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Abstract

This paper is mainly concerned with some of the theoretical aspects of equitable multi-objective optimization. By
using the equitability preference structure, we discuss some properties of the equitably nondominated set, such as
nonemptiness, external stability and connectedness. Also, we introduce the concept of proper equitable nondominance,
and show that these solutions can be obtained by minimizing a weighted sum of the sort of objective functions where
all weights are positive and decreasing. Moreover, we present a hybrid scalarization problem to generate equitably
nondominated solutions. This method also provides a necessary condition for the existence of properly equitable
nondominated solutions.
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1 Introduction

The equitable efficiency tends to strengthen the notion of Pareto efficiency by imposing additional conditions on
the preference structure defining the Pareto preference. It is especially designed to solve multi-objective optimization
problems in which the criteria are uniform in the sense of the scale used and their values are directly comparable.
Equitability is based on the assumption that the criteria are not only comparable (measured on a common scale) but
also anonymous (impartial). The latter makes the distribution of outcomes among the criteria more important than
the assignment of outcomes to specific criteria, and therefore models are equitable allocation of resources.

The equitable preference was first known as the generalized Lorenz dominance [5, 7]. Kostreva and Ogryczak [3] are
the first ones who introduced the concept of equitability into multi-objective programming. They have shown equitable
efficiency to be a refinement of Pareto efficiency by adding, to the reflexivity, strict monotonicity and transitivity of
the Pareto preference order, the requirements of impartiality and satisfaction of the principle of transfers. Moreover,
they have analyzed the structure of the equitably efficient set of a linear multi-objective optimization problem and
obtained some properties of the equitably efficient set. These include sufficient conditions for existence, connectivity of
the equitably efficient set, and characterizations related to weighting problems. Then, Kostreva et al. [4] presented the
theory of equitable efficiency in greater generality. They have developed scalarization approaches to generate equitably
efficient solutions of linear and nonlinear multi-objective programs. Singh [14] has developed some scalarization based
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methods of generating equitably efficient solutions and showed how equitably efficient solutions arise in the context of
a particular type of linear complementarity problem and matrix games.

More recently, Foroutannia and Mahmodinejad [2] have introduced the concept of equitably B-efficient solution,
where B is a partition of the index of the objective functions. The equitable optimization method applied to problems
such as portfolio, location, telecommunications and resource allocation [8, 9, 10, 11, 12]. It should be noted that some
authors have used the term “fair” rather than “equitable”.

The relationships between the properties of nonemptiness, Rp
≧-(semi)compactness, external stability and connect-

edness of the set of nondominated solutions are established by Pourkarimi and Soleimani-damaneh in [13]. In this
paper, we want to examine these properties for the equitably nondominated set of multi-objective optimization. The
paper is organized as follows. In the second section, terminology is introduced and basic concepts are defined. Some
properties of the equitably nondominated set such as existence, external stability and connectedness, will be discussed
in third section. In the fourth section, we introduce the concept of proper equitable nondominance and characterize
these solutions by the weighted sum problem. Finally, the final section concludes the paper.

2 Terminology

Let Rp be the Euclidean vector space and y′, y′′ ∈ Rp. We use the following componentwise orders, y′ ≦ y′′ denotes
y′i ≤ y′′i for i = 1, 2, . . . , p and y′ < y′′ denotes y′i < y′′i for i = 1, 2, . . . , p, and also y′ ≤ y′′ denotes y′ ≦ y′′ but y′ ̸= y′′.
With the relations ≧, ≥ and > defined accordingly, then the nonnegative, the nonnegative nonzero and the positive
orthants are denoted by Rp

≧ = {y ∈ Rp : y ≧ 0}, Rp
≥ = {y ∈ Rp : y ≥ 0} and Rp

> = {y ∈ Rp : y > 0}.

We consider a multi-objective optimization problem which minimizes a set of objective functions with p members.
The image of the feasible set under the objective functions is called the image space, and it is usually denoted by Y .

Definition 2.1. Let Y ⊂ Rp. The point ŷ ∈ Y is called a nondominated solution of Y if there does not exist y ∈ Y
such that y ≤ ŷ. The set of all nondominated solutions of Y is denoted by YN and called the nondominated set.

The concept of proper nondominance plays an important role in multi-objective optimization, from both theoretical
and practical points of view. There are different definitions for proper nondominance in the literature, see [1]. Among
them, we use the following ones.

Definition 2.2. Let Y ⊂ Rp. The vector ŷ ∈ Y is called a properly nondominated solution of Y in the Geoffrion’s
sense, if ŷ ∈ YN and there is a real number M > 0 such that for all y ∈ Y and i ∈ {1, 2, . . . , p} satisfying yi < ŷi there
exists an index j ∈ {1, 2, . . . , p} such that ŷj < yj and

ŷi − yi
yj − ŷj

≤ M.

The set of all properly nondominated solutions of Y is denoted by YPN .

For a set S ⊂ Rp, we use the notations cl(S) and cone(S) for the closure and the convex conic hull of S, respectively.

Definition 2.3. Let Y ⊂ Rp. The vector ŷ ∈ Y is called a properly nondominated in Benson’s sense, if

cl(cone(Y +Rp
≧ − ŷ))∩−Rp

≧ = {0} .

According to Theorem 2.48 from [1] proper dominancy in Geoffrion’s sense is equivalent to proper dominancy in
Benson’s sense. The following definition is a necessary notion for the concepts of solution of interest in this paper.

Definition 2.4. Let y ∈ Rp.

1. The function θ : Rp → Rp is called an ordering map iff θ(y) = (θ1(y), θ2(y), . . . , θp(y)), where θ1(y) ≥ θ2(y) ≥
. . . ≥ θp(y) in which θi(y) = yτ(i) for i = 1, 2, . . . , p, and τ is a permutation of the set {1, 2, . . . , p}.

2. The function θ̄ : Rp → Rp is called a cumulative ordering map iff
θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄p(y)), where θ̄i(y) =

∑i
j=1 θj(y) for i = 1, 2, . . . , p.
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Definition 2.5. For any two vectors y′, y′′ ∈ Y , we say that y′ equitably dominates y′′, and denote by y′ ≺e y′′ iff
θ̄(y′) ≤ θ̄(y′′). A vector ŷ ∈ Y is called equitably nondominated solution of Y if there is no y ∈ Y such that y ≺e ŷ.
The set of all equitably nondominated solutions is denoted by YEN and called the equitably nondominated set.

It should be noted the weak equitable preference and indifference equitable preference relations are respectively
defined by

y′ ⪯e y
′′ ⇐⇒ θ̄(y′) ≦ θ̄(y′′),

y′ ≃e y
′′ ⇐⇒ θ̄(y′) = θ̄(y′′).

The weak equitable dominance relation is illustrated by the following sets.

Definition 2.6. Let ŷ ∈ Y . The set of points

1. weakly equitable dominated by ŷ is defined as D(ŷ) = {y ∈ Rp : θ̄(ŷ) ≦ θ̄(y)};
2. weakly equitable preferred to ŷ is defined as P (ŷ) = {y ∈ Rp : θ̄(y) ≦ θ̄(ŷ)}.

The domination structure of the equitable dominance depends on the location of a vector relative to the absolute
equity line (y1 = y2 = . . . yp). In the general case, the set D(y) is not a cone and it is not convex. In the following
figure, we show these sets for the point ŷ = [3, 1]T , where Y = R2. The red and cyan shaded regions represents the
set D(ŷ) and P (ŷ), respectively.

Figure 1: The P (ŷ), D(ŷ) with ŷ = [3, 1]T for Y = R2

3 Structure of the equitably nondominated set

In this section, we first provide some sufficient conditions which guarantee that the equitably nondominated set is
nonempty. Then we investigate the connections between nonemptiness, θ̄-semicompactness, θ̄-compactness, θ̄-external
stability and connectedness of the equitably nondominated set.

Theorem 3.1. Suppose there is some y◦ ∈ Y such that the set P (y◦)∩ Y is compact. Then YEN ̸= ∅.

Proof . Consider the following optimization problem:

min

p∑
i=1

θ̄i(y) (3.1)

s.t. y ∈ P (y◦)∩ Y.

The set of feasible solutions to Problem (3.1) is P (y◦)∩ Y which is compact. Because the objective function of
this problem is continuous, there exists a feasible solution ŷ ∈ P (y◦)∩Y such that ŷ is an optimal solution of Problem
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(3.1). We claim that ŷ ∈ YEN . If ŷ /∈ YEN , then there is ȳ ∈ Y such that ȳ ≺e ŷ ⪯e y◦. Hence ȳ is a feasible solution
to Problem (3.1) and

p∑
i=1

θ̄i(ȳ) <

p∑
i=1

θ̄i(ŷ).

This contradicts the optimality of ŷ for (3.1) and the proof is completed. □ Note that the condition given in the
above theorem is essential. For example, if

Y =
{
(x1, x2) : x

2
1 + x2

2 ⩽ 1,−1 ⩽ x1 ⩽ 0,−1 ⩽ x2 ⩽ 0
}
− {(−1/

√
2,−1/

√
2)},

then P (y)∩ Y is not compact for any y ∈ Y , and YEN = ∅.
In the following, we considers open covers with special sets and define θ̄-semicompactness, similar to the concept

of Rp
≥-semicompactness from [1].

Definition 3.2. Y ⊆ Rp is called θ̄-semicompact if every open cover of Y of the form
{
P (yi)C : yi ∈ Y, i ∈ I

}
has a

finite subcover, where I is an index set. This means that whenever Y ⊂ ∪i∈IP (yi)C there exist a positive integer t
and {i1, i2, . . . , it} ⊂ I such that Y ⊂ ∪t

k=1P (yik)C .

Here P (yi)C denotes the complement Rp − P (yi) of P (yi). Note that these sets are always open.

Let (S,⪯) be a preordered set, i.e, ⪯ is reflexive and transitive. (S,⪯) is inductively ordered, if every totally
ordered subset of (S,⪯) has a lower bounded. Now, by applying Zorn’s Lemma, we can prove that θ̄-semicompactness
guarantees existence of an equitable nondominated solution, similar to Theorem 2.12 of [1].

Theorem 3.3. If Y ̸= ∅ is θ̄-semicompact, then YEN ̸= ∅.

Proof . We show that Y is inductively ordered with respect to ⪯e and apply Zorn’s lemma. If Y is not inductively
ordered, then there is a totally ordered subset Y ′ of Y which has no lower bound. Let Y ′ =

{
yi : i ∈ I

}
, we have

∩i∈I(P (yi)∩ Y ) = ∅, (3.2)

because any element in this intersection would be lower bound of Y ′. Since P (yi) is closed, the relation (3.2) deduces
that the collection

{
P (yi)C : i ∈ I

}
is an open cover of Y . The assumption of θ̄-semicompactness implies that there is

a finite subcover of
{
P (yi)C : i ∈ I

}
. On the other hand, we have P (yi) ⊆ P (yj) if and only if yi ⪯e yj and the sets

of the cover are totally ordered by inclusion because Y ′ is a totally ordered subset. So there exists a single y⋆ ∈ Y ′

such that Y ⊆ P (y⋆)C . This concludes y⋆ ⪯e y
i for all i and y⋆ /∈ Y, which is not possible. Therefore Y is inductively

ordered. Now according Zorn’s lemma Y contains minimal element i.e. there is y◦ ∈ Y such that y ⪯e y
◦ implies that

y◦ ⪯e y. It remains to be shown that y◦ ∈ YEN . If y◦ /∈ YEN , then there would be some ȳ ∈ Y with ȳ ≺e y◦ ⪯e ȳ,
which is a contradiction. □

It is usually not easy to check the condition of θ̄-semicompactness in Theorem 3.3. Because this we present the
stronger condition of θ̄-compactness.

Definition 3.4. Y ⊆ Rp is called θ̄-compact if P (ŷ)∩ Y is compact for all ŷ ∈ Y.

Theorem 3.5. If Y is θ̄-compact, then Y is θ̄-semicompact, hence YEN ̸= ∅.

Proof . The proof is similar to Proposition 2.14 of [1]. If
{
P (yi)C : yi ∈ Y, i ∈ I

}
is an open cover of Y . For arbitrary

yi
⋆ ∈ Y , the collection{

P (yi)C : yi ∈ Y, i ∈ I, i ̸= i⋆
}
,

defines an open cover of P (yi
⋆

)∩ Y . Since Y is θ̄-compact, this cover contains a finite subcover of P (yi
⋆

)∩ Y. This
finite subcover together with P (yi

⋆

)C yields a finite cover of

Y = (P (yi
⋆

)∩ Y )∪ (P (yi
⋆

)C ∩ Y ),

of the structure required for θ̄-semicompact. Thus Y is θ̄-semicompact, and Theorem 3.3 follows that YEN ̸= ∅. □
We continue this section by introducing a new concept, external stability of the equitably nondominated set.
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Definition 3.6. Let Y ⊆ Rp. The set YEN is called θ̄-externally stable if Y ⊆ ∪y∈YEN
D(y), i.e. for any y ∈ Y \YEN

there is ŷ ∈ YEN such that θ̄(ŷ) ≦ θ̄(y).

Similar to Theorem 4.1 of [13], we give the following theorem.

Theorem 3.7. If Y ⊆ RP is nonempty and θ̄-semicompact, then YEN is θ̄-externally stable.

Proof . For any y◦ ∈ Y , we show that the set Y ◦ = P (y◦)∩ Y is θ̄-semicompact. To do this, assume that

Y ◦ ⊆ ∪i∈IP (yi)C .

We have
Y ⊆ (∪i∈IP (yi)C)∪ P (y◦)C .

The θ̄-semicompactness assumption of Y implies that there exists m ∈ N such that

Y ⊆ (∪m
i=1P (yi)C)∪ P (y◦)C .

Hence
Y ◦ ⊆ ∪m

i=1P (yi)C ,

and Y ◦ is θ̄-semicompact. Now by using Theorem 3.3, Y ◦
EN ̸= ∅. Thus, there exists ȳ ∈ Y ◦

EN . We claim that ȳ ∈ YEN ,
because otherwise there is y⋆ ∈ Y such that y⋆ ≺e ȳ ⪯e y◦. Hence there exists y⋆ ∈ Y ◦ such that y⋆ ≺e ȳ, which
contradict ȳ ∈ Y ◦

EN . Therefore ȳ ∈ Y ◦
EN ∩ YEN and

y◦ ∈ D(ȳ) ⊆ ∪y∈YEN
D(y).

Since y◦ ∈ Y is arbitrary, we have
Y ⊆ ∪y∈YEN

D(y).

□

By applying Theorem 3.5 and Theorem 3.7, the following result is obtained.

Corollary 3.8. If Y ⊂ Rp be nonempty and θ̄-compact. Then YEN is θ̄-externally stable.

In the next, we investigate the connection between the notions introduced so far. To do this the following lemmas
are required.

Lemma 3.9. We have the following statements:

(i) If Y is closed, then θ̄(Y ) and θ(Y ) are closed.

(ii) If Y is an unbounded subset of Rp, then θ̄(Y ) is unbounded.

Proof . The proof is obvious. □

Lemma 3.10 ([6]). Assume that Y ⊆ Rp is a closed convex set. We have the following statements:

(i) Y is unbounded if and only if d ∈ Y ∞ ̸= ∅, where

Y ∞ = {d ∈ Rp : d ̸= 0, y + αd ∈ Y,∀y ∈ Y,∀α > 0} ,

is the set of recession directions of Y .

(ii) If there exists ŷ ∈ Y and d ∈ Rp such that ŷ + αd ∈ Y for any α > 0, then d ∈ Y ∞.

Theorem 3.11. Let Y ⊆ Rp be nonempty, convex and closed. If P (y)∩ Y is closed for every y ∈ Y, then the
following statement are equivalent:

(i) YEN ̸= ∅.
(ii) P (y)∩ Y is bounded for every y ∈ Y.
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(iii) Y is θ̄-compact.
(iv) Y is θ̄-semicompact.
(v) YEN is θ̄-externally stable.

Proof . We only prove that (i) ⇒ (ii). The remaining part resulted from Theorems 3.5 and 3.7. By contradiction
assume that there exists ŷ ∈ Y such that P (ŷ)∩ Y is unbounded. Using Lemma 3.9, conclude that the set

θ̄(P (ŷ)∩ Y ) = (θ̄(ŷ)−Rp
≧)∩ θ̄(Y ),

is unbounded, so (θ̄(ŷ)− Rp
≧)∩ (θ̄(Y ) +Rp

≧) is an unbounded closed convex set. Hence, the part (i) of Lemma 3.10

implies that there exists nonzero vector d ∈ Rp such that

θ̄(ŷ) + αd ∈ (θ̄(ŷ)−Rp
≧)∩ (θ̄(Y ) +Rp

≧), (∀α > 0).

Therefore θ̄(ŷ) + αd ∈ θ̄(Y ) +Rp
≧ for all α > 0. The part (ii) of Lemma 3.10 concludes that

z + d ∈ θ̄(Y ) +Rp
≧, (∀z ∈ θ̄(Y ) +Rp

≧).

Since θ̄(ŷ) + αd ∈ θ̄(ŷ) − Rp
≧, we have d ≤ 0 which results z + d ≤ z for each z ∈ θ̄(Y ) + Rp

≧. These imply

(θ̄(Y ) +Rp
≧)N = (θ̄(Y ))N = ∅, which contradict the assumption. □

Consider a multi-objective optimization problem as follows:

min (f1(x), f2(x), . . . , fp(x)) ,

subject to x ∈ X (3.3)

where X ⊂ Rn is a nonempty set and f is a vector function that maps the feasible set X into the objective space
Rp. The image of X under f is denoted by Y = f(X) and is referred to image space. We recall that if ŷ = f(x̂) is a
nondominated solution of Y , then x̂ is an efficient solution of problem (3.3). Hence

XE = {x ∈ X : f(x) ∈ YN} ,

is called the set of all efficient solutions of problem (3.3).

Kostreva and Ogryczak in [3] express equitable nondominance in terms of the standard efficiency for the multi-
objective optimization problem with objectives θ(y)

min
(
θ̄1(y), θ̄2(y), . . . , θ̄p(y)

)
subject to y ∈ Y. (3.4)

Corollary 3.12. ([3], Corollary 2.2.) A vector ŷ ∈ Y is an equitably nondominated solution if and only if ŷ is an
efficient solution of problem (3.4).

Now, we examine the connectedness property of YEN . The connectedness is topological property that can make the
task of selecting a final compromise solution among the set of equitably nondominated solutions easier, as there are no
gaps in the equitably nondominated set. To derive a connectedness result for YEN , we need the following statement.

Theorem 3.13 ([1], Theorem 3.40). LetX ⊆ Rp be a convex and compact set. Assume that all objective functions
fk are convex. Then XE is connected.

Corollary 3.14. If Y ⊆ Rp is a convex and compact set, then YEN is connected.

Proof . The function θ̄i is a convex function for each i, because

θ̄i(λy
′ + (1− λ)y′′) = max

|I|=i,I⊂{1,2,...,p}

∑
j∈I

(λy′j + (1− λ)y′′j )

≤ λ max
|I|=i,I⊂{1,2,...,p}

∑
j∈I

y′j + (1− λ) max
|I|=i,I⊂{1,2,...,p}

∑
j∈I

y′′j

= λθ̄if(x) + (1− λ)θ̄if(y). (3.5)
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Now, the desired result follows by using Theorem 3.13 and Corollary 3.12. □

Lemma 3.15 ([1], Lemma 3.32). If {Si : i ∈ I} is a family of connected sets with ∩i∈ISi ̸= ∅ then ∪i∈ISi is
connected.

Finally, we prove the connectedness of YEN under the weaker condition of θ̄-compactness.

Theorem 3.16. If Y ⊆ Rp is closed, convex, and θ̄-compact, then YEN is connected.

Proof . Let d ∈ Rp
>. For any α ∈ R, we define y(α) = αd. We claim that for all y ∈ Rp there is a real number

α > 0 such that y ∈ P (y(α)). Because otherwise the nonempty convex sets
{
θ̄(y)− αθ̄(d) : α > 0

}
and −Rp

≧ can be

separated. Thus there exists some y⋆ ∈ Rp − {0} with

⟨y⋆, θ̄(y)− αθ̄(d)⟩ ⩾ 0, (∀α > 0), (3.6)

⟨y⋆,−d′⟩ ⩽ 0, (∀d′ ∈ Rp
≧), (3.7)

by using separation theorem. So ⟨y⋆, d′⟩ ⩾ 0, for all d′ ∈ Rp
≧, in particular ⟨y⋆, θ̄(d)⟩ > 0 because d ∈ Rp

>. Hence

⟨⟨y⋆, θ̄(y) − αθ̄(d)⟩ < 0 for α sufficiently large, but that is contradiction to (3.6). By using Theorem 3.11, we have
YEN ̸= ∅. So according to the claim proved, we can choose ŷ ∈ YEN and appropriate α̂ > 0 such that ŷ ∈ P (y(α̂)),
which means that P (y(α̂))∩ YEN ̸= ∅. We define

Y (α) := P (y(α))∩ Y.

With this notation, the claim above implies in particular that

YEN =∪α⩾α̂Y (α)EN .

Also, it is obvious that Y (α̂)EN ⊆ Y (α)EN for α ⩾ α̂, therefore

∩α⩾α̂Y (α)EN = Y (α̂)EN ̸= ∅.

Since Y is θ̄-compact, Y (α) is compact. We now apply Corollary 3.14 to get Y (α)EN is connected. We have
expressed YEN as union of a family of connected sets with nonempty intersection. Hence Lemma 3.15 concludes that
YEN is a connected set. □

4 Proper equitable nondominance

The purpose of this section is to introduce of the concept of proper equitable nondominance. We prove that the
weighted sum scalarization method is able to find properly equitable nondominated solutions. Moreover, we present a
hybrid method for generating the equitable nondominated solution and we obtain a necessary condition for existence
of properly equitable nondominated solutions via this method.

To introduce the concept of proper equitable nondominance, we use the definition of properly nondominated in
Geoffrion’s sense which in trade-offs of problem with objectives θ̄(y) are bounded.

Definition 4.1. A vector ŷ ∈ YEN is called properly equitable nondominated (in Geoffrion sense), if there is a
real number M > 0 such that for all i ∈ {1, 2, . . . , p} and y ∈ Y satisfying θ̄i(y) < θ̄i(ŷ) there exists an index
j ∈ {1, 2, . . . , p} such that θ̄j(ŷ) < θ̄j(y) and

θ̄i(ŷ)− θ̄i(y)

θ̄j(y)− θ̄j(ŷ)
≤ M.

The set of all properly equitable nondominated solutions is denoted by YPEN . This definition allows us to express
the proper equitable nondominance in terms of the standard proper efficiency.
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Corollary 4.2. The vector ŷ ∈ Y is a properly equitable nondominated solution if and only if ŷ is a properly efficient
solution of problem (3.4).

Kostreva and Ogryczak in [3] showed that the equitably nondominated set is contained within the nondominated
set. On the other hand, Definition 4.1 implies that YPEN ⊂ YEN , so YPEN ⊂ YN . Hence, to reduce nondominated
solutions, we can use properly equitable nondominated solutions. The following example shows this fact.

Example 4.3 ([3], Example 2.1). Let’s consider the problem

min {(y1, y2) : 3y1 + y2 ⩾ 21, 4y1 + 5y2 ⩾ 72, y1 ⩾ 0, y2 ⩾ 0} .

It is obvious that

YN = {(y1, y2) : 3y1 + y2 = 21, 4y1 + 5y2 = 72, y1 ⩾ 0, y2 ⩾ 0} ,
YEN = YPEN = {(y1, y2) : 4y1 + 5y2 = 72, 3 ⩽ y1 ⩽ 8} ,

hence YPEN ⊂ YEN ⊂ YN .

The weighted sum method is one of the most common ways of finding nondominated solutions of multi-objective
problem. Kostreva et al. [4] have proven every optimal solution of the weighted sum problem with strictly decreasing
positive weights and ordering map θ(y), is an equitably nondominated solution.

Theorem 4.4. [3, Proposition 3.2] Let ŷ be an optimal solution of weighted sum optimization problem

min
y∈Y

p∑
k=1

λkθk(y). (4.1)

If λ1 > λ2 > . . . > λp > 0, then ŷ ∈ YEN .

In the following, we show that this theorem also holds for proper equitable nondominance. Furthermore, we prove
that the converse of the theorem is true when the set Y is convex. For this purpose, the below statements are useful.

Lemma 4.5. Let x and λ be two vectors in Rp. If λ1 > λ2 . . . > λp > λp+1 = 0, then

p∑
i=1

λixi =

p∑
i=1

(λi − λi+1)

i∑
k=1

xk.

Proof . The proof is obvious. □

By using Lemma and setting αk = λk − λk+1 for k = 1, 2, . . . p − 1 and αp = λp, one can see the weighted sum
optimization problem (4.1) is equivalent to

min
y∈Y

p∑
k=1

αkθ̄k(y). (4.2)

It is interesting to note here that αk > 0 and λk =
∑p

i=k αi for k = 1, 2, . . . p.

We recall that if ŷ = f(x̂) is a properly nondominated solution of Y , then x̂ is a properly efficient solution of
problem (3.3).

Theorem 4.6 ([1], Theorem 3.15). If λ ∈ Rp
> and x̂ ∈ X is an optimal solution of problem

min
x∈X

p∑
k=1

λkfk(x). (4.3)

then x̂ is a properly efficient solution of problem (3.3). Conversely, let X be a convex set, and let fj be convex functions
for j = 1, 2, . . . , p. If x̂ is a properly efficient solution of problem (3.3), then there exists some λ ∈ Rp

> such that x̂ is
an optimal solution of problem (4.3).
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Theorem 4.7. Let λ ∈ Rp
> be a vector with λ1 > λ2 > . . . > λp > 0. If ŷ ∈ Y is an optimal solution of problem

(4.1), then ŷ ∈ YPEN . Conversely, if Y is a convex set and ŷ ∈ YPEN , then there exists some λ ∈ Rp
> with

λ1 > λ2 > . . . > λp > 0, such that ŷ is an optimal solution of Problem (4.1).

Proof . If ŷ ∈ Y is an optimal solution of problem (4.1), then it is an optimal solution of problem (4.2). By applying
Theorem 4.6 to problem (4.2), we deduce that ŷ is a properly efficient solution of problem (3.4). Now Corollary 4.2
implies that ŷ ∈ YPEN . Conversely, let ŷ ∈ YPEN . Using the Corollary 4.2 concludes that ŷ is properly efficient
solution of problem (3.4). The function θ̄ is convex, according to relation (3.5), hence by Theorem 4.6 there exists
some α ∈ Rp

> such that ŷ is an optimal solution of problem (4.2). By setting λk =
∑p

i=k αi for all k = 1, 2, . . . p, we
have the desired result. □

Now, we find equitable nondominated solutions by a hybrid method which is defined by combining the weighted
sum method with the ϵ-constraint method. In this method, the scalarized problem to be solved has a weighted sum
objective and constraints on all objectives θ(y). For an arbitrary point y0 ∈ Y , consider the following problem:

min

p∑
k=1

λk

 k∑
j=1

θj(y)

 , subject to θ̄(y) ≦ θ̄(y0), y ∈ Y, (4.4)

where λ = (λ1, λ2, . . . , λp) ∈ Rp
>. Then we have the following theorem.

Theorem 4.8. Suppose that y ∈ Y is an optimal solution of (4.4), then y is an equitably nondominated solution.
The converse is true when y = y0.

Proof . Let y ∈ Y be an optimal solution of (4.4) and y /∈ YEN . There is a feasible solution y′ ∈ Y such that
θ̄(y′) ≤ θ̄(y). We have

p∑
i=1

λi

 i∑
j=1

θj(y
′)

 <

p∑
i=1

λi

 i∑
j=1

θj(y)

 ,

Therefore y can not be an optimal solution of (4.4). Conversely, suppose y0 is not an optimal solution of (4.4). So
there is a feasible solution y′ ∈ Y of (4.4) such that

p∑
i=1

λi

 i∑
j=1

θj(y
′)

 <

p∑
i=1

λi

 i∑
j=1

θj(y
0)

 .

Hence we deduce that θ̄(y′) ≤ θ̄(y0)), which is contradiction with y0 ∈ YEN . □

Finally, we obtain a necessary condition for existence of properly equitable nondominated solutions by scalarization
problem (4.4).

Theorem 4.9. If YPEN ̸= ∅, then for any feasible solution y0 ∈ Y , Problem (4.4) has a finite value.

Proof . If the theorem is not true, there exist y0 ∈ Y such that Problem (4.4) is unbounded. Because of YPEN ̸= ∅,
there is ŷ ∈ YPEN . Hence ŷ is a properly efficient solution of problem (3.4), by Corollary 4.2. Since proper efficiency
in Geoffrion’s sense is equivalent to proper efficiency in Benson’s sense, we have

cl(cone(θ̄(Y ) +Rp
≧ − θ̄(ŷ))) ∩ −Rp

≧ = {0} . (4.5)

As problem (4.4) is unbounded, there is some sequence {yn} ⊆ Y such that θ̄(yn) < θ̄(y0) and
∑p

i=1 λiθ̄i(yn) ≤ −n,
for n = 1, 2, . . .. Hence we have ∥θ̄(yn)− θ̄(y0)∥ → ∞ when n → ∞.
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Since the sequence θ̄(yn)−θ̄(y0)

∥θ̄(yn)−θ̄(y0)∥ is bounded in Rp, there exists a subsequence {ynk
} of {yn} such that

lim
k→∞

θ̄(ynk
)− θ̄(ŷ)

∥θ̄(ynk
)− θ̄(y0)∥

= d

where d is a nonzero vector in Rp
≧. Therefore for k0 sufficiently large we have

θ̄(ynk
)− θ̄(ŷ)

∥θ̄(ynk
)− θ̄(y0)∥

∈ −Rp
≧ − {0} , (∀k ≥ k0),

which contradicts the relation (4.5). □

Therefore the unboundedness of the problem (4.4) shows that no properly equitable nondominated solution exists.

5 Conclusion

In this paper, we investigated the properties non-emptiness, external stability and connectedness for the equitable
nondominated set, YEN , by imposing the conditions θ̄-semicompactness and θ̄-compactness on Y , and we established
the equivalence between these concepts. Also, we introduced the concept of properly equitable nondominated solution
and characterized them by minimizing a weighted sum of the sort of objective functions where the vector of weight is
positive and decreasing. Moreover, a hybrid scalarization problem is presented to generate equitably nondominated
solutions and the existence of properly efficient solutions via this method is studied.
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