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Abstract

In this study, we focus on the existence of a solution for a fractional differential system with integral boundary
conditions in specific fractional derivative Banach space. We establish the existence of a solution by using the Schauder
fixed point theorem.
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1 Introduction

In this paper, we consider the following nonlinear system involving the Caputo’s derivative

cDα
0 x(t) = f (t, y(t),cDγ

0y(t))

cDβ
0 y(t) = g (t, x(t),cDγ

0x(t))

x(0) + x′(0) =

∫ 1

0

p1(x(s))ds x′′(0) = 0

x(1) + x′(1) =

∫ 1

0

p2(x(s))ds

y(0) + y′(0) =

∫ 1

0

q1(y(s))ds y′′(0) = 0

y(1) + y′(1) =

∫ 1

0

q2(y(s))ds,

(1.1)

∗Corresponding author
Email addresses: wsaifia@gmail.com (Ouarda Saifia), a.boulfoul@univ-skikda.dz (Amel Boulfoul)

Received: October 2022 Accepted: July 2023

http://dx.doi.org/10.22075/ijnaa.2023.28614.3941


36 Saifia, Boulfoul

where 2 < α, β ≤ 3; 0 < γ ≤ 1, f, g : [0, 1] × R × R −→ R are given continous functions, p1, p2, q1, q2 : R −→ R are
given functions such that p1(0) = p2(0) = q1(0) = q2(0) = 0 and cDα

0 is the standard Caputo derivative.

Recently, differential equations and systems of fractional order occupies an important place in the current researches.
In fact, they model various phenomena in many fields of science and engineering as in electromagnetic, control,
electrochemistry, viscoelasticity, porous media, fluid electrical, probability and statistic, etc. For details see [6, 7, 8,
11, 12, 14, 15] and we refer [10] for more properties on the fractional differential calculus.

Existence results for fractional differential system like (1.1) put into consideration large investigations, we would
mention for example the work of Xinwei Su [16] and Bashir Ahmad et al. [1] and [2].

In our investigation, we have extended the result obtained by Djalal Boucenna et al. [4] to the system, all keeping
the same space of study.

Our article is structured as follows: the Section 1 is devoted to basic notations and theorems. In Section 2, we will
give our main result and proofs. An example is given in the last section to illustrate our result.

2 Preliminary Knowledge

In order to deal with the system (1.1), let us recall some basic definitions and theories of fractional calculus.

Definition 2.1. The Riemann-Liouville fractional integral of order α of the function f : [0,∞] −→ R is defined as

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the integral exists.

Definition 2.2. The Caputo fractional derivative of order α of the function f : [0,∞] −→ R is defined as

cDα
0 f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds = In−αf (n)(t),

such that n− 1 < α ≤ n and n = [α] + 1 where [α] denotes the integer part of the real number α.

Lemma 2.3. (See [3]) For α > 0, the general solution of the fractional differential equation cDα
0 x(t) = 0 is given by

x(t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1, ci ∈ R and i = 0, 1, ..., n− 1.

In view of Lemma 2.3, it follows that

Iα cDα
0 x(t) = x(t) + c0 + c1t+ c2t

2 + ...+ cn−1t
n−1,

for some ci ∈ R, i = 0, 1, ..., n− 1 and n = [α] + 1.

Lemma 2.4. (See [5]) Let be F a bounded set in Lp[0, 1], with 0 ≤ p <∞. Assume that

lim
|h|→0

∥τhf − f∥ = 0 uniformly on F.

Then, F is relatively compact in Lp[0, 1].

In what follows, we give some fundamental properties of the fractional derivative Banach space.

Definition 2.5. Let 0 < γ ≤ 1 and 1 < p < ∞. The fractional derivative space Eγ,p is defined by the closure of
C∞ ([0, 1]) equipped with the norm

∥u∥γ,p =

(∫ 1

0

|u(t)|pdt+
∫ 1

0

|cDα
0 u(t)|pdt

) 1
p

.

Proposition 2.6. (See [9, 13]) The fractional derivative space Eγ,p is a reflexive and separable Banach space.
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Lemma 2.7. (See [9, 13]) For all u ∈ Eγ,p, we have

∥u∥p ≤ 1

Γ(γ + 1)
∥cDγ

0u∥p.

So, we can introduce the equivalent norm in Eγ,p by

∥u∥γ,p = ∥cDγ
0u∥p =

(∫ 1

0

|cDα
0 u(t)|pdt

) 1
p

, u ∈ Eγ,p.

In the sequel, X denotes the product space Eγ,p × Eγ,q endowed with the norm

∥(x, y)∥X = max (∥x∥Eγ,p , ∥y∥Eγ,q ) .

3 Main results and proofs

Let us start by presenting the green’s function for the system (1.1).

Lemma 3.1. For any given functions ϕ, p1 and p2 ∈ C[0, 1], the solution of the boundary value problem

cDα
0 x(t) = ϕ(t),

x(0) + x′(0) =

∫ 1

0

p1(s)ds,

x(1) + x′(1) =

∫ 1

0

p2(s)ds,

x′′(0) = 0,

(3.1)

is given by

x(t) =

∫ 1

0

G1(t, s)ϕ(s) + (2− t)

∫ 1

0

p1(s)ds+ (t− 1)

∫ 1

0

p2(s)ds,

where G1(t, s) is the Green’s function given by the expression

G1(t, s) =


(t− s)α−1 + (1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)
if 0 ≤ s ≤ t ≤ 1,

(1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)
if 0 ≤ t ≤ s ≤ 1.

Moreover, we set

G2(t, s) =


(t− s)β−1 + (1− t)(1− s)β−1

Γ(β)
+

(1− t)(1− s)β−2

Γ(β − 1)
if 0 ≤ s ≤ t ≤ 1,

(1− t)(1− s)β−1

Γ(β)
+

(1− t)(1− s)β−2

Γ(β − 1)
if 0 ≤ t ≤ s ≤ 1,

then, G1(t, s), G2(t, s) are called Green’s functions of the boundary value problem (1.1).

Proof . In view of Lemma 2.3, the first equation in (3.1) is reduced to an equivalent integral equation

x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s) + c0 + c1t+ c2t
2,
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for some c0, c1, c2 ∈ R. Since x′′(0) = 0,we get c2 = 0. Applying the boundary conditions, we find that

c0 = 2

∫ 1

0

p1(s)ds−
∫ 1

0

p2(s)ds+
1

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s) +
1

Γ(α− 1)

∫ 1

0

(1− s)α−2ϕ(s)

and

c1 =

∫ 1

0

p2(s)ds−
∫ 1

0

p1(s)ds−
1

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)− 1

Γ(α− 1)

∫ 1

0

(1− s)α−2ϕ(s).

Hence the solution of (3.1) is given by

x(t) =

∫ t

0

[
(t− s)α−1 + (1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

]
ϕ(s)ds∫ 1

t

[
(1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

]
ϕ(s)ds+ (2− t)

∫ 1

0

p1(s)ds+ (t− 1)

∫ 1

0

p2(s)ds. (3.2)

So,

x(t) =

∫ 1

0

G1(t, s)ϕ(s)ds+ (2− t)

∫ 1

0

p1(s)ds+ (t− 1)

∫ 1

0

p2(s)ds. (3.3)

In the same way, if 

cDα
0 y(t) = ψ(t),

y(0) + y′(0) =

∫ 1

0

q1(s)ds,

y(1) + x′(1) =

∫ 1

0

q2(s)ds,

y′′(0) = 0,

(3.4)

then, we obtain

y(t) =

∫ 1

0

G2(t, s)ψ(s)ds+ (2− t)

∫ 1

0

q1(s)ds+ (t− 1)

∫ 1

0

q2(s)ds. (3.5)

□

Thereafter, we use the notations G⋆
1 = max

[0,1]×[0,1]
G1(t, s); G

⋆
2 = max

[0,1]×[0,1]
G2(t, s).

Lemma 3.2. (See [4]) The functions G1, G2,
∂γG1

∂t
,
∂γG2

∂t
are continuous and satisfy, for all t, s ∈ [0, 1],

1. |G1(t, s)| ≤
3

Γ(α− 1)
.

2. |G2(t, s)| ≤
3

Γ(α− 1)
.

3.

∣∣∣∣∂γG1

∂t

∣∣∣∣ ≤ Γ(α)

Γ(α− γ)
+

2

Γ(2− γ)Γ(α− 1)
.

4.

∣∣∣∣∂γG2

∂t

∣∣∣∣ ≤ Γ(β)

Γ(β − γ)
+

2

Γ(2− γ)Γ(β − 1)

5. cDγ
0 (t− 1) = − 1

Γ(2− γ)
t1−γ , cDγ

0 (2− t) = − 1

Γ(2− γ)
t1−γ .
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Lemma 3.3. Suppose that f, g : [0, 1]× R× R → R are continuous. Then, (x, y) ∈ X is solution of the system (1.1)
if and only if (x, y) is a fixe point of the operator defined as

T : X → X
(x(t), y(t)) 7→ (T1 (x(t), y(t)) , T2 (x(t), y(t)))

where

T1 (x(t), y(t)) =

∫ 1

0

G1(t, s)f (s, y(s),
cDγ

0y(s)) (s)ds+ (2− t)

∫ 1

0

p1(x(s))ds+ (t− 1)

∫ 1

0

p2(x(s))ds

and

T2 (x(t), y(t)) =

∫ 1

0

G2(t, s)g (s, x(s),
cDγ

0x(s)) (s)ds+ (2− t)

∫ 1

0

q1(y(s))ds+ (t− 1)

∫ 1

0

q2(y(s))ds.

Proof . Let (x, y) ∈ X be a solution of the system (1.1). In view of lemma 3.1, we obtain that (x, y) is fixed point of
the operator T. The other direction is obvious. □

Theorem 3.4. Assume that the following hypotheses hold:

(H1) f, g : [0, 1]× R× R → R are Carathéodory functions.

(H2) |f(t, x, y)| ≤ w1(t) + c1 (|x|+ |y|) , |g(t, x, y)| ≤ w2(t) + c2 (|x|+ |y|) .

(H3) |p1(x)− p1(y)| ≤ kp |x− y| , |p2(x)− p2(y)| ≤ k′p |x− y| , |q1(x)− q1(y)| ≤ kq |x− y| , |q2(x)− q2(y)| ≤
k′q |x− y| ,

where w1, w2 ∈ L1 [0, 1] and c1, c2, kp, k
′
p, kq, k

′
q are approximately small constants. Then, the problem (1.1) has a

solution.

Proof . We prove the existence solution for the system (1.1) by using Schauder fixed point theorem. First of all, let
us define BR as follows

BR = {(x, y) ∈ X; ∥(x, y)∥ ≤ R},
where

R ≥
l1 ∥w1∥1 + l2 ∥w2∥1

1−K

and K is constant will be fixed later. So, it is obvious that BR is convex, closed and bounded subset of X. Now, we
show that T (BR) ⊂ BR. By lemma 3.2, for each (x, y) ∈ BR, one has

|cDγ
0T1(x(t), y(t))| =

∣∣∣∣∫ 1

0

∂γG1

∂t
(t, s)f (s, y(s),cDγ

0y(s)) (s)ds+
c Dγ

0 (2− t)

∫ 1

0

p1(x(s))ds+
c Dγ

0 (t− 1)

∫ 1

0

p2(x(s))ds

∣∣∣∣ .
Hence,

|cDγ
0T1(x(t), y(t))| ≤ l1

[∫ 1

0

|w1|+ c1

[∫ 1

0

|y(t)|+
∫ 1

0

|cDγ
0y(t)|

]]
+

1

Γ(2− γ)
t−γ+1

∫ 1

0

|p1(x(s))ds|

+
1

Γ(2− γ)
t−γ+1

∫ 1

0

|p2(x(s))ds|

Consequently, employing the Hölder inequality and the hypotheses (H1)− (H3) the above estimate becomes

∥T1(x, y)∥ ≤l1 ∥w1∥1 + c1l1

[
∥y(t)∥q + ∥cDγ

0y(t)∥q +
1

Γ(2− γ)
kp ∥x∥p + k′p

1

Γ(2− γ)
∥x∥p

]
≤l1 ∥w1∥1 + 2c1l1 ∥y∥γ,q +

1

Γ(2− γ)

(
kp + k′p

)
∥x∥γ,p

≤l1 ∥w1∥1 + k1 ∥(x, y)∥ .
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Similarly, we can show that
∥T2(x, y)∥ ≤ l2 ∥w2∥1 + k2 ∥(x, y)∥ .

That is, we get

∥T1(x, y)∥ ≤ l1 ∥w1∥1 + l2 ∥w2∥1 +max (k1, k2)R ≤ l1 ∥w1∥1 + l2 ∥w2∥1 +KR ≤ R

and
∥T2(x, y)∥ ≤ l1 ∥w1∥1 + l2 ∥w2∥1 +max (k1, k2)R ≤ l1 ∥w1∥1 + l2 ∥w2∥1 +KR ≤ R

where

l1 =
Γ(α)

Γ(α− γ)
+

2

Γ(2− γ)Γ(α− 1)
.

l2 =
Γ(β)

Γ(β − γ)
+

2

Γ(2− γ)Γ(β − 1)
.

Therefore, we conclude that ∥T (x, y)∥ ≤ R. which means that the operator T transforms BR into BR. Finally, let
us prove that T1(BR) and T2(BR) are relatively compact in Eγ,p, Eγ,q respectively. Indeed, let t ∈ [0, 1] and h > 0,
where t+ h < 1 and (x, y) ∈ BR, then

|cDγ
0T1(x(t+ h), y(t+ h))−c Dγ

0T1(x(t), y(t))| =
∣∣∣∣∫ 1

0

[cDγ
0G1 (t+ h, s))−c Dγ

0G1 (t, s))] f (s, y(s),
cDγ

0y(s)) (s)ds

+ cDγ
0 (h)

∫ 1

0

p1(x(s))ds+
c Dγ

0 (h)

∫ 1

0

p2(x(s))ds

∣∣∣∣
≤ sup

s,t∈[0,1]

|Gγ (t+ h, s))−Gγ (t, s))| [∥w1∥1 +R] .

Thereby, by Lemma 2.4, we deduce that T1(BR) is relatively compact. In the same manner, we also obtain T2(BR)
is relatively compact too. Thus, arising from this, T is Compact. So, the Schauder fixed point theorem implies that
the system (1.1) has a solution on [0, 1]. This completes the proof. □

4 Example

In order to illustrate our study, we consider the following fractional differential system


cD2.5

0 x(t) =
1√

t2 + 748
sin

(
y(t) +c D0.5

0 y(t)
)
,

cD2.7
0 y(t) = sin(t) +

e−t

105 + et
[
x(t) +c D0.5

0 x(t)
]
,

(4.1)

with p1(x) =
1

103
x, p2(x) =

1

2× 104
sinx, q1(x) =

1

104
|x|

x2 + 5
and q2 =

1

664
sinx.

Here α = 2.5, β = 2.7, γ = 0.5, c1 = 10−5, c2 =
1√
748

, kp = 10−3, k′p = 2 × 10−4, kq = 10−4, k′q =
1

664
, l1 =

3.91, l2 = 3.93, w1 = 0 and w2 = sin t.

If we choose R = 2 then, we have

R ≥ l2 ∥w2∥
1−K

=
0.0033

1− 0.28
= 0.0045.

In view of Theorem 3.4, we conclude that the operator T : B2 → B2 is compact, therefore the fractional boundary
value problem (4.1) admits a solution.
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