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Abstract

k
For a Dickson pair (¢,n) we show that {qq:f

We also study the construction of a finite Dickson nearfield that arises from the Dickson pair (g, n).

A<k n} forms a finite complete set of different residues modulo n.
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1 Introduction

The interest of nearrings and nearfields started in 1905 when Leonard Eugene Dickson ([2] ) wanted to know what
structure arises if one axiom in the list of axioms for skew-fields (division rings) was removed. He found that there do
exist "nearfields”, which fulfill all axioms for skew-fields except one distributive law. Dickson achieved this by starting
with a field and changing the multiplication into a new operation. In his honor, these types of nearfields are called
"Dickson nearfields”. In 1966 the first type of near-vector spaces was introduced by Beidleman [I] which generalises the
concept of a vector space to a non-linear structure and used nearring modules over a nearfield. Following that, in his
thesis, the authors in [3] has extended the theory of Beidleman near-vector spaces. In [0, 4] the authors described the
R-subgroups of finite dimensional Beidleman near-vector spaces. Zassenhauss [11], Karzel and Ellers [7] have solved
some important problems in this area. Recently the author in [4] has investigated on the generalized distributive set
of a finite nearfield. In his thesis, the authors in [3] has extended the theory of Beidleman near-vector spaces. In [0 4]
the authors described the R-subgroups of finite dimensional Beidleman near-vector spaces and introduced the notion
of R-dimension, R-basis, seed set and seed number of an R-subgroup. In [5] the authors gave an alternative proof of
the center of a finite Dickson nearfield.

2 Preliminary materials

A nearfield is an algebraic structure similar to a skew-field sometimes called division ring, except that it has only
one of the two distributive laws.

Definition 2.1. ([9]) A nearfield is a set N together with two binary operations + (addition) and - (multiplication)
satisfying the following axioms:

e (N,+) is an abelian group with the identity 0,
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e (N,-) is a semi-group i.e., (a-b)-c=a- (b-c) for all elements a,b,c € N (the associative law for multiplication),
e (a+b)-c=a-c+b-cforall elements a,b,c € N (the right distributive law),

e N contains an element 1 such that 1-a =a-1 = a for all element ¢ € N (multiplicative identity),

e For every non-zero element a of N, there exists an element a~! such that a-a=! = a=!-a = 1 (multiplicative

inverse).

We will use N* to denote N\{0}.
Definition 2.2. A proper nearfield is a nearfield that is not a field.
Throughout this note we will consider right nearfields and use IV to denote a nearfield.
Example 2.3. [9] Consider the finite field (GF(32),+,"), it is explicitly constructed in the following way
GF(3%) = Z3[X]/(X? +1).

It follows that GF(3?) := {0,1,2,8,1+ 3,2+ 3,26,1+ 23,2 + 23} where 3 is a zero of X2 + 1 € Z3[X]. The
addition table on GF(32) is defined by

(a+b8)+ (c+dB) = (a+ c¢)mod 3+ ((b+ d)mod 3)3
It is observed in [9] that Ny := (GF(3?),+,0) with a new multiplication defined by

x -y if y is a square in (GF(32),+, ")
zoy=4, .
x° - y otherwise

is a finite proper nearfield.

We will see in the next section that this example of a finite nearfield is a finite Dickson nearfield. As we will prove
later, it is the smallest finite proper nearfield.

Definition 2.4. Let F' be a field. The map

Y F—>F

a— aP

is called the Frobenius automorphism of F'.

Now, we introduce maps that are useful to define a new multiplication.

Definition 2.5. ([9]) Let IV be a nearfield and Aut(N,+, ) the set of all automorphisms of N. A map

¢: N* — Aut(N,+,")
n e o,

is called a coupling map if for all n,m € N*, ¢, 0 ¢ = dg, (m)-n-

Definition 2.6. ([9]) Let N be a nearfield and ¢ a coupling map on N. Then one defines a new binary operation on
N by

_ Qsm(n)mlfm?éo
N oy m = X
0if m=0.
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To see this, let m,n € N, thenif m =0, noy,m=0. If m #0,¢,,(n) € N and m € N* s0 ¢, (n)-m € N*. It
follows that nog m € N. Thus N is closed under the new operation.

Lemma 2.7. ([9]) Let N be a nearfield and ¢ be a coupling map. Then the set
G={¢pp:neN*}

is a group under composition of maps.

Remark 2.8.

¢ (G,0) is a subgroup of (Aut(N), o).

¢ (G,0) is called a Dickson-group.

Theorem 2.9. ([9]) Let N be a nearfield and ¢ be a coupling map on N. Then (N, +,04) is again a nearfield where
o4 is defined as in Definition

3 Dickson construction

The first finite proper nearfield was discovered by L.E Dickson [2]. He constructed the first example of a finite
Dickson nearfield. His technique was to ”distort” the multiplication of a finite field.

Definition 3.1. ([9]) Let (N, +,-) be a nearfield and ¢ a coupling map on N*. Then (N, +, 0,) is called ¢—derivation
of (N,+,-) and is denoted by N®. The group (G, o) is called the Dickson group of ¢ with G defined as in Lemma
N is said to be a Dickson nearfield if N is the ¢—derivation of some field F, i.e., N = F¢.

Remark 3.2. Let us consider the coupling map ¢ : n — idy. In this case

dm(n) -m=idy(n) - m=n-m fm+#0
noym= X
0 ifm=0

It is the trivial coupling map because the new operation is the same as the usual multiplication. For this coupling
map we have that:

e Let (N,+,-) be a proper nearfield. The ¢—derivation of (N, +,) is (N, +,04) i.e., N® = N is also a nearfield
but not a Dickson nearfield.

e Let (F,+,-) be a field. The ¢—derivation of (F,+,-) is (F,+,04) i.e., F¥ = F. It follows that every field is a
Dickson nearfield.

We would like to construct finite Dickson nearfields.
Definition 3.3. ([9]) A pairs of numbers (¢,n) € N? is called a Dickson pair if

e ¢ is some power p' of a prime p,
e Each prime divisor of n divides ¢ — 1,

e If ¢ = 3 mod 4 implies 4 does not divide n.

Example 3.4. The following pairs are Dickson numbers: (13,6), (7,3), (5,2), (9,2), (3,2), (4,3), (5,2), (5,4), (7,2),
(11,2), (23,2), (59,2), (p,1) for p prime.

Lemma 3.5. The set {%,1 <k< n} residues modulo n is the set {i,O <i<n-— 1} where (g,n) are Dickson
pairs.



158 Djagba

Proof . Let i(k) = qkfl for k =1,...,n. We would like to show that the set {i(1),4(2),...,i(n)} residues modulo n

is the set {0,1,...,n — 1} It suffice to show that the set {q 1 A<k< n} are distinct residues modulo n. Suppose
that

modn, 1<k<l<n. (3.1)

This implies that

=1 mod n

l4g+...4¢" '=1+4+qg+...4¢q
F+...+¢'=0 modn

FA+... +¢*1H=0 modn.

By the definition of Dickson pair every prime divisor p of n divide ¢ — 1, so p does not divide ¢. It follows that
ged (g,m) = 1. Therefore

A+ +¢d =0 modn=1+...+¢ % 1=0 mod n
-k

—1
=% " —0 modn.
q—1
Assume that ‘f—_ll = mod n for some 1 <t < n. It follows that for all ¢,
t

—1 .

4 =0 mod py*
qg—1

where n = [ pj is the unique prime factorisation. We assume without loss of generality that n = p™. We know that
g=1 modulo p. So we can write ¢ = 1 + pe for some ¢ € N. Assuming that p™ divides %, we want to show that
n = p" divides ¢ leads to contradiction. In fact

-5 (o

k=0

= i <,i> (pe)ft=.. .+ G) pett.

k=1

Hence

For instance

e if m =1, then the assumption is

/ﬁp/2(> pe) e p/t

leads to contradiction since p =n > t.

o ifm=2,

t

pr“/q;_l1 =9’/ <,i) (pe)* " = p/ G) pe+t=p/t

k=1

But then (;) = t(t ) , SO p/ ( ) Hence p2/ (;) pe. Thus p?/t leads to contradiction.
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e By the same approach for some m, p™ % = n = p™/t leads to contradiction.

Therefore the assumption can not hold. Thus the set {‘{;:11, 1<k< n} are distinct residues modulo n.

O

We will see in the next theorem that for each pair of Dickson numbers, we will be able to construct a finite Dickson
nearfield containing ¢"™ elements. For any Dickson pair (¢,n), we will denote the associated Dickson nearfield by
DN (q,n).

Theorem 3.6. ([9])

For all pairs of Dickson numbers (g, n), there exists some associated finite Dickson nearfields, of order ¢" which arise
by taking the Galois Field GF(¢") and changing the multiplication such that DN(q,n) = GF(¢")? = (GF(¢q"),+,0).

Proof .

e Let (¢,n) be a Dickson pair where ¢ = p'.

e Let (F,+,) be a finite field with characteristic p where p is prime. There exists an integer In > 1 such that
|F'| = p!™. This field is called the Galois Field F' := GF(¢") = GF(p'™) containing ¢" elements. The multiplicative
group (F*,-) is cyclic. So F* is generated by an element denoted g, i.e. F* = (g). Let us consider H, the
subgroup of (F*,-) generated by ¢", i.e., H = (¢"). So F*/H is the group of all right cosets of H. Each coset
is of the form Hg’ = {hg’,Vg’ € F*} where j =0,...,n — 1. Since H is a subgroup of F'*, the number of right
cosets of H in F'* is the index (F'* : H) of H in F*. Since F* is finite (F* : H) is finite and by Lagrange’s
Theorem (F* : H)=|F*/H|=n= % Thus

FX/H: {HgJOSJSn—l} = {H907Hgl,...7Hgn_1}_

Let i(k) = % for k = 1,...,n. It can be shown that the set {2(1),2(2),,z(n)} forms a complete set of
the powers of the coset representatives because the set {i(1),i(2),...,i(n)} of residues modulo n give the set
{0, 1,...,n— 1}. Therefore F'*/H can also be represented as follows

F*/H = {Hgi(l),Hgi(2)7...,Hgi(”)} = {Hg%7ngf%ll7...,ng;:11 }
e Now let us consider
a: F—F
f=fe
which is a power of the Frobenius automorphism, i.e., o = ! (by Definition [2.4)).
e The map
A: F*/H — Aut(F,+,)

k_1

q
Hg et — af

gk1 -1 gk2 -1 k11 gk2 -1
is well-defined: suppose Hg «-T ,Hg <t € F*/H such that Hg <1 = Hg a1 . Then

ky_ ko _4q k1 _4q ko _ k1 -1 ko 1
ngqfll :ngqfl :>gq<171 :gqcrl1 = q = q

q—]. q—_]. :>k31:k‘2

gk2 -1

= ot =M = )\(Hg%) = )\(Hg a1 )

e The map
T F* - F*/H
ak—1
f— HgaT

is a canonical bijection which satisfies the homomorphism property. So 7 is a canonical bijection.
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e The composition map is defined as

¢d=Nom: F* — Aut(F,+,-)
fHakforfGng:—;ll
which is a coupling map on F*. We need to show that DN (q,n) = F'? i.e., ¢ 0 ¢p = bg.,(v)a for all a,b € F*.
Since F'*/H can be presented as F*/H = {Hgi(l), Hg'® . Hgi(")} then
F*=H¢WUuH¢® U-..uHg™.

k_ .
Therefore the elements of F'* can be written as gqﬂrll 10 for § € Nand 1 < k < n. It follows that if a = 92(k1)+n61

k1 _q ka1
and b = g*k2)t%2 then m(a) = Hg'o=1 , m(b) = ngqil . S0 ¢po = (Ao p)(a) = aF and ¢, = (Ao ¢)(b) = ak2.
It follows that ¢, o ¢y = a1 0 aF? = a1 Fkz,

ko _ gk
Also da(b)a = abr (b) - a = b1 a = g(Har+nde)a™t  2istamsy _

ki1+ko _gky k1 _ . ki+ko
gq q311+q L+ nd2q*1 +nd _ gq 1q—12 L4n(61+¢"1 62) It follows that ¢¢a(b)a = oF1tk2 Thus a0 Py = ¢¢a(b)a .
Thus if we consider the field F := (GF(q"),+,-) and the coupling map ¢ such that DN(q,n) = F? =
(GF(q"),+,04) (as a p—derivation of the finite field F'). Then by Definition|3.1| DN (g, n) is a Dickson nearfield

containing ¢” elements.

Lemma 3.7. For all Dickson pair (g, n) where n # 1, any Dickson nearfields constructed by the Galois Field GF(q™)
are proper finite nearfields.

Proof . From finite Dickson construction

DN(g,n) := GF(¢")* = (GF(¢"), +,0).

We would like to show that (GF(g"),+,0) is not fields i.e., there exist a,b € (GF(¢") such that aob # boa. The
coupling map is

p=Aom: F* — Aut(F,+,")

fraf for k=1,---,n.
a if fe Hgit
2
a? iffengfzi—l1
S o frq )
a" it f e Hg'r .
For a,b € (GF(¢")
ala) - b ibeHgZ%} a?-b ibeHgg%
2_ 2_
,_ [oum)-b ifb#0 o*(a)-b ifbe Hy'=r a” b ifbe Ho'rt
T o = R R
a™(a)-b ibeHg% ad" b ibeHg%
g —1 ql—1
Let a=¢g" € Hg T and b= gHg a1 . We have
gtog=a'(g")g
=(9")g
nq—&-l.
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Also
gog" =a"(g)g"

=g¢"*"! because o™ = id.

Assume that g9+t = g+ then ¢"(9=Y = 1. But since F* = (g), then ord (g) = ¢" — 1. It follows that if
g' =1= ¢" — 1/t. Moreover, since ¢g"9~1) = 1, we have ¢" — 1/n(q — 1). Thus,

l+g+-+¢" " /n.

But g=p'>1s014q+---+¢" ' >n. It follows that 1 + ¢+ --- + ¢" ' does not divides n. Thus ¢"(¢=1 £ 1.

n_ 1_
This means that g™ o g # g o g"™. There exists a = g" € Hg T and b= gngqi—l1 such that nob # a o b. Thus the
finite Dickson nearfields associated to the pair (¢, n) where g # 1 are proper finite nearfields (not fields). O

Theorem 3.8. [2] By taking all pairs of Dickson numbers, all finite Dickson nearfields arise in the way described in
Theorem [3.6

Proof . See [2] for more details. [

4 Concluding comments

As differences, for a finite field up to isomorphism, there exists a unique finite field of order p™ , but for a
finite Dickson nearfield that arises from the pair (¢,n), there does not exist a unique finite Dickson nearfield. The
multiplicative group of a finite field is cyclic but the multiplicative group of a Dickson nearfield is metacyclic.
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