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Abstract

Return and risk are significant parameters in selecting an optimal portfolio, depending on the portfolio return distribu-
tion. In a stochastic process, the Markov property causes the future distribution of a random process to be measurable
according to the state-transition matrix and the initial process state. According to the main idea of the present study
in the optimal portfolio selection, portfolio weights are chosen in a way that the Markov property is established for the
portfolio return series and the distribution of future portfolio returns is close to the distribution of investor’s expected
returns; hence, K-L divergence (Kullback–Leibler divergence) is utilized as a criterion of closeness. Using this idea,
an optimal portfolio selection model was designed and implemented in the present study. This optimal portfolio was
optimized using a Markov approach and according to historical data of 10 indices on the Tehran Stock Exchange from
2009 to 2022 in a six-member state. The optimal portfolio performance evaluation using the Sharpe ratio and value
at risk criteria indicated that the research model had a higher performance than the mean-variance and weight parity
models.

Keywords: Markov property, K-L divergence (Kullback–Leibler divergence) criterion, return distribution, Goodness
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1 Introduction

The momentary asset or portfolio price or return is a stochastic variable. A stochastic process refers to all
these stochastic variables in a certain period. Therefore, the real observed value of a portfolio in that period is an
objectification or path of an example of a stochastic process. The ARIMA, Wiener, and Levy processes are resulted
from such view. Markov processes are important and widely-used classes of stochastic processes. In the Markov
process, the future process position depends only on its current position, and thus having knowledge about previous
positions of a process does not provide additional information [6]. A discrete-time Markov chain is a process in
which the state space as a set of values of random variables in the process is a countable or finite set. In financial
stochastic processes, an analytical framework with the help of Markov chains makes it possible to answer questions
that are not possible in other analytical frameworks such as basic, technical, and time series frameworks. Answering
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questions about the probability of displacement in the state space, the necessary time for these displacements, and
the measurement of stable states of a system are some of these questions.

The literature review indicates the vast use of Markov chains as a tool to predict the asset or portfolio return.
Markov chains mainly contributed to Markov switching and Hidden Markov models, and are widely used in predicting a
stochastic vector of return on assets. The present research uses Markov chains for the selection of an optimal portfolio.
Portfolio optimization is a dynamic field in financial research, both theoretically and practically. The optimal and
efficient portfolio selection is one of the main goals of investors in financial markets. Various portfolio models have
been developed in the research literature each of which has its specific assumptions and limitations. The present
research investigated the new view on the use of Markov chains to optimize the portfolio.

2 Theoretical bases and research background

Portfolio optimization is the process of selecting the weights of assets that constitute the portfolio based on
investment environment limitations (e.g. specific budget and the impossibility of short selling) and the investor's
demands [15]. Investors’ demands are often modeled in two forms: return and risk. Therefore, it is expected that a
portfolio can estimate the investor’s expected return at a minimum level of risk, and such a portfolio is considered
efficient [10]. Therefore, the research literature indicated the use of various measures to estimate the return and risk.
For example, the weighted mean of returns on a single asset, or statistical and artificial intelligence models are used to
estimate the expected return. Furthermore, various measures are used to measure risk, including standard deviation,
half standard deviation, Value at Risk (VaR), and Expected Shortfall (ES) [13].

The present research utilizes a Markov chain for portfolio optimization; hence, it first defines the Markov chain
properties to determine its capabilities for modeling the portfolio and estimating the return and risk parameters as
the main research idea. A sequence of stochastic variables, like {Xt}, is called a stochastic process. A discrete-time
chain is a stochastic process in which the state space, i.e. the set of values of stochastic variables in the process, is a
countable or finite set and the time index is a discrete set t ∈ {0, 1, 2, . . .}. It is always assumed that time is discrete.
The chain {Xt} is a Markov chain if Equation (2.1) is true:

P{Xn+1 = j
∣∣X0 = i0, . . . , Xn−1 = in−1, Xn = i} = P{Xn+1 = j

∣∣Xn = i. (2.1)

In other words, the upcoming values of the process depend only on its current value. Suppose that Pij is the
probability of state transition from i to j, the Pij values are usually displayed as the following matrix.

P =


P00 P01 . . . P0n

P10 P11 . . . P1n

...
...

. . .
...

Pn0 Pn1 . . . Pnn

 (2.2)

P = [pij ] matrix is called the state-transition or the transition-probability matrix. A Markov chain is obvious by
specifying the transition probability matrix and the X0 probability distribution (the chain starting state). The
following equation can be obtained using the law of total probability:

pnij =

∞∑
k=0

pikp
(n−1)
kj (2.3)

where pnij is the probability of transition from state i to j with n steps or periods. The aforementioned formula is called
the Chapman-Kolmogorov Equation. Important questions can be answered if a process is Markov. Such questions are
about the possibility of state transition of the system from one to another after a certain period, the necessary mean
time for such transitions, and also finding a stable system state that describes the system’s behavior in the long term.

After a brief introduction to the Markov chain, we return to the main question about the Markov process capa-
bilities in the optimal portfolio selection. As mentioned earlier, return and risk are two main parameters in portfolio
determination and both are functions of the portfolio return distribution; hence, investors can achieve their investment
goals by modeling the expected returns and tolerable risk in a portfolio return distribution form that is called the
expected return distribution. If the portfolio return series can act as a Markov chain in a certain time horizon, then
the future distribution of its return can be measured using the Chapman-Kolmogorov theorem according to Equation
(2.3). It is the main idea of the present research. Portfolio weights are optimized in a portfolio selection model. The



Portfolio design and optimization within the framework of the Markov chain 267

present research model decides to select the weights in a way that the portfolio return series become a Markov process
in a suitable state so that its return distribution is close to the investor’s expected return distribution (indicating the
expected return and risk) as much as possible.

The research portfolio based on Markov analysis is a flexible model because the portfolio optimization based on the
Markov chain is a non-parametric approach that does not depend on the asset return distribution or a specific market.
Numerous studies on portfolio selection assume the parametric asset distribution, for example, based on normal or
log-normal distribution. There is no need for these assumptions in the analysis based on the Markov chain. Finally,
the portfolio risk can be controlled using a final portfolio return distribution at maturity. Therefore, desirable and
undesirable risks can be simultaneously considered in an expected return distribution of the portfolio. Undesirable
risk can calculate the investor’s loss at a certain confidence level and it is closer to the concept of risk as the rate of
loss in the investor’s mind.

Several studies on the use of Markov chains in financial modeling are mentioned as follows. Mirmohammadi et al.
[10] introduced the combined portfolio selection model of risk parity and factor analysis based on Markov switching.
The portfolio of a sample research consisting of 8 industries (as portfolio assets) on the Tehran Stock Exchange from
2011-2020 indicated that the combined research model had a higher Sharpe ratio than the common mean-variance
and weight parity models, and it was more resistant to the market crash and produces less loss than the other two
models. Using two methods, Davoudi and Mirsaeidi [6] indicated that the two-week returns (fourteen working days)
of the total stock market index of the Tehran Stock Exchange had a Markov property in 1997-2015 in a six-member
state defined based on returns and risk. The Markov property indicates that the average time for state transition
is from 4 to 13 periods (each for 14 days), and the maximum limit probabilities, indicating the long-term behavior
of a process, are related to a state in which the obtained return is higher than the average. Ahmadian [1] utilized
the Markov chain to analyze stock pricing. In this regard, the dividend check model is conducted using the Markov
chain to obtain the intrinsic value of the company’s stock. Alamatian and Vafaei Jahan [2] offered a system based
on Bayesian networks and a hidden Markov model to forecast the daily trends of the Iran stock market. They used
a total of 6 market indices of the Tehran Stock Exchange and 22 technical indicators. Bayesian networks were also
used to find relationships between the variables, and finally, modeling was conducted using the hidden Markov model.
The best accuracy percentage of this proposed system was 85.25%. Amiri and Biglari Kami [4] took advantage of the
Markov chain model to predict the stock price behavior in the future and investigate the memory-less property of the
stock market. To this end, three levels, positive, neutral, and negative, were considered for the percentage of stock
price vitality, and percentage of traded volume, and then 9 states or situations were defined for the Markov chain
model according to their interaction. The results indicated that the use of the Markov chain in stock price forecasting
could be desirable, and the memory-less property could be attributed to the stock market under certain conditions.

Kostadinova et al. [8] utilized the Markov chain to predict stock price trends. Markov chain models were obtained
for 3 different stock prices based on the state-transition matrix and initial state vector for 2019. The analyzed stocks
were combined in an optimal mean-risk portfolio, and the analysis of the risk aversion coefficient and its effect on the
portfolio selection was performed completely. Pasricha et al. [11] developed an approach based on the semi-Markov
process for an optimal portfolio selection consisting of bonds. The credit portfolio optimization criteria were based on
the infinite norm, and the proposed optimization model was transformed into a linear programming problem, assuming
that the bond credit rating followed a semi-Markov process. Finally, the portfolio was optimized on 10 bonds at a
maturity of 9 years. Rahmani and Dehghani [12] proposed a two-step method for enhanced portfolio indexing of
the Tehran Stock Exchange price index. First, a discrete Markov chain model was designed to filter stocks based
on their high probability of profit compared to the benchmark index, and then the optimal weights were assigned to
the filtered assets. The sample included weekly data from March 2013 to March 2020. The data were classified into
26 time-frames, including 52 in-sample and 12 out-of-sample data. The results indicated that not only the portfolio
return was positively correlated with the index return and could be traced completely, but it can also achieve a higher
return. Burkett et al. [5] introduced an innovative new approach to design portfolios that applied a discrete state-
based method to define market states and asset allocation decisions according to current and future state membership.
The transition dynamics of derived states were modeled as a Markov process. Asset weighting and portfolio allocation
decisions were made using an approach based on heuristic optimization. The research portfolio was optimized on a
7-share portfolio from 2004 to 2019. Ryou et al. [14] presented an investment strategy that utilized a hidden Markov
model for stock selection in bullish mode. Identifying the stock state, the stock in the bullish mode was first purchased
and rebalanced after the holding period. The study also indicated that investment strategy was useful in the Korean
stock exchange using a hidden Markov network. Ruiz-Cruz et al. [13] proposed a trading portfolio strategy that was
mainly based on the K-Means clustering algorithm to determine and learn internal hidden patterns in time series of
stock market prices, the predictive algorithm based on a simple Markov chain, and a Fuzzy inference system to make
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decisions in transactions. The trading algorithm performance was confirmed through simulation using real prices of
the Mexican stock exchange. Zandieh [15] conducted portfolio optimization in the Belgrade Stock Exchange and thus
utilized the Markov chain as a simple and non-parametric method. They considered a portfolio with 10 assets and 252
daily data in 2015. All returns were combined and classified to find the Markov process states. Considering the three
states, stocks with a maximum possibility of being in the range of expected returns were in the portfolio. Bebarta et al.
[3] used a unified system to forecast stock prices. In this system, they utilized neural networks to adjust the input size
for the hidden Markov model, and then the basic parameters of the system were optimized using the genetic algorithm.
The model test result on four shares in 2014 indicated that the performance of this unified system was better than the
performance of single neural networks. Gupta and Dhingra [7] used the hidden Markov model to predict stock prices.
Their model used a Gaussian Mixture as the system output. The output was three-dimensional and defined based on
the opening price, closing, highest, and lowest prices. Finally, the network accuracy was investigated on four stocks
and the researchers reported satisfactory results.

The literature review indicated the innovation of the present research as the current issue had not been investigated
in any study. In this study, the portfolio was considered as a synthetic asset that could change in its return distribution
by changing the vector weights of the assets. The Markov property can be examined using statistical tests and the
distribution of the future portfolio returns can be measured for future time steps according to relations in the Markov
chain theory for a certain portfolio (certain weights) and a certain state space. Markov chain-based optimization
model considers the final distribution of portfolio returns and thus allows investors to determine a balance between
their return and risk by specifying the final portfolio return distribution function at maturity. Therefore, the value
at risk (VaR) is considered the maximum portfolio loss at a certain confidence level in the final portfolio wealth
distribution according to the possibility of negative returns.

3 Research model

This section introduces the optimal portfolio selection model based on the Markov chain. Suppose that the
portfolio consists of N assets i ∈ {1, 2, . . . , N}, and {rit}Tt=1 represents the time series of historical returns on asset
i for t ∈ {1, 2, . . . , T}. The historical portfolio return is as follows for an arbitrary selection of portfolio weights,

w1, w2, w3, . . . , wN , as ∀ iwi ≥ 0,
∑N

i=1 wi = 1

rt = w1r1t + w2r2t + . . .+ wNrNt, t ∈ {1, 2, . . . , T}. (3.1)

The resulting series of portfolio returns should be examined for the Markov property. To this end, six states were
considered a set of states for the Markov chain according to the table below.

Table 1: Markov chain state

State Area
0 ri < µ+ σ
1 µ+ 0.5σ ≤ ri < µ+ σ
2 µ ≤ ri < µ+ 0.5σ
3 µ− 0.5σ ≤ ri < µ
4 µ− σ ≤ ri < µ− 0.5σ
5 ri < µ− σ

In Table 1, µ is the mean historical portfolio returns and σ refers to its standard deviation. The state-transition
matrix is first calculated to examine the Markov property according to the state space of Table 1. Therefore, the
frequency of each state in the data series is first counted, and then the frequency of state transition is measured. For
example, consider two states i, j and suppose that the frequency of state i is equal to n(i) in the data series, and
the frequency of transition of state i → j is equal to nij ,then, the maximum likelihood estimation (MLE) for the
probability of transition of state i → j, which is represented by pij , is equal to pij =

nij

n(i) . Accordingly, the transition

probability matrix is calculated according to Equation (3.2).

P =


P00 P01 . . . P05

P10 P11 . . . P15

...
...

. . .
...

P50 P51 . . . P55

 (3.2)
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The stationarity property was examined to check the Markov property. The time interval, in which the data
were sampled, was divided into several sub-intervals to check the stationarity. Four sub-intervals were selected in the
present research. If the process had stationarity, the distribution of state-transition probabilities of the chain in the
sub-intervals should not be significantly different from the state-transition distribution for the whole data. If Pij,r is
the state transition in the sub-interval r, the goodness-of-fit test is conducted to check the stationarity of the process
according to Equation (3.3). {

H0 : ∀ ij : Pij,r = Pij

H1 : ∃ i, j : Pij,r ̸= Pij .
(3.3)

In the goodness-of-fit test, Pearson’s chi-square statistic is used as χ2 =
∑5

i=0

∑5
j=0(eij,r − fij,r)

2/eij,r in which
fij,r is the frequency of transition from the state i → j in the sub-interval r, and eij,r is the expected frequency equal
to eij,r = Nij,r × Pij if the null hypothesis is accepted. The Pearson chi-square statistic has a chi-square distribution
with (6 − 1)(6 − 1) = 25 degrees of freedom. The null hypothesis is confirmed at a significant level of 1 − α if
χ2 < χ2

1−α(25) = 37.652. Furthermore, if the null hypothesis is accepted in all sub-intervals, then we can claim that
the process is stationary at the desired significance level [6]. Examining the memory-less property is the second step
of investigating the Markov property. To this end, Equation (3.4) must be confirmed from a statistical point of view.

P (Xn+1 = k
∣∣Xn = i & Xn−1 = j) = P (Xn+1 = j

∣∣Xn = i). (3.4)

Therefore, Pijk = P (Xn+1 = k
∣∣Xn = i & Xn−1 = j) is first estimated based on Pijk =

nijk

n(i,j) in which nijk is the

number of transition of state i → j and then to k. Furthermore, n(i, j) is the frequency when the process is in state i
at that time and in state j at a later time. If the process has a Markov property, the distribution of probabilities for
two-step transitions should be independent of the starting point, or it should be a memoryless process. The goodness
of fit test is arranged as follows to examine this issue for each state k.

H0 : ∀ ij : Pijk = PjkH1 : ∃ i, j : Pikj ̸= Pjk. (3.5)

We use Pearson’s chi-square statistic for the goodness-of-fit test as follows:

χ2 =

5∑
i=0

5∑
j=0

(eijk − fijk)
2/eijk

where fijk is the frequency of transitions from i to j, and then k, and eijk is the expected frequency of transition
from i → j, and then to k. The following equation is obtained assuming the null hypothesis. The introduced statistic
has a chi-square distribution with (6 − 1)(6 − 1) = 25 degrees of freedom, and the null hypothesis is confirmed if
χ2 < χ2

1−α(25) = 37.652. If the null hypothesis is accepted for all states of k, then it can be claimed that the process
has Markov properties [4].

The research portfolio model presents the return and risk by expressing the distribution function of the portfolio
return probability on the state space in Table 1. Assume that Pdes is the investor’s optimal probability size and Q is
the portfolio return distribution due to its Markov property. The research model seeks to make the two distributions
as close as possible, and it thus uses the criterion of the proximity of two probability sizes, namely K-L divergence.
K-L divergence, which is also called relative entropy and L-divergence, shown as DKL(P□Q), represents a type of
statistical distance as a criterion for the difference between a probability distribution P with a second probability
distribution of reference Q. A simple interpretation of the divergence DKL(P□Q) indicates the expected surprise in
the use of size Q as a model when the true distribution of the model has a size P . In a simple state, K-L divergence
with zero value indicates that the two distributions have the same amount of information. K-L divergence from size
Q to P shown by DKL(P□Q) is defined as follows [9].

DKL(P□Q) =
∑
x∈X

P (x) log
(P (x)

Q(x)

)
. (3.6)

The research portfolio selection model is according to Equation (3.7) based on the aforementioned assumptions.

min KL(PrT+1

∣∣ST = φ(rT )∥Pdes)
s.t:

{rt}Tt=1 is a Markov chain w.r.t state set S (1)
φ(rT ) = state of rT (2)
∀ i : xi ≥ 0,

∑n
i=1 xi = 1 (3)

Horizon ∈ {1, 2, 3, . . . , 14} (4)

(3.7)
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This model assumes that T is the portfolio closing moment. Pdes is the investor’s desirable portfolio return
distribution in the next time step (the return due to the movement from T to T + 1), and PrT+1

∣∣ST = φ(rT ) is the
portfolio return distribution as a Markov chain in a later time step, provided that the portfolio is in the state φ(rT )
at time closing T . In fact, φ function depicts the return of each time on its state according to Table 1. Therefore,
the research portfolio depends on the type of return state at the closing time. The first limitation indicates that the
output series must be a Markov process according to the state space. To this end, the stationary and memory-less
hypothesis tests are used. The time horizon of the portfolio may vary from one to 14 days. In fact, its model chooses
that time horizon when the historical returns of the portfolio in that time horizon become a Markov chain according
to the state space of Table 1. The particle swarm optimization (PSO) algorithm was used to optimize the model (3.7).
This algorithm consists of a mass of particles. Each particle is settled in a region of the search space. The objective
function value for each particle shows the degree of fitness of that particle’s location. Particles in the search area
move at a certain speed. The speed (direction and speed value) of each particle is affected by two factors, first, the
best experience that particle has ever had (the best fitness level), and second, the best experience that neighboring
particles have ever had. Finally, the movement of the particles will converge toward an optimal point.

4 Results

The present section provides details of the implementation of a portfolio selection model in the studies on the
Tehran Stock Exchange. The portfolio of the present research consists of 10 assets according to Table 2 and each asset
is an index of the Tehran Stock Exchange. Choosing an index as an asset means a diverse portfolio from its subset
stock. For example, the index of metal minerals is a diverse portfolio from a subset stock of that index so that the
research portfolio was diverse.

Table 2: List of research portfolio assets

Number of assets Index name Number of assets Index name
1 Metallic minerals 6 Chemical
2 Non-metallic minerals 7 Medicine
3 Oil products 8 Machinery
4 Car 9 Food
5 Cement 10 Technical

The historical data of 10 assets, consisting of 3442 daily data, were extracted from the beginning of 2009 to the
end of 2022. After data extraction, the model (3.7) was optimized using particle swarm optimization (PSO). A total
of 3000 data were used as training sets to optimize the model, and 342 data were as test data. According to Model
(3.7), the time horizon of the research portfolio can change from 1-14 days. The optimal time horizon, in which the
return series of the portfolio indicates Markov behavior (stationary and memory-less), is a 10-day horizon based on the
set of states in Table 1. Given the 10-day time horizon, the training data set consists of 300 10-day training data and
44 10-day test data. The average portfolio return in a 10-day horizon, represented by µ and the standard deviation
(risk) represented by σ were calculated as follows:µ = 0.0172, σ = 0.0531. On this basis, the process state space in the
optimal portfolio includes six states according to Table 3. The last column of Table 3 indicates the investor’s expected
return distribution for the next step.

Table 3: State space in the optimal portfolio

State Area Amount Expected desirable return distribution
0 r > µ+ σ r > 0.0704 0.20
1 µ+ 0.5σ ≤ r < µ+ σ 0.04385 ≤ r < 0.0704 0.40
2 µ ≤ r < µ+ 0.5σ 0.0173 ≤ r < 0.04385 0.15
3 µ− 0.5σ ≤ r < µ −0.00925 ≤ r < 0.0173 0.10
4 µ− σ ≤ r < µ− 0.5σ −0.0358 ≤ r < −0.00925 0.10
5 r < µ− σ r < −0.0358 0.05

Figure 1 shows the state transition of a step (each step equal to 10 days) in the optimal solution for training data.
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Figure 1: One-step state transition

The one-step transition probability matrix P in the optimal solution was measured as follows:

P =


0.342 0.132 0.184 0.132 0.105 0.079
0.321 0.143 0.214 0.214 0.071 0.036
0.131 0.230 0.230 0.262 0.098 0.049
0.043 0.032 0.258 0.355 0.258 0.054
0.057 0.019 0.094 0.434 0.264 0.132
0.037 0.037 0.148 0.370 0.111 0.296


The data were classified into 4 groups of 75 for the optimal solution to examine the validity. Table 4 presents the

result of the goodness of fit test to determine the stationary of the process.

Table 4: The result of the goodness of fit test to examine the stationary

Null hypothesis df Pearson Chi-Square statistic Critical value of the
statistic at a 95% sig-
nificance level

Test result

The distribution of the state-
transition probability matrix
in the first subsample follows
matrix p

25 31.54 37.652 Null hypothesis accepted

The distribution of the state-
transition probability matrix
in the second subsample fol-
lows matrix p

25 24.013 37.652 Null hypothesis accepted

The distribution of the state-
transition probability matrix
in the third subsample follows
matrix p

25 18.360 37.652 Null hypothesis accepted

The distribution of the state-
transition probability matrix
in the fourth subsample follows
matrix p

25 35.1201 37.652 Null hypothesis accepted

According to the acceptance of the null hypothesis in all sub-intervals, the process is stationary. Table 5 presents
the results of the memorylessness test in the optimal solution with the help of the goodness of fit test.

Acceptance of the null hypothesis in all states indicated that the process was memoryless. As stated in the research
model section, the optimal portfolio depended on the portfolio state at the closing time; hence, six optimal portfolios
were measured according to Table 6, depending that which six states presented the process state when the portfolio
was closed.

Figure 2 presents the 10-day returns obtained by the optimal portfolio using the Markov approach on 44 test data.
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Table 5: The result of the goodness of fit test to examine memorylessness

Null hypothesis df Chi-Square statistic Critical value at a 95% significance level Test result
∀ i, j : pij0 = pj0 25 21.7321 37.652 Null hypothesis accepted
∀ i, j : pij1 = pj1 25 25.1012 37.652 Null hypothesis
∀ i, j : pij2 = pj2 25 18.5109 37.652 Null hypothesis
∀ i, j : pij3 = pj3 25 23.7213 37.652 Null hypothesis
∀ i, j : pij4 = pj4 25 30.3012 37.652 Null hypothesis
∀ i, j : pij5 = pj5 25 18.5012 37.652 Null hypothesis

Table 6: Optimal portfolios depending on the six states

Number of assets
State

0 1 2 3 4 5

1 0.276 0.124 0.102 0.397 0.077 0.297
2 0.000 0.051 0.000 0.240 0.000 0.140
3 0.134 0.151 0.250 0.011 0.253 0.011
4 0.111 0.001 0.200 0.069 0.070 0.089
5 0.106 0.106 0.164 0.107 0.276 0.117
6 0.000 0.110 0.100 0.000 0.000 0.000
7 0.077 0.193 0.000 0.000 0.114 0.203
8 0.000 0.101 0.118 0.118 0.101 0.048
9 0.154 0.070 0.001 0.023 0.106 0.043
10 0.140 0.100 0.070 0.036 0.010 0.060

Figure 2: The returns obtained by the optimal research portfolio on the test data

Table 7 presents the performance of the research model on the test data using the mean-variance portfolio
(Markowitz) and the weight parity portfolio (in which all assets have equal weights) in the criteria, namely mean
return, standard deviation, and value at risk (as criteria of risk measurement), and Sharpe ratio (as a criterion of
risk-adjusted return).

Table 7: Performance comparison of the research model with the mean-variance and weight parity models

Criterion Research portfolio Markowitz portfolio Weight parity portfolio
Mean return (10-day) 0.02113 0.00951 0.00513

sd 0.05334 0.03799 0.04974
Sharpe ratio 0.39619 0.25023 0.10322
VaR (0.95) 0.039 0.0455 0.05981

Based on Table 7, the research portfolio with a Markov chain approach had a better performance in the mean
return, Sharpe ratio, and value at risk than the mean-variance and risk parity portfolios.

Conclusion

The optimal portfolio selection is an important sensitive financial field. Therefore, various models of optimal
portfolio selection have been developed. Return and risk are two important parameters in the optimal portfolio
selection, depending on portfolio return distribution. In a random process, the Markov property allows the future
distribution of a random process to be calculated according to the state-transition matrix and the initial state of
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the process. The main idea of the present research in selecting the optimal portfolio was to choose the portfolio
weights in a way that the Markov property was established for portfolio returns series, and distribution of the future
portfolio returns, which could be measured owing to the Markov property and the Chapman-Kolmogorov equation,
corresponded to the investor’s expected future return distribution; hence K-L divergence was utilized as a measure of
closeness of two distributions. A suitable state space was defined to convert the portfolio return series into a Markov
chain so that the price series movement between those state spaces in a suitable time horizon was according to the
Markov property (stationary and memorylessness). The stationary and memorylessness properties were also examined
with the help of the goodness of fit test. The present research presented an optimal portfolio selection model based on
the Markov chain and its performance was evaluated in a diverse sample portfolio with 10 indices on the Tehran Stock
Exchange. The results of the profitability evaluation indicated that the research model had a better performance than
the mean-variance and weight parity models in the mean return, Sharpe ratio, and value at risk criteria. Therefore,
the use of this model is recommended, especially for risk-averse investors.
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