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Abstract

In this paper, we have formulated a deterministic mathematical model of the novel corona virus to describe the
dynamics of virus transmission in the community using a system of nonlinear ordinary differential equations. The
invariant region of the solution, conditions for the positivity of the solution, existence of equilibrium points and
their stabilities analysis, sensitivity analysis and numerical simulation of the model were determined. The system of
a model equation has two equilibrium points, namely the disease-free equilibrium points where the disease does not
exist and the endemic equilibrium points where the disease persists. Both local and global stability of the disease-free
equilibrium and endemic equilibrium points of the model equation were established. The basic reproduction number
that represents the epidemic indicator was obtained by using a next-generation matrix. The endemic states were
considered to exist when the basic reproduction number was greater than one. Finally, our numerical findings were
illustrated through computer simulations using MATLAB R2015b with ode45 solver which shows the reliability of our
model from the practical point of view. From our simulation results of the model, we came to realize that the number
of infected people keeps decreasing if one carefully decreases the effective contact rate among protected and infectious
individuals.
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1 Introduction

Modeling and simulation are important decision tools that can be useful to control human and animal diseases[2].
Coronavirus-19 pandemic disease is an infectious disease caused by a newly discovered coronavirus. It is a new strain
that was discovered in 2019 and has not been previously identified in humans[8]. It is emerging in China in December
2019 and rapidly spread around China and many other countries[13]. On 30 January 2020, world health organization
declared it to be a public health emergency of international concern [16]. This is a new virus and a completely new
situation [14]. On February 11, 2020, the World Health Organization renamed the epidemic disease caused by 2019-
nCoV as strain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and announced a name for the new
Coronavirus-19 disease ”COVID-19” [15]. As of March 11, 2020, the disease has been confirmed in more than 118,000
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reported cases worldwide in 114 countries, more than 90% of cases occur in just four countries (two of which are China
and the Republic of Korea - have significantly declining epidemics) and World Health Organization declared it to be a
pandemic, the first one caused by a coronavirus [17]. As of April 1, 2020, 872,481 and 43,275 official cases and deaths
have been recorded respectively, and there is no vaccine specifically designed for this virus, with proven effectiveness
at the beginning of the outbreak. Several studies suggest that Coronaviruses, including preliminary information on
the COVID-19 virus may persist on the surfaces for a few hours or up-to several days. The most common symptoms
of COVID-19 are fever, cough, shortness of breath and difficulty breathing. The period within which the symptoms
would appear is 2 − 14 days. Its transmission from person to person is through respiratory droplets produced when
an infected person coughs or sneezing and between people who are in close contact with each other [12]. The Most
transmission is through respiratory droplets that we can inhale in close contact with each other [11]. It is not certain
how long the virus that causes COVID-19 survives on the surfaces, but it seems to be have like other coronaviruses.
In severe cases, the infection can cause pneumonia, severe acute respiratory syndrome, and even death. There is no
specific treatment for the disease caused by COVID-19. However, many of the symptoms of the virus can be treated
and therefore the treatment is based on the patient’s clinical condition. The best ways that are recommended by
World Health Organization to prevent the novel coronavirus (COVID-19) are, taking vaccine of covid-19, washing
hands often with soap and water, if not available use hand sanitizer, avoid touching your eyes, nose, or mouth with
unwashed hands, avoid contact with sick people, stay home when sick, and avoid close contact with others, cover your
mouth/nose with a tissue or sleeve when coughing or sneezing and so on [12].

Currently, COVID19 is of great concern to researchers, governments and all peoples because of the high rate
of spread of the infection and the large number of deaths that have occurred. Many authors have developed a
mathematical model to illustrate the dynamics of the disease which helped to suggest a disease control mechanism
and also described the transmission dynamics of coronavirus infection [10].

Chen et al [4] developed Bats-Hosts-Reservoir -People transmission network model for simulating the potential
transmission from source of infection (probably bats) to human infection. Bats-Hosts-Reservoir network was hard
to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market
(reservoir) to people, they simplified the model as Reservoir-People (RP) transmission network model. The model
showed that the transmission of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle
Eastern countries, similar to Severe Acute Respiratory Syndrome, but lower than Middle East respiratory syndrome
in Republic of Korea.

In addition, the model of Chayu Yang and Jin Wang [18] describes the multiple routes of transmission in the
infection dynamics and emphasizes the role of the environmental reservoir in the transmission and spread of this
disease. Analytical and numerical results indicate that coronavirus infection would remain endemic, which necessitates
long-term disease prevention and intervention programs. Li Y et al. [10] proposed a mathematical model, based on
the transmission mechanism of COVID-19 in the population and the implemented prevention and control measures.
They established the dynamic models of the six chambers and the time series models based on different mathematical
formulas according to the variation law of the original data. E.D. Gurmu et al. [8] modify the model developed by
Li Y et al. [10] by adding the asymptomatic compartment. In their paper they formulated a dynamical model of
COVID-19 to describe the transmission dynamics of the disease. They established both local and global stability
of the disease free and endemic equilibrium point of the model equation by using basic reproduction number. They
performed the sensitivity analysis of the model equation on the key parameters to find out their relative significance
and potential impact on the transmission dynamics of COVID-19.

In this paper we modify the model developed by E.D.Gurmu et al. [8]. Moreover, the future work of this paper
will consider the fractional derivatives to COVID-19 model and its optimal control.

2 Model Description and Formulation

Mathematical modeling process requires the translation of a biological scenario into a mathematical problem. It
begins with a clear description of the processes based on the modeler understanding of the system. The translation of
a biological scenario into mathematical equations should be made with a specific goal or biological question in mind.
Then the verbal description of the system is encoded in mathematical equations.

The total number of human population at a time t, denoted by N(t), is divided into eight sub-classes consisting
of:

� Protected individuals P (t); individuals those that are protected against the disease over period of time at specific
area not to vulnerable to the virus.
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� Exposed individuals E(t); individuals those that are in the incubation period of the novel corona viruse disease
as long as 2 to 14 days.

� Infective individual in symptomatic phase I(t); individuals those that are infected and infectious of novel corona
virus (COVID-19) disease.

� Quarantine individuals Q(t); are individual those that are infectious and compulsory quarantine due to reduce
the spread of COVID-19 virus.

� Hospitalized individuals H(t); individuals those that are infected and infectious with COVID-19 and under a
symptoms treatment at designated healthcare facilities.

� Fatal individuals F (t); individuals those that are in the intensive care unit class that leads to or ends to the
death.

� Recovered individual R(t); individuals those that recovered from COVID-19 at a time t due to symptoms
treatment at a quarantine class, hospitalized class and fatal class of COVID-19 virus.

� Death individual D(t); individuals those that do not recovered from COVID-19 and died.

Then the total population at a time t denoted by N(t) is given by:

N(t) = P (t) + E(t) +Q(t) + I(t) +H(t) + F (t) +R(t) +D(t).

Thus the model assumed that: protected individuals are recruited into the population at a constant rate of π and
decreased by losing protection at a rate λ, acquiring COVID-19 infection following effective contact with infectious

individual, such that λ = β[I(t)+Q(t)]
N is a force of infection. where β is an effective contact rate which is leading to

infection.

Exposed individuals are generated by losing protection of protected individuals at a rate λ and decreased by joining
quarantine subclass at a rate ϕ and infected subclass at a rate ψ. Infected individuals are generated by the fraction
of exposed individuals at a rate ψ and decreased by joining the hospitalized subclass to get symptoms treatment at a
rate δ, fatal subclass due to the severity of the disease at rate φ and died due to COVID-19 at a rate ζ.

The population of quarantined individuals are generated by isolating rate ϕ of exposed individuals and decreased by
recovering rate from the quarantined sub class at a rate θ and further decreased by the failure of symptoms treatment
in the quarantined class at a rate ω.

The population of hospitalized individuals are increased by the failure of symptoms treatment in the quarantined
subclass at the rate ω and from the infected subclass whose sickness are hard at a rate δ and decreased by success of
symptoms treatment in the hospitals at a rate α and join the recovered subclass and further decrease at a rate γ and
join fatal subclass, at a rateε and joined death subclass and died due to COVID-19 at a rate ζ. The population of
recovered subclass are generated by recovering rate at θ, α and η due to symptoms treatment at quarantine , hospital
and fatal class respectively. The population of fatal subclass are generated by the failure of symptoms treatment in
the hospitals at a rate γ ,due to the hardness of the disease at rate φ in the infected subclass and decreased by the
success of symptoms treatment at fatal subclass at a rate η and join recovered sublass, failure of symptoms treatment
at fatal subclass at a rate ϵ and join the death subclass. The population of death subclasses are generated by the
failure of symptoms treatment in the hospital subclass at a rate ε fatal sublass at a rate ϵ. All types of cells suffer
natural mortality at a rate µ. All parameters value used in the model are assumed to be non-negative. Up on including
the basic assumption the schematic diagram of the modified model is as follows:

Based on the model assumptions, the notations of variables, parameters and the schematic diagram, the model
equations are formulated and given as follows:

dP
dt = π − (µ+ λ)P,
dE
dt = λP − (µ+ ψ + ϕ)E,
dI
dt = ψE − (µ+ δ + φ+ ζ)I,
dQ
dt = ϕE − (µ+ θ + ω)Q,
dH
dt = ωQ+ δI − (µ+ α+ γ + ε+ ζ)H,
dF
dt = φI + γH − (µ+ ϵ+ ζ + η)F,
dR
dt = θQ+ αH + ηF − µR,
dD
dt = εH + ϵF − µD.

(2.1)
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Figure 1: Schematic diagram of the model

The non-negative initial conditions of the system of model equations (2.1) are denoted by P (0) > 0, E(0) ≥
0, I(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0, F (0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0.

3 Qualitative Model Analysis

3.1 Positive Invariance

To determine the positive invariance we shall investigate that all the state variables of system (2.1) are non-negative
for all time t with its initial conditions. To prove positivity of the model, we state the following theorem.

Theorem 3.1. All the solution of (P (t), E(t), Q(t), I(t), H(t), F (t), R(t), D(t)) of the system (2.1) are non-negative
for all time t with initial conditions

(P (0), E(0), Q(0), I(0), H(0), F (0), R(0), D(0)) ∈ R8
+ > 0 ∀t > 0.

Then the system (2.1) is positively invariant and attracting with in R8
+.

Proof . Positivity of the model variables are shown separately for each of the model variables P (t), E(t), Q(t), I(t),
H(t), F (t), R(t) and D(t).

Positivity of P(t): From system (2.1), the model equation of dPdt is given by dP
dt = π − (µ + λ)P which can be

expressed without loss of generality, after eliminating the positive terms π, as an inequality dP
dt ≥ −(µ+ λ)P .

Using the separable method of variables and applying integration, the solution of the above differentially inequality

can be obtained as P0e
(−µt− β

N

∫
(I+Q)dt). Recall that an exponential function is always positive regardless of the sign

of the exponent. Hence, it can be concluded that

P (t) = P0e
(−µt−β

∫ (I+Q)
N dt) ≥ 0.

Similarly, solving each equations in the system of differential equation of the model, we obtain the solution in an
exponential function form as:

E(t) = E0e
−(µ+η)t ≥ 0 I(t) = I0e

−(µ+δ+φ+ζ)t ≥ 0

Q(t) = Q0e
−(µ+θ+ω)t ≥ 0 H(t) = H0e

−(µ+α+ζ+ε+γ+)t ≥ 0

R(t) = R0e
−µt ≥ 0 F (t) = F0e

−(µ+ϵ+ζ+η)t ≥ 0

D(t) = D0e
−µt ≥ 0

Since all exponential function is always non-negative irrespective of the sign of the exponent, it can be concluded
that all the solutions of model equations are non-negative. Thus, all the solution trajectories of the model variables,
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(P (t), E(t), Q(t), I(t), H(t), F (t), R(t), D(t))

that represent the population sizes of various types of cells are non-negative quantities and will remain in R8
+ for all

t ≥ 0. □

3.2 Boundedness

Now we start with the theorem which assure that the solutions of the system (2.1) is bounded with non-negative
initial values conditions.

Theorem 3.2. The solution of system (2.1) with the initial condotion which initiate in R8
+ are uniformly bounded

in the invariant region Ω.

Proof . To prove the boundedness, it suffices to show that

N(t) = P (t) + E(t) +Q(t) + I(t) +H(t) + F (t) +R(t) +D(t) is bounded.

Clearly, N(t) ≥ 0, for all t ≥ 0 as all the initial conditions are non-negative. The rate of change of the total
population by adding all the equations considered in (2.1) is:

dN
dt = π − µN(t)− ζ(I + F +H) ≤ π − µN(t)

This implies that

N(t) ≤ π

µ
+ (N(0)− π

µ
)e−µt ≤ max(

π

µ
, N(0)).

which is bounded as it is bounded below up at any time. Thus, accordingly, we obtain the following positively invariant
bounded region

Ω = {(P,E,Q, I,H, F,R,D) ∈ R8
+}, such that P (t) + E(t) +Q(t) + I(t) + F (t) +R(t) +D(t) ≤ π

µ}.

Therefore, all the solutions trajectories initiating in R8
+ will enter Ω with finite time. □

We note that the study of positivity and boundedness enables us that the population will be nonnegative and
below up at any time in our model.

4 Steady State of The Model

Steady state are time-idependent solutions of equations of the system (2.1) that satisfying:

dP
dt = dE

dt = dQ
dt = dI

dt =
dH
dt = dF

dt = dR
dt = dD

dt = 0.

There are two steady states: The disease free equilibrium and endemic equilibrium points.

4.1 The Disease Free Equilibrium Points(E0)

Disease-free equilibrium points are steady-state solutions in which there is no disease in the population. In the
absence of the disease this implies that,

E(t) = I(t) = Q(t) = H(t) = R(t) = F (t) = D(t) = 0

and the equilibrium points required that the right hand side of the model equations set equal to zero. Thus, the
disease-free equilibrium of the model equations in (2.1) above is given by

E0 = {πµ , 0, 0, 0, 0, 0, 0, 0}.
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The local stability of the disease-free equilibrium points of the model can be established using the basic reproduction
number. The basic reproduction number is denoted by R0 and it is defined as the average number of secondary
infections caused by a single infected individuals in a population of purely susceptible. It is computed using next-
generation matrix defined in [6]. In this method R0 is defined as the largest eigenvalue of the next generation matrix.
Using the notation as in [6] for the model system (2.1)the associated matrices Fi and Vi for the new infectious terms
and the remaining transition terms are respectively given by:

Fi =



β( I+Q)P
N
0
0
0
0
0

 and Vi =


aE

−ψE + bI
−ϕE + cQ

−ΩQ− δI + dH
−φI − γH + eF
−εH − eF + µD


where, a = µ+ψ+ ϕ, b = δ+φ+ µ+ ζ, c = µ+ θ+ω, d = µ+ ζ +α+ ε+ γ, e = µ+ ζ + ϵ+ η. The Jacobian matrices
F and V of Fi and Vi with respect to the disease free equilibrium point E0 takes the form respectively as

F (E0) =


0 β β 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and, V (E0) =


a 0 0 0 0 0
−ψ b 0 0 0 0
−ϕ 0 c 0 0 0
0 −δ −ω d 0 0
0 −φ 0 −γ e 0
0 0 0 −ε −e µ


Then after some algebraic computations the inverse of the matrix V (E0) is constructed as follows:

[V (E0)]
−1 =



1
a 0 0 0 0 0
ψ
ab

1
b 0 0 0 0

ϕ
ac 0 1

c 0 0 0
cδψ+bϕω
abcd

δ
bd

ω
cd

1
d 0 0

cγδψ+cdψφ+bγϕω
bcde

γδ+dφ
bde

γω
cde

γ
de

1
e 0

−cγδψ+cδζψ−cdφψ−bγϕω+bζϕω
bcdµ

−γδ+δζ−δφ
bdµ

−γω+ζω
cdµ

−γ+ζ
dµ

−1
µ

1
µ


The product of the matrices F (E0) and [V (E0)]

−1 which is the next generation matrix can be computed as

[F (E0)][V (E0)]
−1 =



β(bϕ+cψ)
abc

β
b

β
c 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Now it is possible to calculate the eigenvalues to determine the basic reproduction number R0 by taking the spectral

radius of the matrix [F (E0)][V (E0)]
−1. Thus, the eigenvalues are computed by evaluating det[[F (E0)][V (E0)]

−1−λI] =
0 or equivalently solving ∣∣∣∣∣∣∣∣∣∣∣∣

β(bϕ+cψ)
abc − λ β

b
β
c 0 0 0

0 −λ 0 0 0 0
0 0 −λ 0 0 0
0 0 0 −λ 0 0
0 0 0 0 −λ 0
0 0 0 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

It reduces to the sixth power equation for λ as λ5[β(bϕ+cψ)abc − λ] = 0 giving the six eigenvalues as λ1 = 0 , λ2 = 0,

λ3 = 0,λ4 = 0,λ5 = 0,λ6 = β(bϕ+cψ)
abc . However, the dominant eigenvalue here is λ6 = β(bϕ+cψ)

abc and it is the spectral
radius as the threshold value or the basic reproduction number. Thus, it can be concluded that the basic reproduction
number of the model is
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R0 = β(bϕ+cψ)
abc ,

where, a = µ + ψ + ϕ, b = δ + φ + µ + ζ, c = µ + θ + ω. We note that the basic reproduction number R0 is an
important epidimiological parameters used to understand and predict the spread of an infection. For example, R0 > 1
means that each infected individuals will infect at least one individual in average and the disease may remain in the
population forever.

4.1.1 Local Stability of Disease Free Equilibrium Points (E0)

To find the local stability of E0, the Jacobian of the model equations evaluated at E0 is used. Now, the stability
analysis of disease free equilibrium points is conducted and the results are presented in the form of theorems and
proofs as follows:

Theorem 4.1. The disease free equilibrium points E0 = {πµ , 0, 0, 0, 0, 0, 0, 0} of the system (2.1) is locally asymptoti-
cally stable if R0 < 1.

Proof . Consider the right hand side expressions of the equations (2.1) as functions so as to find the Jacobian matrix
as follows: 

dP
dt = π − (µ+ λ)P = f1,
dE
dt = P − (µ+ ψ + ϕ)E = f2,
dI
dt = ψE − (µ+ δ + φ+ ζ)I = f3,
dQ
dt = ϕE − (µ+ θ + ω)Q = f4,
dH
dt = ωQ+ δI − (µ+ α+ γ + ε+ ζ)H = f5, ,
dF
dt = φI + γH − (µ+ ϵ+ ζ + η)F = f6,
dR
dt = θQ+ ϕH + ηF − µR = f7,
dD
dt = εH + ϵF − µD = f8, .

(4.1)

The Jacobian (J) of the system 4.1 is;

J =



∂f1
∂P

∂f1
∂E

∂f1
∂I

∂f1
∂Q

∂f1
∂H

∂f1
∂F

∂f1
∂R

∂f1
∂D

∂f1
∂P

∂f2
∂E

∂f2
∂I

∂f2
∂Q

∂f2
∂H

∂f2
∂F

∂f2
∂R

∂f2
∂D

∂f3
∂P

∂f3
∂E

∂f3
∂I

∂f3
∂Q

∂f3
∂H

∂f3
∂F

∂f3
∂R

∂f3
∂D

∂f4
∂P

∂f4
∂E

∂f4
∂I

∂f4
∂Q

∂f4
∂H

∂f4
∂F

∂f4
∂R

∂f4
∂D

∂f5
∂P

∂f5
∂E

∂f5
∂I

∂f5
∂Q

∂f5
∂H

∂f5
∂F

∂f5
∂R

∂f5
∂D

∂f1
∂P

∂f6
∂E

∂f6
∂I

∂f6
∂Q

∂f6
∂H

∂f6
∂F

∂f6
∂R

∂f6
∂D

∂f1
∂P

∂f7
∂E

∂f7
∂I

∂f7
∂Q

∂f7
∂H

∂f7
∂F

∂f7
∂R

∂f7
∂D

∂f8
∂P

∂f8
∂E

∂f8
∂I

∂f8
∂Q

∂f8
∂H

∂f8
∂F

∂f8
∂R

∂f8
∂D


(4.2)

Now, the Jacobian matrix of (f1, f2, f3, f4, f5, f6, f7, f8) with respect to (P,E, I,Q,H, F,R,D) at the disease free
equilibrium points E0 reduces to

J(E0) =



−µ 0 −β −β 0 0 0 0
0 −a β β 0 0 0 0
0 ψ −b 0 0 0 0 0
0 ϕ 0 −c 0 0 0 0
0 0 δ ω −d 0 0 0
0 0 φ 0 γ −e 0 0
0 0 0 θ α η −µ 0
0 0 0 0 ε ϵ 0 −µ


where a = µ+ ψ + ϕ, b = µ+ δ + φ+ ζ, c = µ+ θ + ω, d = µ+ α+ γ + ε+ ζ, e = µ+ ϵ+ ζ + η. Now, the eigenvalues
of J(E0) are required to be found. Then, the characteristic equation det[J(E0) − λI] = 0 is simplified and found as
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follows: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ 0 −β −β 0 0 0 0
0 −a− λ β β 0 0 0 0
0 ψ −b− λ 0 0 0 0 0
0 ϕ 0 −c− λ 0 0 0 0
0 0 δ ω −d− λ 0 0 0
0 0 φ 0 γ −e− λ 0 0
0 0 0 θ α η −µ− λ 0
0 0 0 0 ε ϵ 0 −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The characteristic equation of the jacobian matrix det[J(E0)− λI] = 0 is

(λ+ d)(λ+ e)(λ+ µ)3[λ3 + (a+ b+ c)λ2 + (ab+ ac+ bc− β(ϕ+ ψ))λ+ abc− β(ϕb+ ψc)] = 0.

Then,

(λ+ d)(λ+ e)(λ+ µ)3[λ3 + (a+ b+ c)λ2 + (ab+ ac+ bc− β(ϕ+ ψ))λ+ abc(1−R0)] = 0.

This implies that
(λ+ d)(λ+ e)(λ+ µ)3[λ3 + a1λ

2 + a2λ+ a3] = 0

which implies that
(λ+ d)(λ+ e)(λ+ µ)3 = 0 or λ3 + a1λ

2 + a2λ+ a3 = 0.

From (λ+ d)(λ+ e)(λ+ µ)3 = 0, we obtained that

λ1 = −d, λ2 = −e, λ3 = −µ, λ4 = −µ, λ5 = −µ.

Which implies that the obtained eigenvalues are real and negative. To determine the sign of the rest eigenvalues
of polynomial λ3 + a1λ

2 + a2λ+ a3 = 0. We use the Routh Hurtzi cretaria such that

(i) a1 > 0 implies that a+ b+ c > 0, since all parameters are nonnegative.

(ii) a2 > 0 implies that ab+ ac+ bc− β(ϕ+ ψ) > 0 and so, ab+ ac+ bc > β(ϕ+ ψ).

(ii) a3 > 0 implies that abc(1−R0) > 0 and so, R1 < 1.

From this we conclude that all the required eigenvalues are negative and the Routh Hurtzi creterias are satisfied.
Thus the disease free equilibrium points are locally asympitotically stable if R0 < 1. □

4.1.2 Global Stability of The Disease Free Equilibrium Points

Theorem 4.2. The disease free equilibrium point is globally asymptotically stable if R0 < 1.

Proof . To investigate the global stability of the disease free equilibrium points we used technique implemented by
Castillo-Chavez and Song [3]. The point U = (X0, 0) = {πµ , 0, 0, 0, 0, 0, 0, 0} to be globally asymptotically stable for
the model provided that R0 < 1 and the following condition must be met.

H1 : dXdt = F (X∗, 0), X∗ is globally asymptotically stable.

H2 : G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω
where A = DZG(U, 0) is a Metzler matrix (the off diagonal elements of A are non-negative) and G is the region where
the model make biologically sense. First the model equation (2.1) can be re-written as

dX
dt = F (X,Z)

dZ
dt = G(X,Z) = G(X, 0) = 0

where, X = (P,R) stands for the uninfected population and Z = (E, I,Q,H, F,D) also stands for the infected
population. From system (2.1), we get

F (X,Z) =

[
π − (µ+ λ)P

θQ+ αH + ηF − µR

]
and G(X,Z) =


λP − (µ+ ψ + ϕ)E

ψE − (µ+ δ + φ+ ζ)I
ϕE − (µ+ θ + ω)Q

ωQ+ δI − (µ+ ζ + α+ ε+ γ)H
φI + γH − (µ+ ζ + ϵ+ η)F

εH + ϵF − µD





Mathematical modeling and analysis of the transmission dynamics of novel Corona virous 335

The compartmental model 2.1 stated in condition (H1) can be expressed in the reduced system as

dX

dtZ=0
=

[
π − µP
−µR

]
(4.3)

Analytically solving equation (4.3) above it is obvious that dX
dtz=0

= 0, implies that, dX
dtz=0

= F (X∗, 0) = {πµ , 0}.
Thus the point {πµ , 0} is the global asymptotic point. Hence, X∗ is globally asymptotically stable for dX

dt = F (X∗, 0)

and the first condition (H1) holds for the system 2.1. Now for the second condition the matrices A for the model
system 2.1 can be expressed from the equation for infected compartments in the model as.

A =


−(µ+ ψ + ϕ) β β 0 0 0

ψ −(µ+ δ + φ+ ζ) 0 0 0 0
ϕ 0 −(µ+ θ + ω) 0 0 0
0 δ ω −(µ+ ζ + α+ ε+ γ) 0 0
0 φ 0 γ −(µ+ ζ + ϵ+ η) 0
0 0 0 ε ϵ −µ


and the matrix Ĝ(X,Z) can be written as, Ĝ(X,Z) = AZ −G(X,Z), which is:

Ĝ(X,Z) =



Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)

Ĝ4(X,Z)

Ĝ5(X,Z)

Ĝ6(X,Z)


=


β(I +Q)(1− P

N )
0
0
0
0
0


Then the matrix A is a Metzler- matrix since all its off diagonal elements are non-negative and Ĝ(X,Z) ≥ 0 in the

region Ω and the condition (H2) holds. Since the two conditions (H1) and (H2) holds, the disease free steady state
E0 of the model (2.1) is globally symptotically stable in the region Ω for R0 < 1. □

4.2 Endemic Equilibrium Point (E1)

The endemic equilibrium point E1 = {P ∗, E∗, I∗, Q∗, H∗, F ∗, R∗, D∗, } is a steady-state solution where the disease
persists in the population. The endemic equilibrium point is obtained by setting rates of changes of variables with
respect to time in model equations (2.1) to zero. The model equations take the solved form for the state variables in
terms of parameters after some alebraic operation which is the solution of the system 2.1) and obtain the following
solution as follows; 

P ∗ = N∗

R0

E∗ = π
a (1−

1
R0

)

Q∗ = ϕπ
ac (1−

1
R0

)

I∗ = ψπ
ab (1−

1
R0

)

H∗ = π
abcd (ωϕb+ δψc)(1− 1

R0
)

R∗ = π
µabcde [θϕbde+ αe(ωϕb+ δψc) + ηφψcd+ ηγ(ωϕb+ δψc)](1− 1

R0
)

F ∗ = π
abcde [φψcd+ γ(ωϕb+ δψc)](1− 1

R0
)

D∗ = π
µabcde [εωbe+ δψce+ φψϵcd+ γϵ(ωϕb+ δψc)](1− 1

R0
)

(4.4)

where a = µ+ ψ + ϕ, b = µ+ δ + φ+ ζ, c = µ+ θ + ω, d = µ+ ζ + α+ ε+ γ, e = µ+ ζ + ϵ+ η. From this solution
of the model, it can be seen that positive unique endemic equilibrium point exists when R0 > 1.

4.2.1 Stability Analysis of Endemic Equilibrium

In the presence of the infectious disease, the model populations have a unique endemic steady state. To find the
local stability of endemic steady state, the Jacobian of the model equations evaluated at E1 is used. Now, the stability
analysis of endemic steady state is conducted and the results are presented in the form of theorems as follows:
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Theorem 4.3. The endemic equilibrium point, E1 of the system (2.1) is locally asymptotically stable if R1 > 1 .

Proof . The jacobian of (4.2) at the endemic equilibrium point 4.4 are:

J(E1) =



−πR0

N∗ (1− 1
R0

) 0 −β
R0

−β
R0

0 0 0 0

0 −a β
R0

β
R0

0 0 0 0

0 ψ −b 0 0 0 0 0
0 ϕ 0 −c 0 0 0 0
0 0 δ ω −d 0 0 0
0 0 φ 0 γ −e 0 0
0 0 0 θ α η −µ 0
0 0 0 0 ε ϵ 0 −µ


Now, the eigenvalues of J(E1) are required to be found. The characteristic equation det[J(E1)−λI] = 0 is expanded

and simplified as follows:

(d+ λ)(e+ λ)(µ+ λ)2(N∗R0λ− πR0 + πR2
0)(R0λ

3 + aR0λ
2 + bR0λ

2 + cR0λ
2 + abR0λ+ acR0λ+ bcR0λ+ abc

+ abcR0 − βλϕ− βψλ− bϕβ − cβψ) = 0.

Then, we have

(d+ λ)(e+ λ)(µ+ λ)2R0(N
∗λ− π + πR0)(R0λ

3 + aR0λ
2 + bR0λ

2 + cR0λ
2 + abR0λ+ acR0λ+ bcR0λ− βλϕ− βψλ

+ abc+ abc(R0 −
β(bϕ+ cψ)

abc
) = 0

which implies that
(d+ λ)(e+ λ)(µ+ λ)2R0(N

∗λ− π + πR0) = 0

or
R0λ

3 +R0(a+ b+ c)λ2 + (abR0 + acR0 + bcR0 − βϕ− βψ)λ+ abc = 0,

where R0 = β(bϕ+cψ)
abc . From (d+λ)(e+λ)(µ+λ)2R0(N

∗λ−π+πR0) = 0, the eigenvalues of the endemic equilibrium
points are λ1 = −d, λ2 = −e, λ3 = −µ, λ4 = −µ, λ5 = − π

N∗ (R0 − 1), which imply that R0 > 1 and from the
polynomial function

R0λ
3 +R0(a+ b+ c)λ2 + (abR0 + acR0 + bcR0 − βϕ− βψ)λ+ abc = 0,

a0λ
3 + a1λ

2 + a2λ+ abc = 0, (4.5)

where a0 = β(bϕ+cψ)
abc , a1 = β(bϕ+cψ)

abc (a+ b+ c), a2 = β(bϕ+cψ)
abc (ab+ ac+ bc)− βϕ− βψ, a3 = abc. Then the eigenvalues

of the characteristic equation (4.5) will be negative if it fulfill the Routh-Hurwitz criteria [9] that are ai > 0 for
i = 0, 1, 2, 3 and a1a2 > a3.

According to the Routh - Hurwitz criteria it follows that all eigenvalues of the characteristic equation (4.5) has

negative real part. So, we obtained (i) a0 > 0 ⇒ β(bϕ+cψ)
abc > 0 Since all the parameters in the models are nonnegative.

(ii) a1 > 0 ⇒ β(bϕ+cψ)
abc (a+ b+ c) > 0 as all parameters in the models are nonnegative.

(iii) a2 > 0 ⇔ β(bϕ+cψ)
abc (ab+ ac+ bc) > βϕ+ βψ

(iv) a3 > 0 ⇒ abc > 0 and a1a2 > a3.

The Routh Hurwitz stability criterion is accomplished so if R0 > 1 all the eigenvalues from the linear equilibrium
system are negative which generate the endemic equilibrium point of disease locally stability asymptotic. As a result
of this prove to be the case that point of any of the endemic equilibrium disease asymptotic stability it means that the
disease spread to other individuals. Therefore, it is concluded that the endemic equilibrium point E1 of the system of
differential equations (2.1) is locally asymptotically stable if R0 > 1. □

Theorem 4.4. The endemic equilibrium point of the model equation (2.1) is globally asymptotically stable if R0 > 1.
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Proof . To show the result we define the following Lypunov function as follows

L(P ∗, E∗, I∗, Q∗, H∗, F ∗, R∗, D∗) =

[
P − P ∗ − P ∗ ln(

P

P ∗ )

]
+

[
E − E∗ − E∗ ln(

E

E∗ )

]
+

[
I − I∗ − I∗ ln(

I

I∗
)

]
+

[
Q−Q∗ −Q∗ ln(

Q

Q∗ )

]
+

[
H −H∗ −H∗ ln(

H

H∗ )

]
+

[
F − F ∗ − F ∗ ln(

F

F ∗ )

]
+

[
R−R∗ −R∗ ln(

R

R∗ )

]
+

[
D −D∗ −D∗ ln(

D

D∗ )

]
.

By taking the derivative of L with respect to t:

dL

dt
=(1− p∗

p
)
dp

dt
+ (1− E∗

E
)
dE

dt
+ (1− I∗

I
)
dI

dt
+ (1− Q∗

Q
)
dQ

dt
+ (1− H∗

H
)
dH

dt
+ (1− F ∗

F
)
dF

dt
+ (1− D∗

D
)
dD

dt

=(1− p∗

p
)(π − (µ+ λ)P ) + (1− E∗

E
)(λP − aE) + (1− I∗

I
)(ψE − bI) + (1− Q∗

Q
)(ϕ− cQ)

+ (1− H∗

H
)(ΩQ+ δI − dH) + (1− F ∗

F
)(φI + γH − eF ) + (1− R∗

R
)(θQ+ ϕH + ηF − µR)

+ (1− D∗

D
)(εH + ϵF − µD)

=π + λp+ ψE + ϕE + ωQ+ δI + φI + γH + θQ+ αH + ηF + µR+ εH + ϵF + (µ+ λ)P ∗ + aE∗ + bI∗ + cQ∗

+ dH∗ + eF ∗ + µD∗ −
[
(µ+ λ)P + aE + bI + cQ+ dH + eF + µR+ µD + π

P ∗

P
+ γH

F ∗

F
+ ψE

I∗

I

+ϕE
Q∗

Q
+ ωQ

H∗

H
+ δI

H∗

H
+ φI

F ∗

F
+ γH

F ∗

F
+ θQ

R∗

R
+ αH

R∗

R
+ ηF

R∗

R
+ εH

D∗

D
+ ϵF

D∗

D

]
.

After some simplification and rearrangement we obtain;

dL

dt
=π + (µ+ λ)P ∗ + aE∗ + bI∗ + cQ∗ + dH∗ + eF ∗ + µD∗ − [µ(P + E + I +Q+H + F +D) + ζ(I +H + F )

+ π
P ∗

P
+ λP

E∗

E
+ ψE

I∗

I
+ ϕE

Q∗

Q
+ (ωQ+ δ)

H∗

H
+ (γH + φI + γH)

F ∗

F
+ (θQ+ αH + ηF )

R∗

R

+ (εH + ϵF )
D∗

D
]

=M −K

where
M = π + (µ+ λ)P ∗ + aE∗ + bI∗ + cQ∗ + dH∗ + eF ∗ + µD∗

and

K =

[
µ(P + E + I +Q+H + F +D) + ζ(I +H + F ) + π

P ∗

P
+ λP

E∗

E
+ ψE

I∗

I
+ ϕE

Q∗

Q
+ (ωQ+ δ)

H∗

H

+(γH + φI + γH)
F ∗

F
+ (θQ+ αH + ηF )

R∗

R
+ (εH + ϵF )

D∗

D

]
.

Now , dL
dt = M − K < 0, if M < K. Thus if M < K then dL

dt < 0. Nothing that dL
dt = 0 if and only if

P = P ∗, E = E∗, Q = Q∗, I = I∗, H = H∗, F = F ∗, R = R∗, D = D∗. Thus, the largest compact invariant set in
{(P ∗, E∗, Q∗, I∗, H∗, F ∗, F ∗, D∗) ∈ Ω; dLdt = 0} is a singleton E1 is the endemic equilibrium point of the system (2.1).
By LaSalle’s invariant principle [9], it implies that E1 is globally asymptotically stable in Ω if M < k and R0 > 1. □

4.3 Sensitivity Analysis

Sensitivity analysis allows us to assess the impact that changes in a certain parameter will have on the model and
it can help someone to determine which parameters are the key drivers of a model’s results. To investigate which
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parameters have high impact on the R0, we apply the approach presented in [5]. For instance, the normalized forward
sensitivity index on R0 , which depends differentially on a parameter P , as defined in [7] as

ΥR0

P =
∂R0

∂P
× P

R0
. (4.6)

The explicit expression of R0 is given by

R0 = β(bϕ+cψ)
abc = β(ϕ(δ+φ+µ+ζ)+ψ(µ+θ+ω))

(µ+ψ+ϕ)(δ+φ+µ+ζ)(µ+θ+ω) .

Since R0 depends only on nine parameters, we derive the analytical expression for its sensitivity to each parameters
using the normalized forward sensitivity index as in [5] by taking the values of the paramters from table 2 below and
computed as follows:

Υ
(R0)
β = ∂R0

∂β × β
R0

= 1,

Υ
(R0)
ϕ = ∂R0

∂ϕ × ϕ
R0

=
ϕ(δ(µ+ψ)+ζ(µ+ψ)−θψ+µ2+µφ+φψ−ψω)

(µ+ψ+ϕ)(ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω)) ,

Υ
(R0)
ψ =

ψ(−ϕ(δ+ζ+φ)+θ(µ+ϕ)+µ2+ω(µ+ϕ))
(µ+ψ+ϕ)(ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω)) ,

Υ
(R0)
φ = ∂R0

∂φ × φ
R0

= − φψ(θ+µ+ω)
(δ+ζ+µ+φ)(ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω)) ,

Υ
(R0)
δ = ∂R0

∂δ × δ
R0

= − δψ(θ+µ+ω)
(δ+ζ+µ+φ)(ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω)) ,

Υ
(R0)
ζ = ∂R0

∂ζ ζ ×
ζ
R0

= − ζψ(θ+µ+ω)
(δ+ζ+µ+φ)(ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω)) ,

Υ
(R0)
θ = ∂R0

∂θ × θ
R0

= − θϕ(δ+ζ+µ+φ)
(θ+µ+ω)(ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω)) ,

Υ
(R0)
ω = ∂R0

∂ω × ω
ωR0 = − ωϕ(δ+ζ+µ+φ)

(θ+µ+ω)(ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω)) .

Υ
(R0)
µ = ∂R0

∂µ × µ
R0

= µ
(

ψ+ϕ
ϕ(δ+ζ+µ+φ)+ψ(θ+µ+ω) −

1
δ+ζ+µ+φ − 1

θ+µ+ω − 1
µ+ψ+ϕ

)

Table 1: The Values of Sensitivity indices

Parameter Symbol Sensitivity indices
β 1
ϕ 0.194
ψ 0.151
η -0.210
ω -0.240
φ -0.253
θ -0.345
µ -0.540
δ -0.603

Those parameters that have positive indices i.e. β, ϕ and ψ show that they have great impact on expanding the
disease in the community if their values are increasing due to the reason that the average number of secondary cases of
infection increases in the community. Furthermore, those parameters in which their sensitivity indices are negative i.e.
η, ω, φ, θ, µ and δ have an influence of minimizing the burden of the disease in the community as their values increase.
And also, as their values increase, the basic reproduction number decreases, which leads to minimize the endemicity
of the disease in the community.

5 Numerical Simulation

In this section, numerical simulation study of model equations 2.1 are carried out using the softwareMATLABR2015b
with ODE45 solver. To conduct the study, a set of physically meaningful values are assigned to the model parameters.
These values are either taken from literature review or assumed on the basis of reality.
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Table 2: Parameter Values for Covid-19 Model

Parameters Value Source
π 150 Assumed
µ 0.020 [8]
β 0.07600 Assumed
φ 0.0260 [8]
ϕ 0.0140 Assumed
γ 0.024 [8]
η 0.012 Assumed
δ 0.062 Assumed
ε 0.012 Assumed
ζ 0.0216 Assumed
α 0.016 Assumed
ϵ 0.156 Assumed
ψ 0.024 Assumed
θ 0.046 [8]
ω 0.032 Assumed

Using the parameter values given in table 2 and the initial conditions P (0) = 500000, E(0) = 17000, I(0) = 4000,
Q(0) = 2000, H(0) = 1000, R(0) = 6000, D(0) = 5000 in the model equations 2.1. A simulation study is conducted

and the results are given in the following figure below.

(a), (b)

Figure 2: Dynamics of protected and exposed individuals respectively

(c), (d)

Figure 3: Dynamics of quarantined and infected individuals respectively
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(e), (f)

Figure 4: Dynamics of hospitalized and fatal individuals Respectively

(g)

Figure 5: Dynamics of recovered Individuals

(h), (i)

Figure 6: Effect of varying contact rate on exposed and infected individuals respectively.
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(j), (k)

Figure 7: Effect of varying contact rate on hospitalized and fatal individuals respectively.

(l)

Figure 8: Effect of varying contact rate on Death individuals.
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Figure(2a) shows that protected individuals decreases due to loss of protection at a rate λ and more number of
protected individuals join exposed class and converges to disease free equilibrium points. Like wise Figure(2b) shows
that exposed individuals increase firstly as a result of some protected individual joins exposed class because of effective
contact with an infectious individuals and decrease due to it join the quarantine and infected classes. Also figure(3c)
shows that quarantine individuals increase firstly as a consequence of some exposed individual join quarantine class
at a rate and decrease due to it join hospitalized and recovered classes. Similarly Figure (3d) shows that infected
individuals increase firstly as a result of some exposed individual joins infected class and decrease due to it join
hospitalized and fatal classes . Figure (4e) shows that hospitalized individuals increase firstly as a result of some
quarantined and infected individual join it and decrease due to it join recovered,fatal and death classes. Figure (4f),
shows that fatal individuals increase firstly as a result of some infected and hospitalized individual joins it and decrease
due to it join reovered and death classes and figure (5g) shows that recovered individuals icreass due to quarantine,
hospitalized and fatal classes join to it and decrease only due to natural death. Finally, Figure (6h), (6i), (7j), (7k)
and (8l) shows that contact rate has an effect on reducing COVID-19 viruse from the community. Thus decreasing
the level of effective contact rate among individuals has an effect on reducing the prevalence of COVID-19 pandemic
disease from the community.

6 Conclusions and Recommendations

In this study, we have formulated a special model on the transmission dynamics of COVID-19 which contains eight
compartments. Moreover, the existence, positivity and boundedness of the formulated model are verified to illustrate
that the model is biologically meaningful and mathematically well posed. In particular, the stability analyses of the
model were investigated using the basic reproduction number. Also, the solution of the formulated model equation
is numerically integrated and the sensitivity analysisof the model is analyzed to determine which parameter has
a high impact on the transmission dynamics of the diseases. Numerical simulations of the model show that each
parameters in the model has an effect on the model variables and when the effective contact rate is increasing the
disease transmission in the community is increasing and when the effective contact rate is decreasing the disease
transmission in the community is decreasing. Although, eradication of COVID-19 infection remains a challenge on the
world, but from results of this study we recommend that, the government should introduce education programmers
on the importance of voluntary and routinely quarantined on COVID-19 infection. Also, there is need to increase the
number of hospitals to deal with COVID-19 infection and to quarantine more individuals with infection to reduce the
transmission. Moreover, the future work of this paper will consider the fractional derivatives to COVID-19 model and
its optimal control.
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