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Abstract

Carbon-capture-and-storage (CCS) is an important technology to reduce CO2 emissions. A commercial method to
establish the CCS on a large scale is to sequestrate CO2 in depleted oil reservoirs and to combine it with enhanced
oil recovery (EOR) operations. In this way, the CO2 emission is reduced, as well as the oil production increases.
The joint CCS-EOR planning problem determines the optimum allocation of existing CO2 to depleted reservoirs
and the scheduling of the EOR operations. This paper presents a deterministic MIP model which is a modification
of an existing model in the literature. Then, this model is extended to a two-stage stochastic model in which the
parameters expressing the initial oil yields and the periodic depletion factor of oil yields associated with reservoirs
are uncertain, and the uncertainty is realized as soon as the operation of the reservoir is started. Our stochastic
model is computationally more efficient than the existing model in the literature, due to the reduction of binary
variables, as well as the absence of “non-anticipativity constraints”. Instead, our stochastic model is less realistic.
The proposed models are examined over two case studies taken from the literature. The obtained results confirm the
higher effectiveness of our stochastic model.
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1 Introduction

According to the report of the International Energy Agency (IEA, 2015) the world’s energy demand will increase
by 37% until 2040. Currently, a large part of energy is provided by fossil fuels, and due to the industrialization of
developing countries, the world’s oil demand will grow by 20% until 2040. Consequently, it is predicted that the CO2

emissions, which is one of the main factors of environmental pollution, will increase about 80% during the next 50
years [22].

One way to reduce CO2 emissions is to use the carbon-capture-and-storage (CCS) technology. CCS involves
removing CO2 from the flue gas, transferring the captured CO2 through the pipelines, and storing it in underground
sites [1]. Depleted crude oil reservoirs are of great interest among potential CO2 storage sites, because in this way,
the stored CO2 can be used in enhanced oil recovery (EOR) operations in order to increase reservoir exploitation [9].
EOR refers to the transfer of oil remaining in the reservoir by injecting materials other than what typically exists
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in the reservoir. Miscible EOR is one type of EOR operations in which CO2 is injected to enhance the oil recovery
by dissolving, swelling, and reducing oil viscosity [1]. Nowaday, most of the world’s produced oil comes from mature
oil fields in the second half of their life. Replacing existing oil fields with new discoveries is difficult, since extraction
operations are costly and time-consuming. On the other hand, growing oil demand encourages oil companies to put
EOR methods in their plan.

In this paper the joint CCS-EOR planning problem is formulated as a two-stage stochastic programming (SP)
model. Stochastic programming is an approach to model optimization problems in which some of the parameters
are affected by uncertainty. Jonsbraten [13] classified the uncertainty in multistage SP problems into two groups,
namely exogenous and endogenous. In a situation with exogenous uncertainty, optimization decisions cannot affect
the underlying stochastic process. In contrast, in SP problems with endogenous uncertainty, decisions affect the
underlying stochastic process by changing the probability distribution (the first type) or determining the times at
which the uncertainty is realized (the second type). In the second type of endogenous uncertainty, the scenario
tree describing the uncertainty realization is decision-dependent; hence, there are complexities in satisfying the non-
anticipativity (NA) constraints [6, 10].

In the continuation of this section, the CCS-EOR planning literature is reviewed in short and then, the innovations
of this paper are specified.

1.1 A review of the literature on the CCS-EOR planning

CCS is an important technology to reduce CO2 emissions. Middleton and Bielicki [17] and Middleton, et al.
[18] presented MILP models based on Geographic Information System (GIS) data to design a CCS pipeline network.
Their models decide where and how much CO2 to capture and store, and where to construct pipelines to minimize the
annualized costs of CO2 sequestering. Elkamel, et al. [4] presented an MILP model to co-optimize the power generation
and the CO2 capture from generating stations. Some studies focused on the best source-destination adaptation for
CCS networks. Tan, et al. [20, 21] presented a MINLP model for CO2 source-sink matching in CCS. Tapia, et al. [23]
optimized the CO2 capture, utilization, and storage system given multiple CO2 sources and sinks. In practice, the
estimation of the storage site capacity and injection rate limit is affected by uncertainty. furthermore, new information
may be obtained, or unexpected events may occur, due to long planning horizons of CCS systems; therefore, the risk
management is an important task. In this regard, Tapia and Tan [24] developed a fuzzy MILP model for multi-period
planning of CCS systems, and He, et al., [8] proposed a robust two-stage stochastic MILP model. Zhang, et al., [28]
presented an MILP model to develop a CCS-EOR supply chain superstructure by selecting CO2 sources, capture sites,
CO2 pipelines, and utilization and storage places.

The studies reviewed above deal with just CO2 capture and storage planning. However, a commercial way to
deploy CCS on a large scale is to combine it with EOR operations. The main advantage of the joint CCS-EOR is that
the CO2 emission is reduced, and the oil recovery increases [2]. Jiang, et al. [12] assessed the technical and economical
performance of CCS-EOR with respect to more than 40 historical related projects. The combination of CCS and EOR
has been addressed in a few studies. Safarzadeh and Motahhari [19] presented a genetic algorithm to co-optimize
CO2 storage and oil production. Ettehad [5] utilized the Monte-Carlo simulation for CCS-EOR planning, where
the annual captured CO2 from the power plant and CO2 injection cost in the oilfield are assumed to be uncertain.
Jahangiri and Zhang [11] proposed an ensemble-based optimization algorithm to co-optimize oil extraction and CO2

sequestration. Middleton [16] presented a two-phase algorithm for modeling of the CCS infrastructure and planning
the EOR operations assuming that there is only one oil reservoir. Kamali and Cinar [14] addressed the CCS-EOR
planning with simultaneous water and gas injection. Ampomah, et al., [3] addressed an artificial neural network (ANN)
optimization approach for the CO2 storage and EOR planning problem under uncertainty. You, et al., [27] coupled
ANN models with the particle swarm optimization (PSO) algorithm to co-optimize the CCS-EOR decisions. You,
et al., [26] coupled ANN models with the multi-objective PSO algorithm to design water-alternating-CO2 injection
projects considering multiple objectives including maximizing the oil recovery and the amount of CO2 storage. Wang,
et al. [26] addressed the optimization of CCS-EOR decisions while considering the impact of decided policies on the
oil price and CO2 subsidy. Guo et al. [7] presented a novel framework for CCS-EOR project to systematically evaluate
the CCS network design and the EOR utilization procedure. Kashkooli, et al. [15] addressed the CO2 storage and
EOR planning problem by considering the dynamic well flow settings as the optimization variables.

To the best of our knowledge, a few works are addressing the joint CCS-EOR planning problem from the math-
ematical optimization modeling viewpoint [22, 1] . Tapia, et al., [22] assumed that one CO2 source and multiple oil
reservoirs are available. The aim is to design a network to transfer CO2 from source to reservoirs and schedule the
EOR operations. They formulated the problem as an MILP model. Abdoli, et al., [1] resolved the weaknesses of the
model of Tapia, et al., [22] and then extended it to a SP model under endogenous uncertainty of second type. In this
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paper, we introduce a new two-stage SP model for the CCS-EOR planning problem, to get ride of the complexities in
satisfying the NA constraints in the multi stage SP model of Abdoli, et al., [1].

1.2 The contribution and the organization of this paper

The main contributions of this paper are as follows: First, an equivalent reformulation of the deterministic model
of Abdoli, et al., [1] is developed, that in which the planning time horizon is no longer divided into equally length
sections. Then, the deterministic model is extended to a two-stage SP model that the uncertainty of the oil yield of
reservoirs and their depletion factors is incorporated in it. The nature of uncertainty in this model is exogenous and
the model is two-stage instead of multi stage. Thus, we get ride of the complexities in satisfying the NA constraints
in the multi stage SP model of Abdoli, et al., [1], that leads to more computationally effectiveness, confirmed with
computational experiments over two case-studies taken from Abdoli, et al., [1].

The remainder of this paper is organized as follows: Section 2 provides a detailed description of the CCS-EOR
planning problem, taken from Abdoli, et al., [1], and presents the corresponding deterministic model. Section 3
presents the two-stage SP model. Section 4 examines the proposed models by two case-studies. Finally, Section 5
concludes and offers directions for future research.

2 Problem description and mathematical formulation

2.1 Problem description

Following Abdoli, et al., [1], consider a CCS-EOR system consisting of one CO2 common source and a set I =
{1, . . . , n} of depleted oil reservoirs (indexed by i). Suppose that the planning time horizon involves T time periods
of equal length and let T = {1, 2, . . . , T} (indexed by t) be the set of time periods.. The time-dependent parameter
F̄t is used to show the maximum CO2 flow that can be sent from the CO2 source in time period t (in Mt); this is
because the injection of CO2 from the common source may increase over time as the companies are developed. The
aim is to design a CCS network, connecting the common CO2 source to a subset of reservoirs via a branching point
and deciding the amount of CO2 transferred throughout the network. The objective is to maximize the total revenue
obtained by the recovered oil plus the credits received from CO2 storage minus the fixed costs of CCS network design
and the variable costs of transferring CO2 throughout the network.

Two types of pipelines can be utilized in the network designing: the primary pipeline connecting the CO2 source
to the branching point and the secondary pipelines that are extended from the branching point to the reservoirs. The
lengths of the primary pipeline and the secondary pipeline associated with reservoir i are denoted by d and d′i (in km),
respectively. The primary and secondary pipes are divided into several types depending on their diameter, length and
material. Let L (indexed by ℓ) and K (indexed by k) be the sets of different types that can be selected for the primary
and secondary pipelines, respectively. Following Abdoli, et al., [1], the other required parameters are described as
follows:

f
i
, f̄i The lower and upper bounds on the amount of CO2 that is allowed to be injected into reservoir i during

each period of its utilization (in Mt), respectively

uℓ ,ūℓ The minimum and the maximum amounts of flow that can be transferred through the primary pipeline of
type ℓ in each period (in Mt), respectively

wk, wk The minimum and the maximum amounts of flow that can be transferred through the secondary pipeline
of type k in each period (in Mt), respectively

gℓ, g
′
i,k The fixed costs of establishing a primary pipeline of type ℓ and a secondary pipeline of type k associated

with reservoir i (in M$), respectively

hℓ, h
′
i,k The variable cost associated with transferring CO2 through a primary pipeline of type ℓ (in

M$

Mt× km
),

and the variable cost of transferring CO2 through a secondary pipeline of type k associated with reservoir

i (in
M$

Mt× km
)

ci The total capacity of reservoir i (in Mt)
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θmax
i The amount of oil that can be recovered per megaton of CO2 injection at the beginning of the utilization

of reservoir i (in million barrels)

mi The rate of decrease in the yield of reservoir i from one period to the next one (unit-less)

vi The value of oil recovered from reservoir i (in
M$

Mbbls
)

αi The portion of the total injected CO2 in reservoir i that is sequestered in it (unit-less)

b The credit of CO2 sequestered in reservoirs (in
M$

Mt
)

ai The earliest period at which the exploitation of reservoir i is allowed to start

a′i The latest time period at which the exploitation of reservoir i is allowed to start

ei The duration of the operation of reservoir i (expressed in the number of periods)

βt The coefficient used in calculating the net present value of one dollar in time period t
(considering ρ as the interest rate in each time period, we have βt =

1
(1+ρ)t

)

Following Abdoli, et al., [1] with some difference, we assume that the primary pipeline as well as the secondary
pipelines corresponding to the reservoirs for which we decided to do the operation, are ready at the beginning of
the first period. In other words, we ignore the construction time and assume that the CO2 transferring through the
pipelines can be started whenever needed.

2.2 Mathematical model

Concerning the problem description and defined sets and indices, the decision variables are defined as follows:

δℓ The binary variable that is 1 if the primary pipeline of size ℓ is established; otherwise 0

δ′i,k The binary variable that is 1 if the secondary pipeline of type k is established for reservoir i, otherwise 0

ηi,t,k The binary variable that is 1 if the reservoir i is utilized in period t and the secondary pipeline of type k
is used for it, otherwise 0

yi Nonnegative continuous variable indicating the time period that utilization of reservoir i is started;
otherwise 0

ut,ℓ Nonnegative continuous variable indicating the amount of CO2 flow on the primary pipeline in time
period t if the primary pipeline of type ℓ is exploited for the operations, otherwise is 0 (in Mt)

wi Nonnegative continuous variable indicating the amount of CO2 flow transferred through the secondary
pipeline associated with reservoir i in each time period of its utilization (in Mt)

qi,t,k The nonnegative continuous variable representing the amount of flow on the secondary pipeline associated
with reservoir i in time period t, which is equal to wi if the reservoir i is utilized in time period t and
the secondary pipeline of type k is used for it, otherwise it is 0 (in Mt)

xi,t The nonnegative continuous variable representing the amount of oil recovered by reservoir i in time
period t (in Mbbls)

With respect to the above notations, we can formulate the problem in the deterministic case. The deterministic
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model, consists of objective function (2.1) together with constraints (2.2)–(2.18) as listed below:

max z =−
∑
ℓ∈L

gℓδℓ −
∑
i∈I

∑
k∈K

g′i,kδ
′
i,k −

∑
t∈T

βt

(∑
ℓ∈L

dhℓut,ℓ +
∑
k∈K

∑
i∈I

d′ih
′
i,kqi,t,k

)

+
∑
t∈T

βt

∑
i∈I

vixi,t +
∑
t∈T

βt

∑
k∈K

∑
i∈I

bαiqi,t,k (2.1)

Subject to:∑
ℓ∈L

δℓ ≤ 1 (2.2)

∑
k∈K

δ′i,k ≤
∑
ℓ∈L

δℓ ∀i ∈ I (2.3)

∑
k∈K

ηi,t,k ≤ 1 ∀i ∈ I, t ∈ T (2.4)

∑
t∈T

ηi,t,k = eiδ
′
i,k ∀ i ∈ I, ∀k ∈ K (2.5)

∑
t′∈T

t′≥t+2

ηi,t′,k ≤ ei (1− ηi,t,k + ηi,t+1,k) ∀i ∈ I,∀t ∈ T : t ≤ T − 2, ∀k ∈ K (2.6)

ηi,1,k ≤ yi ≤ 1 + T (1− ηi,1,k) ∀i ∈ I, ∀k ∈ K (2.7)

− t (ηi,t−1,k − ηi,t,k) ≤ yi ≤ t+ T (1 + ηi,t−1,k − ηi,t,k) ∀i ∈ I, t ∈ T : t ≥ 2, ∀k ∈ K (2.8)

ai
∑
k∈K

δ′i,k ≤ yi ≤ a′i
∑
k∈K

δ′i,k ∀i ∈ I (2.9)

∑
k∈K

max(f
i
, wk)δ

′
i,k

≤ wi ≤
∑
k∈K

min(f̄i, wk)δ
′
i,k ∀i ∈ I (2.10)

wi − f̄i (1− ηi,t,k) ≤ qi,t,k ≤ wi ∀i ∈ I, t ∈ T, ∀k ∈ K (2.11)

qi,t,k ≤ f̄iηi,t,k ∀i ∈ I, t ∈ T, ∀k ∈ K (2.12)∑
t∈T

αiqi,t,k ≤ ci ∀i ∈ I, ∀k ∈ K (2.13)

∑
i∈I

∑
k∈K

qi,t,k =
∑
ℓ∈L

ut,ℓ ≤ F̄t ∀t ∈ T (2.14)

uℓδℓ ≤ ut,ℓ ≤ uℓδℓ ∀t ∈ T, ∀ℓ ∈ L (2.15)

xi,t ≤ θmax
i

∑
k∈K

qi,t,k ∀i ∈ I,∀t ∈ T (2.16)

xi,t ≤ mixi,t−1 + θmax
i f̄i (2− ηi,t−1,k − ηi,t,k) ∀i ∈ I,∀t ∈ T : t ≥ 2, ∀k ∈ K (2.17)

δℓ ∈ {0, 1} ∀ℓ ∈ L

δ′i,k ∈ {0, 1} ∀i ∈ I,∀k ∈ K

ηi,t,k ∈ {0, 1} ∀i ∈ I,∀t ∈ T, ∀k ∈ K

yi, wi ≥ 0 ∀i ∈ I

ut,ℓ ≥ 0 ∀t ∈ T,∀ℓ ∈ L

qi,t,k ≥ 0, xi,t ≥ 0, ∀i ∈ I,∀t ∈ T, ∀k ∈ K. (2.18)
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The objective function (2.1) maximizes the total profit of carbon credits and revenue from EOR operations.
Constraint (2.2) ensures that at most one type is selected for the primary pipeline.

Constraint set (2.3) indicates that the secondary pipelines are not established if there is no primary pipeline, and
constraint (2.4) ensures that at most one type is selected for the secondary pipeline associated with each reservoir.
Constraint sets (2.5) and (2.6) imply that the operating life of reservoir i (in the case of utilization) equals ei consecutive
periods. Constraint sets (2.7) and (2.8) determine the time period in which the activity of reservoir i (in the case of
utilization) is started.

Constraint (2.9) insures that for each reservoir i the start time of operation belongs in the range [ai, a
′
i]. Constraint

set (2.10) determine the range of the amount of CO2 flow injected into reservoir i during each period of its activity,
provided that the reservoir i is utilized and the secondary pipeline of type k is used for its operation. Constraint sets
(2.11) and (2.12) ensure that if the secondary pipeline of type k is used for the operation of reservoir i, then for each
time period t of utilizing the reservoir i, the variable qi,t,k is equal to wi, otherwise 0. Constraint set (2.13) indicates
that the amount of CO2 stored in a reservoir during its operational life cannot exceed its capacity. Constraint set
(2.14) guarantees that in each period, the total amount of flow transferred through the secondary pipelines is equal
to the amount of flow transferred through the primary pipeline; further, the amount of flow on the primary pipeline
cannot exceed the maximum flow. Constraint set (2.15) ensures that the amount of flow along the primary pipeline is
between specified lower and upper bounds in each period. Constraint sets (2.16) and (2.17) indicate the decrease in
oil yield during the oil recovery periods. Constraint set (2.18) express the type of variables.

In the following section, the deterministic model is extended to incorporate uncertainty.

3 Extension of deterministic model to a two-stage stochastic model

In deterministic model, all parameters are assumed to be definite; however, in practice, the initial oil yield of
reservoir i (θmax

i ) and the rate of decrease in the yield of reservoir i (mi) are affected by uncertainty. In this section, we
assume that these two parameters are indeterminate, and the uncertainty is resolved upon the utilization of reservoir i
is started. Let S (indexed by s) be the set of all possible scenarios, and assume that ps shows the occurrence probability
of scenario s where

∑
s∈S

ps = 1. For each reservoir i and under each scenario s, the following uncertain parameters are

defined:

θmax
i,s The amount (in Mbbls) of oil that can be recovered per megaton of CO2 injection at the beginning of

the utilization of reservoir i under scenario s

mi,s The rate of decrease in the yield of reservoir i from one period to the next one under scenario s (unit-less)

The stochastic model aims to maximize the total expected profit. In the first stage, we decide on establishing the
primary and secondary pipelines, and on the start time of the operations for each reservoir (if we decide to utilize that
reservoir). As soon as the operations start for a reservoir, the uncertain parameters associated with that reservoir are
resolved. Afterward, in the second stage, it is decided that what amount of CO2 is transferred through the established
pipelines. Thus, we encounter with a two-stage SP problem.

Except for θmax
i,s and mi,s, other parameters in the stochastic model have the same definition as in the deterministic

model. The definition of decision variables δℓ, δ
′
i,k, ηi,t,k and yi in the stochastic model is the same as in deterministic

model; these are first-stage variables of our stochastic model. However, the other variables will be scenario dependent
(second-stage variables), as defined below:

Second-stage decision variables

ut,ℓ,s The nonnegative continuous variable representing the amount of CO2 flow on the primary pipeline in period
t under scenario s, if the primary pipeline of type ℓ is exploited for the operations, otherwise is 0 (in Mt)

wi,s The nonnegative continuous variable indicates the amount of CO2 flow transferred through the secondary
pipeline associated with reservoir i in each period of its utilization under scenario s (in Mt)

qi,t,k,s The nonnegative continuous variable representing the amount of flow on the secondary pipeline associated
with reservoir i in period t under scenario s, which is equal to wi,s if the reservoir i is utilized in period t
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under scenario s and the secondary pipeline of type k is used for it, otherwise it is 0 (in Mt)

xi,t,s The nonnegative continuous variable representing the amount of oil recovered by reservoir i in period t
under scenario s (in Mbbls)

Using these notations, we can formulate the problem in the stochastic case. The two-stage stochastic model consists
of objective function (3.1) together with constraints (3.2)–(3.18) stated below:

max z =−
∑
ℓ∈L

gℓδℓ −
∑
i∈I

∑
k∈K

g′i,kδ
′
i,k

+
∑
s∈S

ps

(
−
∑
t∈T

βt

(∑
ℓ∈L

dhℓut,ℓ,s +
∑
k∈K

∑
i∈I

d′ih
′
i,kqi,t,k,s

)

+
∑
t∈T

βt

∑
i∈I

vixi,t,s +
∑
t∈T

βt

∑
k∈K

∑
i∈I

bαiqi,t,k,s

)
(3.1)

Subject to:∑
ℓ∈L

δℓ ≤ 1 (3.2)

∑
k∈K

δ′i,k ≤
∑
ℓ∈L

δℓ ∀i ∈ I (3.3)

∑
k∈K

ηi,t,k ≤ 1 ∀i ∈ I, t ∈ T (3.4)

∑
t∈T

ηi,t,k = eiδ
′
i,k ∀i ∈ I , k ∈ K (3.5)

∑
t′∈T

t′≥t+2

ηi,t′,k ≤ ei (1− ηi,t,k + ηi,t+1,k) ∀i ∈ I , k ∈ K,∀t ∈ T : t ≤ T − 2 (3.6)

ηi,1,k ≤ yi ≤ 1 + T (1− ηi,1,k) ∀i ∈ I ,∀k ∈ K (3.7)

− t (ηi,t−1,k − ηi,t,k) ≤ yi ≤ t+ T (1 + ηi,t−1,k − ηi,t,k) ∀i ∈ I ,∀k ∈ K, t ∈ T : t ≥ 2 (3.8)

ai
∑
k∈K

δ′i,k ≤ yi ≤ a′i
∑
k∈K

δ′i,k ∀i ∈ I (3.9)

∑
k∈K

max(f
i
, wk)δ

′
i,k

≤ wi,s ≤
∑
k∈K

min(f̄i, wk)δ
′
i,k ∀i ∈ I ,∀s ∈ S (3.10)

wi,s − f̄i (1− ηi,t,k) ≤ qi,t,k,s ≤ wi,s ∀i ∈ I,∀t ∈ T ,∀k ∈ K,∀s ∈ S (3.11)

qi,t,k,s ≤ f̄iηi,t,k ∀i ∈ I,∀t ∈ T ,∀k ∈ K,∀s ∈ S (3.12)∑
t∈T

αiqi,t,k,s ≤ ci ∀i ∈ I ,∀k ∈ K,∀s ∈ S (3.13)

∑
i∈I

∑
k∈K

qi,t,k,s =
∑
ℓ∈L

ut,ℓ,s ≤ F̄t ∀t ∈ T,∀s ∈ S (3.14)

uℓδℓ ≤ ut,ℓ,s ≤ uℓδℓ ∀t ∈ T, ∀ℓ ∈ L,∀s ∈ S (3.15)

xi,t,s ≤ θmax
i,s qi,t,k,s ∀i ∈ I,∀t ∈ T,∀k ∈ K,∀s ∈ S (3.16)

xi,t,s ≤ mi,sxi,t−1,s + θmax
i,s f̄i (2− ηi,t−1,k − ηi,t,k) ∀i ∈ I, t ∈ T : t ≥ 2 , k ∈ K,∀s ∈ S (3.17)
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δℓ ∈ {0, 1} ∀ℓ ∈ L

δ′i,k ∈ {0, 1} ∀i ∈ I,∀k ∈ K

ηi,t,k ∈ {0, 1} ∀i ∈ I,∀t ∈ T, ∀k ∈ K

yi ≥ 0 ∀i ∈ I

ut,ℓ,s ≥ 0 ∀t ∈ T, ∀ℓ ∈ L,∀s ∈ S (3.18)

wi,s ≥ 0 ∀i ∈ I,∀s ∈ S

qi,t,k,s ≥ 0, xi,t,s ≥ 0 ∀i ∈ I,∀t ∈ T, ∀k ∈ K,∀s ∈ S

The objective function (3.1) maximizes the total expected profit. Constraint set (3.2)–(3.9) have the same description
as in constraint set (2.2)–(2.9) in the deterministic model. Moreover, constraint set (3.10)–(3.17) have the same
descriptions as in constraint set (2.10)–(2.17), with the difference that they are specified for each scenario. Constraint
set (3.18) express the type of decision variables.

4 Computational experiments

In this section, we evaluate the proposed models on two case-studies taken from Abdoli, et al., [1] and compare
them with the models presented in Abdoli, et al., [1]. All experiments are performed on a laptop with a Core-i5 CPU
and 8GB of RAM. The models are implemented in the GAMS software, and the CPLEX solver embedded in GAMS
is used in its default settings to solve them.

4.1 4.1 Case-study 1

Consider a CCS-EOR system with three oil reservoirs, and assume that the secondary pipelines are directly
connected to the CO2 source (i.e., there is no primary pipeline and the branching point is CO2 source itself). Suppose
that there is only one type of secondary pipe (i.e., K = {1}), and consider a 20-year time horizon. The value of
parameters in the deterministic case is as follows: d = 0, F̄t = 22 (for each t ∈ T), ρ = 8, b = 23, w1 = 2, w1 = 15. In
addition, the value of parameters associated with the reservoirs is summarized in Table1.

Table 1: Reservoirs characteristics in case-study 1

Parameters associated with reservoir i Reservoirs

i = 1 i = 2 i = 3

di 150 200 130

ai 1 1 1

a′i 5 10 5

ci 100 150 100

fi 2 2 2

f̄i 15 15 15

ei 15 10 15

αi 0.95 0.85 0.35

vi 100 70 90

θmax
i 2.5 3.0 3.5

mi 0.95 0.90 0.75

g′i,1 100 100 100

h′
i,1 0.43 0.43 0.43

The deterministic model associated with case-study 1 has 634 constraints and 147 and 64 continuous and binary
variables, respectively. It is solved to optimality via solver CPLEX in 0.60 seconds. A comparison of our determinis-
tic model and that of Abdoli, et al., [1], in terms of model size and solving time, for case-study 1, is prepared in Table 2.
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Table 2: Our deterministic model vs the corresponding model of Abdoli, et al., [1] for case-study 1

Our model Model of [1]
Number of continuous variables 147 147
Number of binary variables 64 73
Number of constraints 634 642
Solving time 0.60 0.57

Now, we consider the stochastic version of case-study 1. Following Abdoli, et al., [1] suppose that for the vector
(θmax

1 ,m1), three values (2.50, 0.95), (1.75, 0.92) and (3.25, 0.98), for the vector (θmax
2 ,m2), two values (2.00, 0.85) and

(4.00, 0.95), and for the vector (θmax
3 ,m3), two values (2.25, 0.65) and (4.75, 0.85), each one with equal probabilities,

are possible and assume that these parameters are independent. Thus, the scenario set will be S = {1, 2, . . . , 12}
containing 12 scenarios each one with occurrences probability of 1/12.

Our stochastic model associated with case-study 1 has 4880 constraints and 1720 and 64 continuous and binary
variables, respectively. It is solved to optimality via solver CPLEX in 3.5 seconds. A comparison of our stochastic
model and that of Abdoli, et al., [1], in terms of model size and solving time, for case-study 1, is showed in Table 3.

Table 3: Our stochastic model vs the corresponding model of Abdoli, et al., [1] for case-study 1

Our model Model of Abdoli, et al., [1]
Number of continuous variables 1720 1753
Number of binary variables 64 876
Number of constraints 4880 38713
Solving time 3.5 1879

4.2 Case-study 2

Case-study 2 is an instance involving 6 oil reservoirs and a primary pipeline of length 150 km. Supposse that there
is only one type of primary and secondary pipes (i.e., L = {1} and K = {1}), and consider a 30-year planning horizon.
The value of parameters in the deterministic case is as follows: d = 150, F̄t = 15 (for each t ≤ 10) and F̄t = 25 (for
each 11 ≤ t ≤ 30), ρ = 10, b = 15, u1 = 0, ū1 = 25, w1 = 1, w1 = 10, g1 = 95, h1 = 0.25. In addition, the value of
parameters associated with reservoirs is summarized in Table 4.

Table 4: Reservoirs characteristics in case-study 2

The parameters associated with reservoir i Reservoirs
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

di 50 30 70 100 45 60

ci 100 150 75 200 200 150

ai 6 1 6 1 1 1

a′i 10 15 15 15 15 15

fi 1 1 1 1 1 1

f̄i 5 7 8 10 9 7

ei 20 15 15 10 10 15

αi 0.50 0.90 0.95 0.85 0.80 0.75

vi 80 80 80 80 80 80

θmax
i 2.63 0.98 0.79 4.50 3.00 1.40

mi 0.90 080 0.95 0.97 0.93 0.92

g′i,1 95 95 95 95 95 95

h′
i,1 0.25 0.25 0.25 0.25 0.25 0.25

The deterministic model associated with the case-study 2 has 1766 constraints and 403 and 187 continuous and
binary variables, respectively. It is solved to optimality via solver CPLEX in 4.29 seconds. A comparision of our
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deterministic model and that of Abdoli, et al., [1], in terms of model size and solving time, for case-study 2, is
prepared in Table 5 .

Table 5: Our deterministic model vs the corresponding model of [1] for case-study 2

Our model Model of Abdoli, et al., [1]
Number of continuous variables 403 403
Number of binary variables 187 217
Number of constraints 1766 1787

Now, following Abdoli, et al., [1], suppose that in case-study 2, for parameters (θ
max
1 ,m1), two values (5.35, 0.82)

and (3.75, 0.94), for parameters (θ
max
2 ,m2), two values (0.75, 0.75) and (2.45, 0.96), for parameters (θmax

3 ,m3), two
values (0.45, 0.91) and (1.35, 0.97), and for parameters (θmax

4 ,m4), two values (2.50, 0.84) and (6.25, 0.98), each one
with equal probabilities, are possible. Also, suppose that the vector of parameters (θmax

5 ,m5) accepts only one value
(3.00, 0.93), and the vector of parameters (θmax

6 ,m6) receives only one value (1.40, 0.92). Thus, the scenario set will be
S = {1, 2, . . . , 16} containing 16 scenarios each one with occurance probability of1/16. The stochastic model associated
with case-study 2 has 17246 constraints and 6343 and 187 continuous and binary variables, respectively. It is solved
to optimality via solver CPLEX in 302 seconds. A comparision of our stochastic model and that of Abdoli, et al., [1],
in terms of model size and solving time, for case-study 2, is prepared in Table 6.

Table 6: Our stochastic model vs the corresponding model of Abdoli, et al., [1] for case-study 2

Our model Model of Abdoli, et al., [1]
Number of continuous variables 6343 6433
Number of binary variables 187 3472
Number of constraints 17246 190697
Solving time 302 24 hours

5 Conclusions

In this paper, the joint CCS-EOR planning in a multi-reservoir EOR system was addressed. First, an equivalent
reformulation of the deterministic model of Abdoli, et al., [1] was developed, that in which the planning time horizon
is no longer divided into equally length sections. Then, the uncertainty of the oil yield of reservoirs and its depletion
factor was incorporated to extend the deterministic model to a two-stage SP model. Due to the exogenous nature
of uncertainty in our stochastic model and absence of NA constraints, it is expected that our model be of less time
complexity, confirmed with computational experiments over two case-studies.

For the future work, the proposed stochastic model can be extended by incorporating the uncertainty of the
maximum amount of CO2 that the common source can supply (i.e., the parameter F̄t). Additionally, the modification
of the proposed model to deal more than one CO2 common source can also be considered for future work. Moreover,
the duration of the operation of each reservoir can be considered as a decision variable instead of a fixed parameter,
leads to a more practical model. From the resolution aspect, presenting an appropriate heuristic or exact method to
solve the proposed stochastic model would be a valuable direction for future research.

Data availability statement

All data, models, and codes that support the findings of this study are available from the corresponding author
upon reasonable request.
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