\frac{1}{\beta}}= \pm i a \quad \text { with } \quad a>0
$$

Lemma 1.12 (See [6]). Let $\Omega \subset \mathbb{C}$ and $p \in \mathcal{H}[a, n]$ with $\operatorname{Re} a>0$. If a function $\Psi: \mathbb{C}^{3} \times \mathbb{U} \rightarrow \mathbb{C}$ satisfies the condition

$$
\Psi(\rho i, \sigma, \mu, \nu ; z) \notin \Omega, \quad(z \in \mathbb{U})
$$

for all $\rho, \sigma, \mu, \nu \in \mathbb{R}, \sigma \leqslant-\frac{n}{2} \frac{|a-i \rho|^{2}}{\operatorname{Re} a}, \sigma+\mu \leqslant 0$, then

$$
\Psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \in \Omega \Longrightarrow \operatorname{Re} p(z)>0
$$

2 Main results

In the beginning, we prove one of main results in this section.
Lemma 2.1. Let $f \in \mathcal{K} \mathcal{S}(\alpha)$. If $0<\alpha<1$, then

$$
\begin{equation*}
f^{\prime}(z) \prec q(z)=\left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}}, \tag{2.1}
\end{equation*}
$$

and q is the best $(1,1)$-dominant and if $\alpha=0$, then

$$
\begin{equation*}
f^{\prime}(z) \prec \exp (z), \tag{2.2}
\end{equation*}
$$

and $\exp (z)$ is the best $(1,1)$-dominant. Furthermore for $\alpha \in(0,1)$, we have

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right|<\frac{1}{2 \sqrt{\alpha}} \arctan \left\{\frac{2 \sqrt{\alpha}}{1-\alpha}\right\} \tag{2.3}
\end{equation*}
$$

Proof . Let $p(z)=f^{\prime}(z)$. Therefore $p \in \mathcal{H}[1,1]$ and

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec F_{\alpha}(z)
$$

Because of the starlikeness of F_{α}, by supposing $n=a=1$ in Lemma 1.8, we conclude that

$$
f^{\prime}(z) \prec q(z)=\exp \left[\int_{0}^{z} \frac{F_{\alpha}(t)}{t} d t\right]=\left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}},
$$

and $q(z)$ is the best $(1,1)$-dominant. Also in the case $\alpha=0$, for considering the relation (2.2), we perform the procedure of the case $\alpha \in(0,1)$ with $F_{\alpha}(z)=z$. If $\alpha \in(0,1)$ and $w(z)=\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}(z \in \mathbb{U})$, we can easily conclude that w maps the open disk \mathbb{U} onto the disk with the center $C=\frac{1+\alpha}{1-\alpha}$ and the radius $R=\frac{2 \sqrt{\alpha}}{1-\alpha}$. Equivalently we have

$$
\left|w(z)-\frac{1+\alpha}{1-\alpha}\right|<\frac{2 \sqrt{\alpha}}{1-\alpha}, \quad(z \in \mathbb{U})
$$

thus with a simple calculation, we follow

$$
0<\frac{1-\sqrt{\alpha}}{1+\sqrt{\alpha}}<\operatorname{Re} w<\frac{1+\sqrt{\alpha}}{1-\sqrt{\alpha}}
$$

and therefore

$$
\begin{equation*}
\left|\arg \left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}}\right|<\frac{1}{2 \sqrt{\alpha}} \arctan \frac{2 \sqrt{\alpha}}{1-\alpha} \tag{2.4}
\end{equation*}
$$

and the result is obtained.
Theorem 2.2. For $0 \leqslant \alpha<1, \mathcal{K} \mathcal{S}(\alpha) \subset S$.
Proof. Suppose $f \in \mathcal{K} \mathcal{S}(\alpha)$. Through the relation (2.3), it is clear that for $\alpha \in\left[\frac{1}{4}, 1\right)$:

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right|<\frac{\pi}{2} \tag{2.5}
\end{equation*}
$$

Thus $\operatorname{Re} f^{\prime}(z)>0$ and by Noshiro-Warshawski theorem [1] f is univalent in \mathbb{U}. Moreover from (1.5) for $\alpha \in\left[0, \frac{1}{3}\right]$ we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right\}>\frac{\alpha}{\alpha-1} \geqslant-\frac{1}{2}, \quad(z \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

and by Kaplan [3, we conclude that f is close-to-convex. Then f is univalent in \mathbb{U}.
Theorem 2.3. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{K} \mathcal{S}(\alpha)$,
a) If $\alpha \in\left(0, \frac{1}{4}\right]$, then

$$
\begin{equation*}
\frac{f(z)}{z} \prec q(z)=\frac{1}{z} \int_{0}^{z}\left(\frac{1+\sqrt{\alpha} t}{1-\sqrt{\alpha} t}\right)^{\frac{1}{2 \sqrt{\alpha}}} d t \tag{2.7}
\end{equation*}
$$

and $q(z)$ is convex and the best $(1,1)$-dominant. Also if $\alpha=0$, then

$$
\begin{equation*}
\frac{f(z)}{z} \prec \frac{1}{z}\left(e^{z}-1\right), \tag{2.8}
\end{equation*}
$$

and $\frac{1}{z}\left(e^{z}-1\right)$ is convex and the best $(1,1)$-dominant.
b) If $\alpha \in\left[\frac{1}{4}, 1\right)$, then

$$
\begin{equation*}
\frac{f(z)}{z} \prec\left(\frac{1+z}{1-z}\right)^{\frac{1}{2 \sqrt{\alpha}}} . \tag{2.9}
\end{equation*}
$$

Therefore for $\alpha \in\left[\frac{1}{4}, 1\right)$, we have $\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>0$.
c) If $\alpha \in\left[\frac{1}{4}, 1\right)$, then

$$
\begin{equation*}
\sqrt{\frac{f(z)}{z}} \prec \sqrt{\frac{2}{z} \ln (1+z)-1} . \tag{2.10}
\end{equation*}
$$

Therefore $\operatorname{Re}\left\{\sqrt{\frac{f(z)}{z}}\right\}>\sqrt{2 \ln 2-1}$.

Proof .

a) Let $p(z)=\frac{f(z)}{z}$, then $p \in \mathcal{H}[1,1]$ and $p(0)=1$. Since $f^{\prime}(z)=p(z)+z p^{\prime}(z)$, by using the relation 2.1) we obtain

$$
p(z)+z p^{\prime}(z) \prec\left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}}
$$

Suppose $h(z)=\left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}}$. By [5] it is showed that for $\alpha \in\left(0, \frac{1}{4}\right.$], the function $h(z)$ is convex and $h(0)=1$, then by taking $\gamma=1$ and $n=1$ in Lemma 1.7. the relation 2.6 is obtained. Moreover $q(z)=\frac{1}{z} \int_{0}^{z}\left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}} d t$ is convex and the best $(1,1)$-dominant. For the case $\alpha=0$ similar to the past case, by applying the relation (2.2) and Lemma 1.7, the relation (2.7) is obtained.
b) Let $p(z)=\frac{f(z)}{z}$ be the form:

$$
p(z)=1+a_{2} z+a_{3} z^{2}+\ldots=1+\sum_{n=1}^{\infty} a_{n+1} z^{n}, \quad(z \in \mathbb{U})
$$

We want to show $p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta}=q(z)$, where $\beta=\frac{1}{2 \sqrt{\alpha}}$. Suppose $p \nprec q$. From Lemma 1.10 , there exist points $z_{0} \in \mathbb{U}$ and $\xi_{0} \in \partial \mathbb{U} \backslash E(q)$ such that

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \beta}{2}
$$

and

$$
|\arg \{p(z)\}|<\frac{\pi \beta}{2}, \quad\left(|z|<\left|z_{0}\right|\right)
$$

Then by Lemma 1.11 , we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i \ell \beta, \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\ell \geqslant \frac{1}{2}\left(a+\frac{1}{a}\right) \geqslant 1 \quad \text { when } \quad \arg \left\{p\left(z_{0}\right)\right\}=\frac{\pi \beta}{2}, \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\ell \leqslant-\frac{1}{2}\left(a+\frac{1}{a}\right) \leqslant-1 \quad \text { when } \quad \arg \left\{p\left(z_{0}\right)\right\}=-\frac{\pi \beta}{2} \tag{2.13}
\end{equation*}
$$

where

$$
\left\{p\left(z_{0}\right)\right\}^{\frac{1}{\beta}}= \pm i a, \quad(a>0) .
$$

Note that from Lemma 2.1,

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right|<\frac{\pi}{4 \sqrt{\alpha}}, \quad(z \in \mathbb{U}) . \tag{2.14}
\end{equation*}
$$

Now, suppose $\arg \left\{p\left(z_{0}\right)\right\}=\frac{\pi \beta}{2}$. Since

$$
f^{\prime}\left(z_{0}\right)=p\left(z_{0}\right)+z_{0} p^{\prime}\left(z_{0}\right)=p\left(z_{0}\right)\left[1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right]
$$

from 2.10 and 2.11 we deduce that

$$
\begin{aligned}
\arg \left\{f^{\prime}\left(z_{0}\right)\right\} & =\arg \left\{p\left(z_{0}\right)\right\}+\arg \{1+i \ell \beta\}=\frac{\pi \beta}{2}+\arctan \{\ell \beta\} \\
& \geqslant \frac{\pi}{4 \sqrt{\alpha}}+\arctan \left\{\frac{1}{2 \sqrt{\alpha}}\right\}>\frac{\pi}{4 \sqrt{\alpha}},
\end{aligned}
$$

which is contradictory with the relation (2.14). If $\arg \left\{p\left(z_{0}\right)\right\}=-\frac{\pi \beta}{2}$, then from 2.10) and 2.13) we deduce that

$$
\begin{aligned}
\arg \left\{f^{\prime}\left(z_{0}\right)\right\} & =\arg \left\{p\left(z_{0}\right)\right\}+\arg \{1+i \ell \beta\}=-\frac{\pi \beta}{2}+\arctan \{\ell \beta\} \\
& \leqslant-\frac{\pi}{4 \sqrt{\alpha}}+\arctan \left\{-\frac{1}{2 \sqrt{\alpha}}\right\}<-\frac{\pi}{4 \sqrt{\alpha}}
\end{aligned}
$$

which leads to contradiction with the relation 2.14 . Therefore $\frac{f(z)}{z} \prec\left(\frac{1+z}{1-z}\right)^{\frac{1}{2 \sqrt{\alpha}}}$.
c) Let $p(z)=\sqrt{\frac{f(z)}{z}}$. With considering the branch of square root we have $p \in \mathcal{H}[1,1]$ and

$$
\begin{equation*}
p^{2}(z)+2 z p^{\prime}(z) p(z)=f^{\prime}(z), \quad(z \in \mathbb{U}) \tag{2.15}
\end{equation*}
$$

Since $f \in \mathcal{K} \mathcal{S}(\alpha)$, by the relation 2.3 for $\alpha \in\left[\frac{1}{4}, 1\right)$ we have $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$. Put $h(z)=\frac{1-z}{1+z}$. Thus from the relation (2.15) we can conclude that

$$
p^{2}(z)+2 z p^{\prime}(z) p(z) \prec \frac{1-z}{1+z}
$$

then by Lemma 1.9

$$
\sqrt{\frac{f(z)}{z}} \prec q(z)=\sqrt{Q(z)},
$$

where

$$
\begin{aligned}
Q(z) & =\frac{1}{z} \int_{0}^{z} h(t) d t=\frac{1}{z} \int_{0}^{z} \frac{1-t}{1+t} d t \\
& =\frac{2}{z} \ln (1+z)-1
\end{aligned}
$$

and the function q is the best $(1,1)$-dominant. Moreover, we have

$$
Q(z)+z Q^{\prime}(z)=h(z) \prec h(z)
$$

and $Q \in \mathcal{H}[1,1]$. Therefore from Lemma 1.7. we follow that $Q \prec h$ and then $\operatorname{Re}\{Q(z)\}>0$. Since h is convex, it is clear that Q is convex (see [6], Theorem 2.6h, part(ii)). On the Other hand, since the function Q has real coefficients, we deduce that

$$
\begin{equation*}
\min _{|z| \leqslant 1} \operatorname{Re}\{q(z)\}=\sqrt{Q(1)}=\sqrt{2 \ln 2-1} \tag{2.16}
\end{equation*}
$$

then $\operatorname{Re}\left\{\sqrt{\frac{f(z)}{z}}\right\}>\sqrt{2 \ln 2-1}$.

Theorem 2.4. Let $f \in \mathcal{B S}(\alpha)$. If $\alpha \in(0,1)$, then

$$
\begin{equation*}
\frac{f(z)}{z} \prec\left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}}=q(z), \tag{2.17}
\end{equation*}
$$

and q is the best $(1,1)$-dominant. Also if $\alpha=0$, then

$$
\begin{equation*}
\frac{f(z)}{z} \prec \exp z \tag{2.18}
\end{equation*}
$$

and $\exp (z)$ is the best $(1,1)$-dominant.
Proof . Let $p(z)=\frac{f(z)}{z}$ and $\alpha \in(0,1)$. Since $f \in \mathcal{B S}(\alpha)$ we obtain

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{z f^{\prime}(z)}{f(z)}-1 \prec F_{\alpha}(z)
$$

We know that $F_{\alpha}(z)$ is starlike and $F_{\alpha}(0)=0$. Thus by Lemma 1.8

$$
\frac{f(z)}{z} \prec q(z)=\exp \left[\int_{0}^{z} \frac{F_{\alpha}(t)}{t} d t\right]=\left(\frac{1+\sqrt{\alpha} z}{1-\sqrt{\alpha} z}\right)^{\frac{1}{2 \sqrt{\alpha}}},
$$

and the function q is the best $(1,1)$-dominant. For proving the relation 2.18 , we perform the former process with $F_{\alpha}(z)=z$.

References

[1] P.L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] I. Hotta and M. Nunokawa, On strongly starlike and convex functions of order α and type β, Mathematica 53 (2011), no. 76, 51-56.
[3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), no. 2, 169-185.
[4] R. Kargar, A. Ebadian, and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (2019), no. 1, 143-154.
[5] R. Kargar, A. Ebadian, and L. Trojnar-Spelina, Further results for starlike functions related with Booth lemniscate, Iran. J. Sci. Technol. Trans. A: Sci. 43 (2019), no. 3, 1235-1238.
[6] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker Inc., New York, 2000.
[7] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Seri. A, Math. Sci. 69 (1993), no. 7, 234-237.
[8] M. Nunokawa, S.P. Goyal, and R. Kumar, Sufficient conditions for starlikeness, J. Class.l Anal. 1 (2012), no. 1, 85-90.
[9] Z. Orouji and R. Aghalary, The norm estimates of Pre- Schwarzian derivatives of spirallike functions and uniformly convex α-spirallike functions, Sahand Commun. Math. Anal. 12 (2018), no. 1, 89-96.
[10] K. Piejko and J. Sokol, Hadamard product of analytic functions and some special regions and curves, J. Ineq. Appl. 2013 (2013), :420.
[11] Y.J. Sim and D.K. Thomas, On the difference of coefficients of starlike and convex functions, Mathematics 8 (2020), no. 9, 1521.

[^0]: * Corresponding author

 Email address: z.orouji@urmia.ac.ir (Zahra Orouji)

