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Abstract

In this paper, we consider the existence and asymptotic behavior of solutions to the following new nonlocal problem

utt −M
(∫

Ω

|∇u|2 dx
)
△u+ δut = |u|ρ−2u in Ω×]0,∞[,

where

M(s) =

{
a− bs for s ∈ [0, a

b [,

0, for s ∈ [ab ,+∞[.

We first state a local existence theorem. Next, if the initial energy is appropriately small, by using Tartar’s method and
the decay rate of the energy, we derive the global existence theorem. As a biproduct, we also obtain the exponential
decay property of the global solution.
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1 Introduction

In this research we study the following nonlocal problem

utt −M
(∫

Ω

|∇u|2 dx
)
△u+ δut = |u|ρ−2u in Ω×]0,∞[,

u = 0, on Γ×]0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(1.1)

where Ω is a bounded domain in Rn with smooth boundary Γ,

M(s) =

{
a− bs for s ∈ [0, a

b [,

0, for s ∈ [ab ,+∞[,
(1.2)

a, b > 0, ρ > 2. When M(s) = a+ bs, s ≥ 0, a > 0, b ≥ 0, δ = 0 = µ and Ω is a finite open interval, equation (1.1) was
introduced by Kirchhoff [10] in the study of nonlinear vibrations of the elastic string and is called the wave equation of
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Kirchhoff type after his name. See also Lions [11]. Moreover, it is said a degenerate equation whenM(s) has zeros and a
nondegenerate one when M(s) ≥ m0 > 0,∀s ≥ 0. Many results on the solutions to problem (1.1) have been established
by many authors through various approaches and assumptive conditions (see [1, 2, 4, 5, 7, 17, 14, 15, 22, 23, 24, 26]
and references therein).

A notable characteristic of (1.1) is the presence of the nonlocal coefficient M
(∫

Ω

|∇u|2 dx
)

which depends on

the average

∫
Ω

|∇u|2 dx of the term |∇u|2 in Ω, and hence the equation is no longer a pointwise identity. Nonlocal

problems have gained considerable attention in recent years due to their relevance in modeling physical and biological
phenomena. See [6, 11, 13, 21].

In [27] Yin et al. investigated the existence and multiplicity of nontrivial solution for the new nonlocal problem

−
(
a− b

∫
Ω

|∇u|2 dx
)
△u = |u|ρ−2u in Ω,

u = 0, on Γ.

(1.3)

Also see [9, 20, 28] for generalizations of (1.3)

Motivated for their works, it is interesting to investigate the global solvability of (1.1) with the nonlocal operator
given in (1.3). More precisely, under appropriate assumptions imposed on the initial data and the source term, we
shall establish global existence of solutions by using Tartar’s method [25] combined with suitable a priori estimates
including |△u(t)| and |∇tu(t)| in addition to the usual energy estimate.

This article is organized as follows. In Section 2, we prepare some lemmas needed for our arguments and state the
local existence theorem. In Section 3, we derive the global solution and its exponential decay.

2 Preliminaries

Throughout this paper the functions are all real valued and the notations are as usual, in particular we shall denote
by ∥∥p, (p ≥ 1) the ususal Lp-norm. Positive constants will be denote by C and will change from line to line.

Lemma 2.1 (Sobolev- Poincaré[8] ). Let q be a number with 2 ≤ q < ∞ (n = 1, 2) or 2 ≤ q ≤ 2N
N−2 n ≥ 3), then

there is a positive constant C∗ = C(Ω, q) such that

∥u∥q ≤ C∗∥∇u∥2, for u ∈ H1
0 (Ω). (2.1)

Lemma 2.2 (Gagliardo- Nirenberg[8] ). Let 1 ≤ r < q ≤ ∞ and q ≤ p . Then the inequality

∥u∥q ≤ C∥u∥θWm,q∥u∥1−θ
r for u ∈ Wm,q(Ω)

⋂
Lr(Ω). (2.2)

holds with some constant C > 0 and

θ =

(
1

r
− 1

p

)(
1

r
+

m

N
− 1

q

)−1

provided that 0 < θ ≤ 1 (0 < θ < 1if p = ∞).

Lemma 2.3 (Nakao[16]). Let Φ(t) be a nonincreasing and nonnegative function on [0, T ], T > 1, such that

Φ(t)1+r ≤ k0(Φ(t)− Φ(t+ 1)) on [0, T ], (2.3)

where k0 is a positive constant and r a nonnegative constant. Then

(i) if r > 0, then Φ(t) ≤
(
Φ(0)−r + k−1

0 r[t− 1]+
)−1/r

, on [0, T],
where [t− 1]+ = max{t− 1, 0},

(ii) if r = 0 , then Φ(t) ≤ Φ(0)e−k1[t−1]+ , on [0, T], where k1 = log
(

k0

k0−1

)
.

For sake of completeness, we recall the following local existence result, which may be proved by the Banach
contraction mapping principle (See [3, 18]).
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Theorem 2.4 (Local existence). Let δ be a nonnegative constant and let M(s) be a nonnegative locally Lipschitz
function for s ≥ 0. We assume that f(u) is a nonlinear C1-function such that

|f(u)| ≤ k1|u|α+1 and |f ′(u)| ≤ k2|u|α (2.4)

with certain constants k1, k2, and

0 ≤ α ≤ 2/(N − 4) if N ≥ 5 (0 ≤ α < +∞ if N ≤ 4). (2.5)

If the initial data {u0, u1} belong to (H1
0 (Ω) ∩H2(Ω))×H1

0 (Ω) and satisfy the nondegeneracy condition

M(∥∇u0∥2) > 0, (2.6)

then there exists T = T (∥△u0∥2, ∥∇u1∥2) > 0 such the problem (1.1) admits a unique local solution u in the class

C0
(
[0, T );H1

0 (Ω) ∩H2(Ω)
)
∩ C1

(
[0, T );H1

0 (Ω)
)
∩ C2

(
[0, T );L2(Ω)

)
.

Moreover, if M(∥∇u(t)∥2) > 0 for T > t ≥ 0, then at least one of the following statements is valid

(i) T = +∞,

(ii) ∥∇ut(t)∥22 + ∥△u(t)∥22 → +∞ as t → T−,

(iii) ∥∇u(t)∥22 → 0 as t → T−.

Now, we set

Bρ = sup
u∈H1

0 (Ω)
u̸=0

∥u∥ρ
∥∇u∥2

, γ1 =
b

4a
, γ2 =

Bρ
ρ

3ρa
.

Define the function

h(λ) =
1

4
λ2 − γ1λ

4 − 3

2
γ2λ

ρ,

then

h′(λ) = λ(
1

2
− 4γ1λ

2 − 3

2
ργ2λ

ρ−2).

So, choosing λ ∈ R, such that

0 ≤ λ2 ≤ 1

16γ1
and 0 ≤ λρ−2 ≤ 1

6ργ2
,

we get that this λ′s satisfy the inequality

1

2
− 4γ1λ

2 − 3

2
ργ2λ

ρ−2 ≥ 0

and h′(λ) ≥ 0 for 0 ≤ λ ≤ λ1, where

λ1 = min{(16γ1)−1/2, (6ργ2)
−1/(ρ−2)}. (2.7)

Thus, h(0) = 0 and h(λ) ≥ 0 , ∀λ ∈ [0, λ1]. From this, we get

h0(λ) =
1

2
λ2 − γ1λ

4 − γ2λ
ρ ≥ 1

4
λ2 +

1

2
γ2λ

ρ, ∀λ ∈ [0, λ1]. (2.8)

The energy associated with the problem (1.1) is given by

E(t) =
1

2
∥ut(t)∥22 + J(u(t)), for u ∈ H1

0 (Ω),

where

J(u(t)) =
a

2
∥u(t)∥2 − b

4
∥u(t)∥4 − 1

ρ
∥u(t)∥ρρ.
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By a simple calculation, we see that the energy E(t) satisfies

d

dt
E(t) + δ∥ut(t)∥22 = 0. (2.9)

Therefore, E(t) is a nonincreasing function on t, and

E(t) + δ

∫ t

0

∥ut(s)∥22 ds = E(0). (2.10)

3 Global existence and exponential decay

In this section we state the main results of this paper. Firstly, we give the following two propositions.

Proposition 3.1. If the local solution u(t) of (1.1) satisfies 0 < ∥∇u(t)∥2 < λ1 on [0, T0], then

(E(t) ≥) J(u(t)) ≥ a

(
1

4
∥u(t)∥2 + γ2

2
∥u(t)∥ρ

)
(3.1)

and ∥u(t)∥ ≤
[
4

a
E(t)

]1/2
. (3.2)

Proof . It is obvious, from (2.8) □

Proposition 3.2. Under the assumption of Proposition 3.1, the energy E(t) satisfies

E(t) ≤ E(0)e−kt, (3.3)

where k = Log
(

k0

k0−1

)
, k0 is defined in (3.8).

Proof . For a moment, we suppose that T > 1 . Integrating (2.9) from t to t+ 1 we find

δ

∫ t+1

t

∥u(s)∥22 ds = E(t)− E(t+ 1) ≡ δF 2(t)

Using the mean value theorem for integrals, there exist two points t1 ∈ [t, t+ 1
4 ] and t2 ∈ [t+ 3

4 , t+ 1] such that

∥u(ti)∥2 ≤ 2F (t), i = 1, 2.

Next, multiplying (1.1) by u and integrating over Ω , we obtain

a∥u(t)∥2 − b∥u(t)∥4 − ∥u(t)∥ρρ = ∥ut(t)∥22 − (ut(t), u(t))−
d

dt
(ut(t), u(t)). (3.4)

On the other hand, it follows from the Sobolev-Poincaré inequality and (3.2) that

∥u(t)∥ρρ ≤ Bρ
ρ∥u(t)∥ρ ≤ Bρ

ρ∥u(t)∥ρ−2∥u(t)∥2 ≤ Bρ
ρ

[
4

a
E(0)

](ρ−2)/2

∥u(t)∥2

and

b∥u(t)∥4 ≤ b

[
4

a
E(0)

]
∥u(t)∥2.

Thus, we get

b∥u(t)∥4 + ∥u(t)∥ρρ ≤1

a

[
Bρ

ρ

(
4

a
E(0)

)(ρ−2)/2

+
4b

a
E(0)

]
(a∥u(t)∥2)

≡ (1− η0)(a∥u(t)∥2), 0 < η0 < 1. (3.5)
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Then
η0a∥u(t)∥2 ≤ a∥u(t)∥2 − b∥u(t)∥4 − ∥u(t)∥ρρ ≡ I(t). (3.6)

From (2.10) and (3.4), integrating the resultant inequality over [t1, t2] , we have

η0a

∫ t2

t1

∥u(s)∥2 ds ≤
∫ t2

t1

I(s) ds ≤
∫ t2

t1

∥ut(s)∥2 ds+
∫ t2

t1

|(ut(s), u(s))| ds− (ut(t), u(t))|t2t1

≤F 2(t) +

[(∫ t+1

t

∥ut(s)∥2 ds
)1/2 2∑

i=1

∥u(t)∥

]
sup

s∈[t,t+1]

∥u(s)∥ (3.7)

≤F 2(t) + 5B2F (t)

(
4

a
E(t)

)1/2

.

On the other hand, integrating (2.10) over [t, t2] , noting that E(t2) ≤ 2
∫ t2
t1

E(s) ds due to t2 − t1 ≥ 1
2 , using (3.7)

and the Young inequality, we have

E(t) =E(t2) + δ

∫ t2

t

∥ut(s)∥22 ds

≤2

∫ t2

t1

E(s) ds+ δ

∫ t+1

t

∥ut(s)∥22 ds

≤(1 + δ)

∫ t+1

t

∥ut(s)∥22 ds+ a

∫ t2

t1

∥u(s)∥22 ds

≤(1 + δ +
1

η0
)F 2(t) +

1

2

(
5

η0
B2

)
4

a
F 2(t) +

1

2
E(t)

Thus
E(t) ≤ k0(E(t)− E(t+ 1))

where

k0 = 2

[
1 + δ +

1

η0
+

2

a
(
5

η0
B2)

2

]
+ 1. (3.8)

Therefore, noting (2.10) and applying Lemma 2.3, we obtain (3.3) □

Theorem 3.3. Let N = 3 and ρ > 4. Assume further that {u0, u1} belongs to (H1
0 (Ω) ∩H2(Ω))×H1

0 (Ω) with

∥u0∥ < min{
(a
b

)1/2
, λ1}, [4E(0)]1/2 < λ1 (3.9)

and
[
(2bE1/2(0)ρ−4 + d1(τ0a)

(ρ−4)/2
]2( ∥∇u1∥22

a− b∥∇u1∥22
+ ∥△u0∥22

)ρ−4

< (τ0a)
ρ−4, (3.10)

then problem (1.1) admits a unique global solution

u ∈ C([0,+∞[;H1
0 (Ω) ∩H2(Ω)) ∩ C1([0,+∞[;H1

0 (Ω)) ∩ C2([0,+∞[;L2(Ω)),

and the energy satisfies
E(t) ≤ Ce−kt for t ≥ 0, (3.11)

with some constant k > 0.

Proof . Let u(t) be a unique solution of the problem (1.1) in the sense Theorem 2.4 on [0, T0[ , with T0 the maximal
time where the solution exists. Now, we introduce the function

M(t) = a− b∥∇u(t)∥22, for t ∈ [0, T0[.

So, under the assumption (3.9), there exists a positive constant τ0 such that

M(0) = a− b∥∇u0∥22 = τ0.
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Then there exists T ′
0 such that 0 < T ′

0 ≤ T0 and

M(t) > τ0 for 0 ≤ t ≤ T ′
0.

We can define
T1 = sup{t ∈ [0,+∞[: M(t) > τ0 0 ≤ s < t}.

We see that T1 > 0 and M(t) > τ0 for 0 ≤ s < T1. Let us set

H(t) =
∥∇ut(t)∥22

M(t)
+ ∥△ut(t)∥22 and f(u(t)) = |u(t)|ρ−2u(t).

So, for 0 ≤ s < T1, taking the derivative of H(t) we have

d

dt
H(t) + 2δ

∥∇ut(t)∥22
M(t)

(
1 +

M ′(t)

M(t)

)
=

2

M(t)
(∇f(u(t)),∇ut(t)).

Here, we observe that ∣∣∣∣M ′(t)

M(t)

∣∣∣∣ ≤ ∣∣∣∣b(∇u(t),∇ut(t))

M(t)

∣∣∣∣ (3.12)

≤ b∥∇u(t)∥2
M1/2(t)

H1/2(t) ≤
(
4b2

τ0a
E(0)

)1/2

H1/2(t),

and ∣∣∣∣ 2

M(t)
(∇f(u(t)),∇ut(t))

∣∣∣∣ ≤ 2(ρ− 1)

M(t)
∥|u(t)|ρ−2u(t)∥2∥∇ut(t)∥2

≤ 2(ρ− 1)

M(t)
∥u(t)∥ρ−2

3(ρ−2)∥∇u(t)∥6∥∇ut(t)∥2 (3.13)

≤ 2(ρ− 1)

M1/2(t)
Cρ−1

∗ ∥∇u(t)∥(ρ−2)/2+1
2 ∥△u(t)∥(ρ−2)/2

2

∥∇ut(t)∥2
M1/2(t)

≤

(
ρ− 1

δ1/2τ
1/2
0

Cρ−1
∗ ∥∇u(t)∥ρ/22

)2

H(ρ−2)/2(t) + δ
∥∇ut(t)∥22

M(t)
.

Thus, it follows from (3.12) and (3.13) that

d

dt
H(t) + δ

∥∇ut(t)∥22
M(t)

[
1−

(
4b2E(0)

τ0a

)1/2

H1/2(t)

]

≤

(
ρ− 1

δ1/2τ
1/2
0

Cρ−1
∗

)2

∥∇u(t)∥ρ2H(ρ−2)/2(t). (3.14)

If

1−
(
4b2E(0)

τ0a

)1/2

H1/2(t) > 0, ∀t ∈ [0, T1[ (3.15)

does not hold, it implies a contradiction. In fact, from (3.10) and the continuity of H(t) , we can see that there exists
t∗ > 0 such that

1−
(
4b2E(0)

τ0a

)1/2

H1/2(t∗) = 0, (3.16)

1−
(
4b2E(0)

τ0a

)1/2

H1/2(t) > 0, ∀t ∈ [0, t∗[. (3.17)
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Now, integrating (3.14) from 0 to t∗ and using (3.17) we have

H(t∗) ≤ H(0) +

(
ρ− 1

δ1/2τ
1/2
0

Cρ−1
∗

)2

︸ ︷︷ ︸
θ0

∫ t∗

0

∥∇u(s)∥ρ2H(ρ−2)/2(s) ds

and , hence by Lemma 3.4 in [19]

H1/2(t∗) ≤

[
H(0)−

1
ρ−4 −

(
ρ− 4

2

)
θ0

∫ t∗

0

∥∇u(s)∥ρ2 ds

]− 1
ρ−4

. (3.18)

On the other hand, we see from (3.2) and (3.3) that∫ t∗

0

∥∇u(s)∥ρ2 ds ≤
2ρ

aρ/2

∫ t∗

0

Eρ/2(s) ds ≤
[
4E(0)

a

]ρ/2(
1 +

ek

k

)
. (3.19)

By (3.18) and (3.19), we infer that

H1/2(t∗) ≤
[
H(0)−

ρ−4
2 − d1E

ρ/2(0)
]− 1

ρ−4

(3.20)

with d1 = (ρ− 4)

[
(ρ−1)Cρ−1

∗

δ1/2τ
1/2
0

]2 (
4
a

)ρ/2 (
1 + ek

k

)
Hence, using (3.10) we get

1−
(
4b2E(0)

τ0a

)1/2

H1/2(t∗) > 0, (3.21)

which contradicts (3.16). Thus (3.15) is true, and then

H(t) <

[
4b2

τ0a
E(0)

]−1

, ∀t ∈ [0, T1[. (3.22)

Now, if T1 < T0 , then
M(T1) = 0.

Thus, it follows by (3.22) that ∥∇ut(T1)∥2 = 0. Induce a variable v(t) = u(T1 − t). Hence v(t) satisfies

vtt −M(∥∇v(t)∥22)△v = δvt + f(v) in Ω×]0, T1],

v = 0 on Γ×]0, T1],

v(0) = 0 = vt(0) in Ω.

Multiplying this equation by vt as in integrating it over Ω we get

d

dt
E(v(t)) = δ∥vt(t)∥22 ≤C(∥vt(t)∥22 + J(v(t))

≤ CE(v(t)), ∀t ∈ [0, T1].
(3.23)

Notice that E(v(0)) = 0. Then, it follows from (3.23), applying Gronwall’s inequality, that

a

4
∥v(t)∥22 ≤ E(v(t)) = 0.

Consequently ∥∇u(T1 − t)∥2 = 0, for 0 ≤ t ≤ T1. So u(0) = 0. Thus a− b∥∇u(0)∥22 = τ0 implies a = τ0, which is
a contradiction. Therefore M(t) > 0, ∀t ≥ 0 and (3.22) holds for all t ≥ 0. Moreover, from proposition 3.2 we obtain
the decay estimate (3.11). □
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Remark 3.4. It seems to be interesting to study a global solution for Kirchhoff equation with nonlinear source and
boundary damping term or with nonlinear boundary damping and source term, i.e.

utt −M
(∫

Ω

|∇u|2 dx
)
△u = |u|ρ−2u in Ω×]0,∞[,

u = 0, on Γ0×]0,∞[,

∂

∂ν
u = g(ut), on Γ1×]0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and

utt −M
(∫

Ω

|∇u|2 dx
)
△u = 0 in Ω×]0,∞[,

u = 0, on Γ0×]0,∞[,

∂

∂ν
u = g(ut) + |u|ρ−2u, on Γ1×]0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

with M(s) given in (1.2) or M(s) = a− bsγ , ∀ s ∈ [0, γ
√

a
b [, γ ≥ 1. Also these equations could be studied in variable

exponent spaces or fractional Sobolev spaces. We plan to address these questions in a future research.

4 Conclusions

In recent years, there has been published much work concerning considering the nonlinear wave equation with the
presence of a Kirchhoff term. However, to the best of our knowledge, our results are the first time to deal with the
type of problem (1.1). In this work, we used energy decay estimates, via Nakao’s Lemma, combined with Tartar’s
method to establish the global existence of solutions and the exponential decay of the energy, under some small data
conditions. We like to point out that when a = 0 = δ the equation (1.1) becomes the quasilinear non well-posed
problem which can be seen as a boundary value problem for the potential equation as in [12]. This question has some
interest in the study of the optimal control for singular distributed system and is still an open problem.
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References

[1] M. Aassila and A. Benaissa, Existence globale et comportement asymptotique des solutions des équations de
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