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Abstract

A discrete predator-prey model with harvesting effects on both predator and prey is examined to reveal its chaotic
dynamics. The model’s existence and local stability analysis are investigated. It is demonstrated that the model expe-
riences period-doubling bifurcation and Neimark-Sacker bifurcation by using bifurcation theory. Moreover, numerical
examples are used to demonstrate the consistency of analytical conclusions as well as the model’s complexity owing
to harvesting effects. It is shown that changing the harvesting parameters affects not only the number of fixed points
in the model, but also the occurrence of different bifurcations.
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1 Introduction

One of the most important aspects of forecasting ecological systems is to understand the relationship between the
predator and the prey. Much of recent research has focused on understanding the interaction between biological species
in general and predator-prey species in particular, as well as predicting the survival (or not) of the living organisms
investigated. A variety of effective mathematical biology models have been presented to predict these interactions
and the survival of diverse species. Many existing models have as their primary goal the investigation of interactions
between diverse biological models, as well as the prediction of interactions and the survival of understudied species.

We can analyze the behavior of populations through models created by difference or differential equations [20,
14, 25, 4, 13, 3]. A sufficient number of continuous-time prey-predator models have been introduced to explain the
complex relationship of the species in the literature. But in ecology, populations evolve in discrete-time steps because
there is no overlapping between successive generations for many species. For such population dynamics, it would make
sense to use difference equations. To use discrete-time models of prey-predator interaction is another possible way
to understand the behavior of these populations. The studies on discretization of prey-predator models governed by
difference equations have received remarkable attention. The dynamic behaviors of discrete-time models are discussed
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by the authors [1, 7, 8, 9, 18]. It is biologically significant that a discrete-time models lead to unpredictable dynamic
behaviors. Therefore, bifurcation theory is widely used in mathematical investigations of dynamical systems to predict
this behavior of populations. This is a good way to highlight the prospect that the laws that govern ecological models
are generally simple and easy to find. The rich dynamic behaviors revealed by such models have caused the discrete
variant to become a significant study topic. There has been a substantial quantity of literature on bifurcation of
discrete-time population models (we refer the readers to [5, 10, 11, 12, 21, 27]).

Analysis of prey-predator models with harvesting effect has an important place in dynamic systems, and is necessary
to consider the harvesting of populations in some models. Harvesting has also an important role on control of
populations. In recent times, the effect of harvesting in prey-predator models has been investigated by a lot of
researchers [17, 19, 22, 28].

2 Model Formulation

In [16], the authors considered a Lotka-Volterra type predator-prey model{
dx
dt = r0x(1− x

k )− b0xy,
dy
dt = (−d0 + cx)y,

(2.1)

where x(t) and y(t) represent prey and predator populations respectively, b0x is the predator’s functional response,
which measures the number of prey individuals devoured by an individual predator per unit area per unit time, c
denotes the efficiency with which prey are converted into predators, cxy denotes the predator’s numerical response,
and d0 denotes the predator’s mortality rate. After using the scaled variables, the model (2.1) was rewritten as [16]{

dx
dt = rx(1− x)− bxy,
dy
dt = (−d+ bx)y,

(2.2)

where r, b, and d are all positive parameters, r = r0k, b = ck2 and d = d0k. In this paper, we studied the model (2.2)
by introducing the harvesting effect on both predator and prey populations. We consider the following model{

dx
dt = rx(1− x)− bxy − h1x,
dy
dt = (−d+ bx)y − h2y,

(2.3)

where h1 is the harvesting effect on prey population and h2 is the harvesting effect on predator population. The model
(2.3) is simplified to following discrete model after applying forward Euler method.{

xn+1 = xn + h(rxn(1− xn)− bxnyn − h1xn),

yn+1 = yn + h((−d+ bxn)yn − h2yn).
(2.4)

where h > 0 denotes the step size. The paper is organized as follows: The existence and stability of fixed points
of model (2.4) are discussed in section 3. In section 4, we discuss local bifurcation analysis at unique positive fixed
point of model (2.4) by using center manifold theorem and bifurcation theory. Some numerical examples are offered
in section 5 to validate our theoretical conclusions. Some final thoughts are included in the section 6.

3 Stability analysis of fixed points

The model (2.4) has following three fixed points

P0(0, 0), P1

(
r − h1

r
, 0

)
, P2

(
d+ h2

b
,
br − dr − bh1 − rh2

b2

)
.

Note that for the existence of P1, it is required that r > h1. Moreover, P2 is the unique fixed point of the model
(2.4) if br− dr− bh1 − rh2 > 0. For biologically meaningful our aim is to describe the dynamics of the model (2.4) at
the unique positive fixed point P2. The variational matrix of the model (2.4) evaluated at any point (x̄, ȳ) is

J(x̄, ȳ) =

[
1− h(h1 − r + 2rx̄+ bȳ) −bhx̄

bhȳ 1− dh− hh2 + bhx̄

]
.
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The variational matrix at the fixed point P2 is

J(P2) =

[
1− h(d+h2)r

b −h(d+ h2)

−h(b(h1−r)+(d+h2)r)
b 1

]
.

The characteristic polynomial of J(P2) is

F (w) = w2 + Sw + T, (3.1)

where
S = −2 +A1h, T = 1−A1h+A2h

2,

A1 =
r(d+ h2)

b
> 0, A2 =

(d+ h2)(br − dr − bh1 − rh2)

b
> 0.

We obtain the following after easy calculations

F (0) = 1−A1h+A2h
2, F (1) = A2h

2, F (−1) = 4− 2A1h+A2h
2.

The following results are used to study the stability of fixed points of model (2.4).

Lemma 3.1. [6] Let F (w) = w2 + Sw + T be the characteristic polynomial associated to the variational matrix at
fixed point (x̄, ȳ). If w1, w2 are two roots of F (w) = 0, then (x̄, ȳ) is

(i) sink and therefore locally asymptotically stable if |w1,2| < 1,

(ii) source and therefore unstable if |w1,2| > 1,

(iii) saddle point if |w1| < 1 and |w2| > 1 (or |w1| > 1 and |w2| < 1),

(iv) non-hyperbolic if either |w1| = 1 or |w2| = 1.

Lemma 3.2. [6] Let F (w) = w2 + Sw + T . Assume that F (1) > 0. If w1, w2 are two roots of F (w) = 0, then

(i) |w1,2| < 1 iff F (−1) > 0 and T < 1,

(ii) |w1| < 1 and |w2| > 1 (or |w1| > 1 and |w2| < 1) iff F (−1) < 0,

(iii) |w1| > 1 and |w2| > 1 iff F (−1) > 0 and T > 1,

(iv) w1 = −1 and |w2| ≠ 1 iff F (−1) = 0 and S ̸= 0, 2,

(v) w1 and w2 are complex and |w1,2| = 1 iff S2 − 4T < 0 and T = 1.

Using lemma (3.2), we obtain the local dynamics of the fixed point P2.

Proposition 3.3. Assume that br − dr − bh1 − rh2 > 0. The fixed point P2 of the model (2.4) is

(i) a sink and therefore it is locally asymptotically stable if one of the following conditions holds

(a) A2
1 − 4A2 < 0 and 0 < h < A1

A2
,

(b) A2
1 − 4A2 ≥ 0 and 0 < h <

A1−
√

A2
1−4A2

A2
,

(ii) a source and therefore it is unstable if one of the following conditions holds

(a) A2
1 − 4A2 ≤ 0 and h > A1

A2
,

(b) A2
1 − 4A2 > 0 and h >

A1+
√

A2
1−4A2

A2
,

(iii) a saddle point if the following condition holds

A2
1 − 4A2 > 0 and

A1−
√

A2
1−4A2

A2
< h <

A1+
√

A2
1−4A2

A2
,
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(iv) non-hyperbolic point if one of the following conditions holds

(a) A2
1 − 4A2 > 0 and h =

A1±
√

A2
1−4A2

A2
,

(b) A2
1 − 4A2 < 0 and h = A1

A2
.

It is clear that if A2
1 − 4A2 < 0 and h = A1

A2
, then eigenvalues of J(P2) are complex with unit modulus. Therefore,

model (2.4) experiences Neimark-Sacker bifurcation at fixed point P2 when parameters vary in a small neighbourhood
of the following set: {

h, r, b, d, h1, h2 ∈ R+

∣∣∣∣A2
1 − 4A2 < 0, h =

A1

A2

}
.

Moreover, if A2
1 − 4A2 > 0 and h =

A1±
√

A2
1−4A2

A2
, then one of the eigenvalues of J(P2) is −1 and other eigenvalue

λ satisfies |λ| ̸= 1. Therefore a period-doubling bifurcation can occur if parameters vary in a small neighbourhood of
either of the following sets:

{
h, r, b, d, h1, h2 ∈ R+

∣∣∣∣A2
1 − 4A2 > 0, h =

A1 +
√

A2
1 − 4A2

A2

}
,

{
h, r, b, d, h1, h2 ∈ R+

∣∣∣∣A2
1 − 4A2 > 0, h =

A1 −
√

A2
1 − 4A2

A2

}
.

4 Local Bifurcation Analysis

Local bifurcation analysis is an effective approach for analyzing the qualitative behavior of dynamical systems
around fixed points. It helps in identifying critical points at which the system’s behavior changes qualitatively.
These bifurcations may result in complicated behaviors like chaotic oscillations or the establishment of stable limit
cycles, which has consequences for the stability and sustainability of predator-prey relationships in nature. Different
bifurcation types are addressed in this section at unique positive fixed point P2 of the model (2.4). For detailed
bifurcation theory, we refer the readers to [15, 26, 2, 23, 29, 24].

4.1 Period-Doubling Bifurcation at P2(
d+h2

b
, br−dr−bh1−rh2

b2 ):

In this section, we discuss period-doubling bifurcation at fixed point P2(
d+h2

b , br−dr−bh1−rh2

b2 ) for the domain Ω3.
Similar arguments can be used for the domain Ω2. Consider the domain

Γ3 =

{
h, r, b, d, h1, h2 ∈ R+

∣∣∣∣A2
1 − 4A2 > 0, h = H1 =

A1 −
√
A2

1 − 4A2

A2

}
.

Assuming that (h, r, b, d, h1, h2) ∈ Γ3, and δ be small perturbation in H1, we consider the following perturbation
of the model (2.4): {

xn+1 = xn + (H1 + δ)(rxn(1− xn)− bxnyn − h1xn),

yn+1 = yn + (H1 + δ)((−d+ bxn)yn − h2yn),
(4.1)

where δ, |δ| ≪ 1, is a small perturbation parameter. We define an = xn − d+h2

b , bn = yn − br−dr−bh1−rh2

b2 , to translate

fixed point P2(
d+h2

b , br−dr−bh1−rh2

b2 ) to origin. Under this translation map the model (4.1) becomes[
an+1

bn+1

]
=

[
1−A1H1 − bA1H1

r
rA2H1

A1b
1

] [
an
bn

]
+

[
F (an, bn, δ)
G(an, bn, δ)

]
, (4.2)

where

F (an, bn, δ) = −bA1

r
δbn −A1δan − bH1anbn − bδanbn −H1ra

2
n − rδa2n,

G(an, bn, δ) = (r − h1 −A1)δan + bH1anbn + bδanbn.
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For H1 =
A1−

√
A2

1−4A2

A2
, the eigenvalues of J(P2) are λ1 = −1 and λ2 = 3−A1H1. Let

T =

 2A1b

r(−A1+
√

A2
1−4A2)

A3
1b−A2

1b
√

A2
1−4A2−2A1A2b

A2r(−A1+
√

A2
1−4A2)

1 1

 .

Under the following transformation [
an
bn

]
= T

[
en
fn

]
, (4.3)

the model (4.2) becomes [
en+1

fn+1

]
=

[
−1 0
0 λ2

] [
en
fn

]
+

[
F (en, fn, δ)
G(en, fn, δ)

]
, (4.4)

where

λ2 =
2A4

1 − 2A3
1

√
A2

1 − 4A2 − 11A2
1A2 + 7A1A2

√
A2

1 − 4A2 + 12A2
2

A2(−A2
1 +A1

√
A2

1 − 4A2 + 4A2)
,

F (en, fn, δ) = D1e
2
n +D2enfn +D3f

2
n +D4enδ +D5e

2
nδ +D6fnδ +D7enfnδ +O((|en|+ |fn|+ |δ|)4),

G(en, fn, δ) = E1e
2
n + E2enfn + E3f

2
n + E4enδ + E5e

2
nδ + E6fnδ + E7enfnδ +O((|en|+ |fn|+ |δ|)4),

where values of coefficients Di and Ei are given in Appendix A. Next, we determine the center manifold WC(0, 0, 0)
for (4.4), which can be represented as follows:

WC(0, 0, 0) =

{
(en, fn, δ) ∈ R3

∣∣∣∣fn = c1e
2
n + c2enδ + c3δ

2 +O((|en|+ |δ|)3)
}
,

where

c1 =
A2b(A1(2b+ r) + r

√
A2

1 − 4A2)

r(A4
1 −A3

1

√
A2

1 − 4A2 − 5A2
1A2 + 3A1A2

√
A2

1 − 4A2 + 4A2
2)
,

c2 = − 2A2
2(A

2
1b+A1b(h1 − r) +A2r)

r(A2
1 − 4A2)(−A1 +

√
A2

1 − 4A2)(−A2
1 +A1

√
A2

1 − 4A2 + 2A2)
, c3 = 0.

Thus the model (4.4) restricted to the center manifold is given by

F̃ : en+1 = −en +D1e
2
n +D4δen − D6E4

1 + λ2
δ2en + (D5 −

D6E1

−1 + λ2
− D2E4

1 + λ2
)δe2n +

D2E1

1− λ
e3n. (4.5)

In order for map (4.5) to undergo period-doubling bifurcation it is required that following two quantities are
non-zero.

l1 = F̃δF̃enen + 2F̃enδ

∣∣∣∣
(0,0)

, l2 =
1

2
(F̃enen)

2 +
1

3
F̃enenen .

From simple computations, we obtain

l1 = 2D4, l2 = 2D2
1 +

2D2E1

1− λ2
.

As a consequence of the preceding analysis, we have the following result.

Theorem 4.1. The model (2.4) experiences period-doubling bifurcation at the fixed point

P2(
d+h2

b , br−dr−bh1−rh2

b2 ) if l2 ̸= 0 and h varies in a small neighbourhood of H1 =
A1−

√
A2

1−4A2

A2
. Moreover, if l2 > 0

(respectively l2 < 0), then the period-2 orbits that bifurcate from P2(
d+h2

b , br−dr−bh1−rh2

b2 ) are stable (respectively,
unstable).
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4.2 Neimark-Sacker Bifurcation at P2(
d+h2

b
, br−dr−bh1−rh2

b2 ):

In this section, we discuss Neimark-Sacker bifurcation at fixed point P2(
d+h2

b , br−dr−bh1−rh2

b2 ) for the domain Ω1.
Consider the domain

Γ1 =

{
h, r, b, d, h1, h2 ∈ R+

∣∣∣∣A2
1 − 4A2 < 0, h = H2 =

A1

A2

}
.

Assuming that (h, r, b, d, h1, h2) ∈ Ω1, and δ be small perturbation in H2, we consider the following perturbation
of the model (2.4): {

xn+1 = xn + (H2 + δ)(rxn(1− xn)− bxnyn − h1xn),

yn+1 = yn + (H2 + δ)((−d+ bxn)yn − h2yn),
(4.6)

We define an = xn − d+h2

b , bn = yn − br−dr−bh1−rh2

b2 , to translate fixed point P2(
d+h2

b , br−dr−bh1−rh2

b2 ) to origin.
Under this translation map the model (4.6) becomes[

an+1

bn+1

]
=

[
−A1r(d+h2)+A2(b−(d+h2)rδ)

A2b
−(d+ h2)(

A1

A2
+ δ)

− (b(h1−r)+(d+h2)r)(A1+A2δ)
A2b

1

] [
an
bn

]
+

[
F (an, bn)
G(an, bn)

]
, (4.7)

where

F (an, bn) = −b(
A1

A2
+ δ)anbn − r(

A1

A2
+ δ)a2n,

G(an, bn) = b(
A1

A2
+ δ)anbn.

At the fixed point (0, 0), the characteristic equation of the linearized part of the model (4.7) is

λ2 − α(δ)λ+ β(δ) = 0, (4.8)

where

α(δ) = 2− A2
1

A2
−A1δ,

β(δ) = 1 +A1δ +A2δ
2.

The roots of the equation (4.8) are complex with the property |λ1,2| = 1, which are given by

λ1,2 =
α(δ)± i

√
4β(δ)− α2(δ)

2
.

By computations, we obtain
|λ1| = |λ2| =

√
β(δ)

and (
d|λ1|
dδ

)
δ=0

=

(
d|λ2|
dδ

)
δ=0

=
A1

2
> 0.

Moreover, it is required that λi
1, λ

i
2 ̸= 1 for i = 1, 2, 3, 4 at δ = 0 which is equivalent to α(0) ̸= ±2, 0, 1. Since

A1 > 0, A2 > 0, A2
1 − 4A2 < 0 and α(0) = 2 − A2

1

A2
, therefore α(0) ̸= ±2. We only need to require that α(0) ̸= 0, 1,

which leads to A2
1 ̸= 2A2, A2. To convert the linear part of (4.7) into its canonical form at δ = 0, we employ the

aforementioned mapping: [
an
bn

]
=

− bA2
1

rA2
0

A2
1

2A2
−A1

√
4A2−A2

1

2A2

[
en
fn

]
. (4.9)

Under the transformation (4.9), the model (4.7) becomes[
en+1

fn+1

]
=

[
µ −ν
ν µ

] [
en
fn

]
+

[
F (en, fn)
G(en, fn)

]
, (4.10)
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where

µ = 1− A2
1

2A2
, ν =

A1

√
4A2 −A2

1

2A2
,

F (en, fn) =
A3

1b

2A2
2

e2n +
A2

1b
√

4A2 −A2
1

2A2
2

enfn +O((|en|+ |fn|+ |δ|)4),

G(en, fn) =
A4

1b(2b+ r)

2A2
2r
√
4A2 −A2

1

e2n +
A3

1b(−2b+ r)

2A2
2r

enfn +O((|en|+ |fn|+ |δ|)4),

In a model with NS bifurcation, the aforementioned value L specifies the direction in which the invariant curve
occurs.

L =

([
−Re

(
(1− 2λ1)λ

2
2

1− λ1
η20η11

)
− 1

2
|η11|2 − |η02|2 +Re(λ2η21)

])
δ=0

,

where

η20 =
1

8
[Fenen − Ffnfn + 2Genfn + i(Genen −Gfnfn − 2Fenfn)] ,

η11 =
1

4
[Fenen + Ffnfn + i(Genen +Gfnfn)] ,

η02 =
1

8
[Fenen − Ffnfn − 2Genfn + i(Genen −Gfnfn + 2Fenfn)] ,

η21 =
1

16
[Fenenen + Fenfnfn +Genenfn +Gfnfnfn + i(Genenen +Genfnfn − Fenenfn − Ffnfnfn)] .

The preceding computations lead to the aforementioned theorem for the presence and direction of NS bifurcation.

Theorem 4.2. Assume that A2
1−4A2 < 0 and A2

1 ̸= 2A2, A2. When the parameter h changes within a neighbourhood
ofH2 = A1

A2
, the model (2.4) undergoes NS bifurcation at the fixed point P2 if L ̸= 0. In addition, an attracting invariant

closed curve bifurcates from the fixed point if L < 0, while a repelling invariant closed curve bifurcates from the fixed
point if L > 0.

5 Numerical examples

In this section, we will provide some numerical simulations to back up our theoretical analysis of the model’s
multiple qualitative characteristics. We consider the following set of parameter values for bifurcation analysis.

Table 1: Parameter values

Cases Fixed parameters and initial conditions varying parameter
Case (i) r = 4.5, b = 2.26, d = 0.5, h1 = 1.3, h2 = 1.1, x0 = 0.6, y0 = 0.006 0.6 ≤ h ≤ 0.85
Case (ii) r = 3.5, b = 4.6, d = 0.5, h1 = 1.3, h2 = 1.1, x0 = 0.3, y0 = 0.2 0.7 ≤ h ≤ 0.85
Case (iii) r = 3.5, b = 4.6, d = 0.5, h = 0.774336, h2 = 1.1, x0 = 0.3, y0 = 0.2 0.8 ≤ h1 ≤ 1.5
Case (iv) r = 3.5, b = 4.6, d = 0.5, h = 0.774336, h1 = 1.3, x0 = 0.3, y0 = 0.2 0.4 ≤ h2 ≤ 1.4

Example 5.1. Period-Doubling bifurcation of the model (2.4) at P2 with respect to bifurcation parameter h. We
take parameters values as in case (i) of table (1). The positive fixed point of (2.4) for these parametric values is
P2(0.707965, 0.00626517). The eigenvalues of J(P2) for h = 0.629185 are λ1 = −1, λ2 = 0.995516, indicating that
the model (2.4) is experiencing period doubling bifurcation at P2(0.707965, 0.00626517) as the bifurcation parameter
h crosses h = H1 = 0.629185. Figures (1a, 1b) show bifurcation diagrams for both prey and predator populations,
respectively, for h ∈ [0.6, 0.85]. The MLE is plotted in figure (1c).



102 Ahmed, Yazdani, Saher

(a) (b)
(c)

(d) (e) (f)

Figure 1: Bifurcation diagrams, MLE graph, phase portraits for some values of h for case (i) set of values of table (1).

The fixed point P2 is locally asymptotically stable for these parametric values if and only if 0 < h < 0.629185.
Figures (1d,1e,1f) show phase portraits of the model (2.4) for various values of h. These figures express that fixed point
P2(0.707965, 0.00626517) is locally asymptotically stable for 0 < h < 0.629185, but loses its stability at h = 0.629185,
where the model (2.4) undergoes period-doubling bifurcation.

Example 5.2. Neimark-Sacker bifurcation of the model (2.4) at P2. We take parameters values as in case (ii) of
table (1). The positive fixed point of (2.4) for these parametric values is P2(0.347826, 0.213611). The eigenvalues of
J(P2) for h = 0.774336 are λ1 = 0.528665 − 0.848831i, λ2 = 0.528665 + 0.848831i with |λ1,2| = 1, indicating that
the model (2.4) is experiencing Neimark-Sacker bifurcation at P2(0.347826, 0.213611) as the bifurcation parameter h
crosses h = H2 = 0.774336. Figures (2a), (2b) depict bifurcation diagrams for both prey and predator populations,
respectively, for h ∈ [0.7, 0.85]. The MLE is plotted in figure (2c).

The fixed point P2 is locally asymptotically stable for these parametric values if and only if h < 0.774336. Figures
(2d,2e,2f) show phase portraits of the model (2.4) for various values of h. From the figures, it is evident that fixed
point P2 is locally asymptotically stable for h < 0.774336, but it loses its stability at h = 0.774336, where the model
(2.4) undergoes Neimark-Sacker bifurcation. For h ≥ 0.774336 a smooth invariant curve emerges and it increases its
radius as h is increasing. By increasing the value of h, the invariant curve disappears suddenly and some periodic
orbit appears and then again we have an invariant curve in place of a periodic orbit. We observe that large values of
h lead to the appearance of a strange chaotic attractor as presented in figure (2f).

It is described in figures (3a,3b) that harvesting effect on prey population leads to complex dynamics by using the
set of values described in case (iii) of table (1). Similarly, it is described in figures (3c, 3d) that harvesting effect on
predator population leads to complex dynamics by using the set of values described in case (iv) of table (1).

6 Conclusion

In this paper, we examine stability and local bifurcation at unique positive fixed point of a discrete-time predator-
prey model with harvesting effects on both predator and prey. Some numerical simulations are presented to justify our
theoretical conclusions. Moreover, It is discussed that harvesting effects lead to complex dynamics in the model. For
larger values of harvesting effects, the model shows stability but for smaller values of harvesting the model experiences
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(a) (b)
(c)

(d) (e) (f)

Figure 2: Bifurcation diagrams, MLE graph, phase portraits for some values of h for case (ii) set of values of table
(1).

bifurcation. The harvesting effect on prey and predator can stabilize the model. The system (2.4) is shown to have
three fixed points. The trivial fixed point P0 always exists, but harvesting impacts the existence of the boundary and
interior fixed points P1 and P2. By analyzing period-doubling and Neimrk-Sacker bifurcations, one may determine
the significance of the harvesting rate parameters h1 and h2. In other words, when the harvesting rate parameters h1

or h2 vary, not only does the number of fixed points of the model (2.4) change, but also different types of bifurcations
arise.
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(a) (b)

(c) (d)

Figure 3: Bifurcation diagrams for cases (iii) and (iv) set of values of table (1).
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