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Abstract

In this paper, we present a generalization of the functional expansion-compression fixed point theorem developed by
Avery et al. in [5] to the case of a k-set contraction perturbed by an operator T , where I − T is Lipschitz invertible.
The arguments are based upon recent fixed point index theory in cones of Banach spaces. Next, we apply the obtained
result to discuss the existence of a nontrivial positive solution to a nonautonomous second order boundary value
problem.
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1 Introduction

This paper is a part of generalization of some results in fixed point theory on cones of Banach spaces for the sum
of two operators. More precisely, we are interested in the theorems of functional types and their applications in the
study of boundary value problems. Note that, Leggett and Williams [21] were the originators of this class of fixed
point theorems. Since then, the literature has had a significant number of functional fixed point theorems developed
promptly in different directions, especially those due to Avery et al. [1, 2, 3, 4, 6]. From a mathematical point of view,
when functionals are used in applications instead of norms, we get more freedom and flexibility.

Recently, in [14] a new direction of research in the theory of fixed point in ordered Banach spaces for the sum of
two operators was opened. Then, several fixed point theorems, including Leggett-Williams theorems type in cones,
have been developed (see [9, 10, 16, 17, 18, 20]). These theorems have been applied to discuss the existence of positive
solutions for various types of boundary and/or initial value problems (see [15, 16, 18]).

In [5], Avery et al. have developed an extension of the compression-expansion fixed point theorem of functional
type by generalizing the underlaying set using functional-type interval which are sets of the form

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b},

where A is an open subset of a cone P. Motivated by this work, our purpose in this paper is to improve this result
by considering the sum of two operators T + F , where I − T is Lipschitz invertible and F a k-set contraction. The
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main tool used is a recent fixed point index theory in cones for this class of mappings developed by Mebarki et al. in
[14, 18].

The paper is organized as follows: In Section 2, we provide some background material. In Section 3, we present
our main contribution. In Section 4, we give an application to demonstrate how our theoretical result can improve
conditions in applications to boundary value problems. We conclude the paper by giving in Section 5 an example with
numerical computations.

2 Preliminaries

Definition 2.1. A closed convex set P in a Banach space E is said to be a cone if

1. λx ∈ P for any λ ≥ 0 and for any x ∈ P,

2. x ∈ P, −x ∈ P implies x = 0.

Definition 2.2. A subset D of a topological space is said to be relatively compact if its closure is compact, i.e. D
is compact.

The interval [a, b] is compact in R by Heine-Borel and (a, b) is relatively compact as (a, b) = [a, b] is compact. Note
that (a, b) is not compact and every compact subset of a metric space is closed, hence, relatively compact. Let E be
a real Banach space.

Definition 2.3. A mapping K : E → E is said to be completely continuous if it is continuous and maps bounded
sets into relatively compact sets.

The concept of set contraction is related to Kuratowski’s measure of noncompactness χ.

Definition 2.4. [19] Let E be a real Banach space and ΩE be the family of all nonempty and bounded subsets of
E. The Kuratowski measure of noncompactness χ : ΩE → [0,∞) is defined by:

χ(A) = inf{δ > 0 : A =

n⋃
i=1

Ai, Ai ⊂ E and diam(Ai) ≤ δ, for all i = 1, ..., n} (2.1)

where diam(Ai) = sup{∥x− y∥E , x, y ∈ Ai} is the diameter of Ai.

For the main properties of measure of noncompactness and some of its applications we refer the reader to [7, 8, 11,
12, 13].

Proposition 2.5. Let E be a Banach space, λ ∈ R andM,N ⊂ ΩE . Then the Kuratowski measure of noncompactness
χ has the following properties:

(i) χ(M ∪N) = max{χ(M), χ(N)};

(ii) χ(M +N) ≤ χ(M) + χ(N);

(iii) χ(λM) = |λ|χ(M);

(iv) χ(M) ≤ χ(N) for M ⊂ N ;

(v) χ(convM) = χ(M), convM denotes the convex closure of M .

(vi) χ(M) = 0 if and only if M is precompact.

Definition 2.6. A mapping F : E → E is said to be a k-set contraction if it is continuous, bounded and there exists
a constant k ≥ 0 such that

χ(F (D)) ≤ kχ(D),

for any bounded set D ⊂ E. The mapping F is said to be a strict set contraction if k < 1.
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Obviously, if F : E → E is a completely continuous mapping, then F is 0-set contraction. In fact,

F is completely continuous ⇒ F (D) is compact, for any bounded set D ⊂ E,

⇒ χ(F (D)) = χ(F (D)) = 0,
⇒ F is 0− set contraction.

Definition 2.7. Let (X, ∥.∥) be a linear normed space and D ⊂ X. An operator T : D → X is said to be γ-Lipschitz
invertible on D if it is invertible and its inverse is Lipschitzian on T (D) with constant γ.

In all what follows, P will refer to a cone in a Banach space (E, ∥.∥), Ω is a subset of P and U is a bounded open
subset of P and we will denote P \ {0} by P∗.
The fixed point index i∗(T + F,U ∩ Ω,P) defined by

i∗ (T + F,U ∩ Ω,P) =

{
i ((I − T )−1F,U,P), if U ∩ Ω ̸= ∅
0, if U ∩ Ω = ∅, (2.2)

is well defined whenever T : Ω → E be a mapping such that (I − T ) is Lipschitz invertible with constant γ > 0 and
F : U → E be a k-set contraction with 0 ≤ k < γ−1 and F (U) ⊂ (I − T )(Ω).
The proof of different results on the fixed point index i∗ invokes the following main properties of this index (see
[14, 18]):

(a) (Normalization). If Fx = y0, for all x ∈ U, where (I − T )−1y0 ∈ U ∩ Ω, then

i∗ (T + F,U ∩ Ω,P) = 1.

(b) (Additivity). For any pair of disjoint open subsets U1, U2 ⊂ U such that T +F has no fixed point on (U \(U1 ∪
U2)) ∩ Ω, we have

i ∗(T + F,U ∩ Ω,P) = i ∗(T + F,U1 ∩ Ω,P) + i ∗(T + F,U2 ∩ Ω,P).

(c) (Homotopy invariance). The fixed point index i ∗(T + H(t, .), U ∩ Ω,P) does not depend on the parameter
t ∈ [0, 1], where

(i) H : [0, 1]× U → E is continuous and H(t, x) is uniformly continuous in t with respect to x ∈ U,

(ii) H([0, 1]× U) ⊂ (I − T )(Ω),

(iii) H(t, .) : U → E is a ℓ-set contraction with 0 ≤ ℓ < γ−1 for all t ∈ [0, 1],

(iv) Tx+H(t, x) ̸= x for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(d) (Solvability). If i ∗(T + F,U ∩ Ω,P) ̸= 0, then T + F has a fixed point in U ∩ Ω.

Definition 2.8. A map α is said to be a nonnegative continuous concave functional on a cone P of a real Banach
space E if α : P → [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y),

for all x, y ∈ P and t ∈ [0, 1]. A map β is said to be a nonnegative continuous convex functional on a cone P of a real
Banach space E if β : P → [0,∞) is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y),

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.9. Let X be a topological space, D ⊂ X any subset. A set U is relatively open in D if there is an open
set Ω in X such that U = Ω ∩D.

Note that set U ⊂ D can be relatively open to D without being an open set of X. For example:
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1. D = [0, 1], the half-open interval ]a, 1] is open in D for every 0 ≤ a < 1, since ]a, 1] = [0, 1]∩]a, 3[. It is clear that
]a, 1] is not open in R.

2. X = R2, D = R× {0} and U =]0, 1[×{0}.

Definition 2.10. Let A be a relatively open subset of a cone P, α be a nonnegative continuous concave functional
on P; β be a nonnegative continuous convex functional on P and let a, b be two positive real numbers, then the set

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b},

is an interval of functional type.

Note that A(β, b, α, a) is a subset of P(β, b, α, a) defined by:

P(β, b, α, a) = {x ∈ P : a < α(x) and β(x) < b}.

3 Main results

In the sequel, we will establish an extension of [5, Theorem 3.1] which guarantees the existence of at least one
nontrivial positive solution to some equations of the form Tx+ Fx = x posed on cones of a Banach space.

Theorem 3.1. Let E be a Banach space; P ⊂ E be a cone, A be a relatively open subset of P, α and ψ are
nonnegative continuous concave functionals on P and β and θ are nonnegative continuous convex functionals on P.

Let T : Ω ⊂ P → E be a mapping such that (I − T ) is Lipschitz invertible with constant γ > 0 and F : P → E be
a k-set contraction mapping with 0 ≤ k < γ−1. Assume that there exist four nonnegative numbers a, b, c and d, and
ω0 ∈ A(β, b, α, a) ∩ A(θ, c, ψ, d) such that

(I − T )−1ω0 ∈ A(β, b, α, a), (3.1)

λF (A(β, b, α, a)) + (1− λ)ω0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1], (3.2)

(H1) A(β, b, α, a) is bounded, and ∂A ∩A(β, b, α, a) = ∅;

(H2) if x ∈ P with α(x) = a and either θ(x) ≤ c or θ(Tx+ Fx) > c, then α(Tx+ Fx) > a;

(H3) if x ∈ P with β(x) = b and either ψ(Tx+ Fx) < d or ψ(x) ≥ d, then β(Tx+ Fx) < b;

(H4) if x ∈ P with α(x) = a, then α(Tx+ ω0) > a and θ(Tx+ ω0) ≤ c;

(H5) if x ∈ P with β(x) = b, then β(Tx+ ω0) < b and ψ(Tx+ ω0) ≥ d;

then T + F has at least one fixed point x∗ ∈ A(β, b, α, a).

Proof .

Claim 1: Tx+ Fx ̸= x for all x ∈ ∂A(β, b, α, a).
The functional interval A(β, b, α, a) = A ∩ P(β, b, α, a), then by the condition (H1),

∂A(β, b, α, a) = A ∩ ∂P(β, b, α, a).

Suppose that there exist z0 ∈ ∂A(β, b, α, a) such that Tz0 + Fz0 = z0. Since z0 ∈ ∂P(β, b, α, a) so either
β(z0) = b or α(z0) = a.

Case 1: β(z0) = b.
If ψ(Tz0 + Fz0) < d or ψ(z0) = ψ(Tz0 + Fz0) ≥ d, then by the condition (H3),

β(Tz0 + Fz0) < b.

Hence we have that Tz0 + Fz0 ̸= z0.
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Case 2: α(z0) = a.
If θ(z0) = θ(Tz0 + Fz0) ≤ c or θ(Tz0 + Fz0) > c, then by the condition (H2),

α(Tz0 + Fz0) > a.

Hence we have that Tz0 + Fz0 ̸= z0.

Therefore, T + F does not have any fixed points on ∂A(β, b, α, a).

Claim 2: Let H : [0, 1]×A(β, b, α, a) → E be defined by

H(t, x) = tFx+ (1− t)ω0.

We have

(i) H : [0, 1] × A(β, b, α, a) → E is continuous and H(t, x) is uniformly continuous in t with respect to
x ∈ A(β, b, α, a),

(ii) H([0, 1]× (A(β, b, α, a))) ⊂ (I − T )(Ω),

(iii) H(t, .) : A(β, b, α, a) → E is a k-set contraction with 0 ≤ k < γ−1 for all t ∈ [0, 1],

(iv) Tx+H(t, x) ̸= x, for all t ∈ [0, 1] and x ∈ ∂A(β, b, α, a) ∩ Ω.

Properties (i), (ii) and (iii) follow directly from the definition of H and the conditions on F and T . We only
check (iv). Suppose the contrary, that is, there would exists (t1, x1) ∈ [0, 1] × ∂A(β, b, α, a) ∩ Ω such that
Tx1 + H(t1, x1) = x1. Since x1 ∈ ∂A(β, b, α, a) = A ∩ ∂P(β, b, α, a), so x1 ∈ ∂P(β, b, α, a) we have that
β(x1) = b or α(x1) = a.

(1) β(x1) = b. Either ψ(Tx1 + Fx1) < d or ψ(Tx1 + Fx1) ≥ d.

If ψ(Tx1 + Fx1) < d, by the condition (H3) we have that β(Tx1 + Fx1) < b, thus from the convexity of
β and the condition (H5) it follows that

b = β(x1) = β(Tx1 +H(t1, x1))

= β(Tx1 + t1Fx1 + (1− t1)ω0)

= β(t1(Tx1 + Fx1) + (1− t1)(Tx1 + ω0))

≤ t1β(Tx1 + Fx1) + (1− t1)β(Tx1 + ω0)

< t1b+ (1− t1)b

= b,

which is a contradiction.

If ψ(Tx1 + Fx1) ≥ d, we have that ψ(x1) ≥ d since

ψ(x1) = ψ(Tx1 +H(t1, x1))

= ψ(Tx1 + t1Fx1 + (1− t1)ω0)

= ψ(t1(Tx1 + Fx1) + (1− t1)(Tx1 + ω0))

≥ t1ψ(Tx1 + Fx1) + (1− t1)ψ(Tx1 + ω0)

≥ d,

and thus by the condition (H3) we have that β(Tx1 + Fx1) < b, which is the same contradiction we
arrived at in the previous subcase.

(2) α(x1) = a. Either θ(Tx1 + Fx1) ≤ c or θ(Tx1 + Fx1) > c.

If θ(Tx1 +Fx1) > c, by the condition (H2) we have that α(Tx1 +Fx1) > a, thus from the concavity of α
and the condition (H4), it follows that

a = α(x1) = α(Tx1 +H(t1, x1))

= α(Tx1 + t1Fx1 + (1− t1)ω0)

= α(t1(Tx1 + Fx1) + (1− t1)(Tx1 + ω0))

≥ t1α(Tx1 + Fx1) + (1− t1)α(Tx1 + ω0)

> a,

which is a contradiction.
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If θ(Tx1 + Fx1) ≤ c, we have that θ(x1) ≤ c since

θ(x1) = θ(Tx1 +H(t1, x1))

= θ(Tx1 + t1Fx1 + (1− t1)ω0)

= θ(t1(Tx1 + Fx1) + (1− t1)(Tx1 + ω0))

≤ t1θ(Tx1 + Fx1) + (1− t1)θ(Tx1 + ω0)

≤ c,

and thus by the condition (H2) we have that α(Tx1 + Fx1) > a, which is the same contradiction we
arrived at in the previous subcase.

Therefore, Tx+H(t, x) ̸= x, for all t ∈ [0, 1] and x ∈ ∂A(β, b, α, a)∩Ω. By the homotopy invariance property and
the normality property of the fixed point index i∗

i∗(T + F,A(β, b, α, a),P) = i∗(T + ω0,A(β, b, α, a),P) = 1.

Then T + F has at least one fixed point in A(β, b, α, a). □

4 Application

In this section, we will investigate the equation

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1), (4.1)

with boundary conditions
x(0) = x′(1) = 0, (4.2)

where f : (0, 1) × [0,∞) → [0,∞) is a continuous function. The Green’s function G(t, s) for −x′′(t) = 0, t ∈ (0, 1)
satisfying (4.2) is

G(t, s) =

{
t, 0 ≤ t ≤ s ≤ 1,
s, 0 ≤ s ≤ t ≤ 1,

= min{t, s}, (t, s) ∈ [0, 1]× [0, 1].

Note that, if x is a fixed point of the operator S defined by

Sx(t) =

∫ 1

0

G(t, s)f(s, x(s)) ds,

where then x is a solution of the boundary value problem (4.1)-(4.2). Suppose that

(H1) The functions f satisfy Ã ≤ f(t, x(t)) ≤ a1(t)+a2(t)|x(t)|p, for t ∈ [0, 1] and a1, a2 ∈ C([0, 1]), 0 < a1(t), a2(t) ≤
A for t ∈ [0, 1], where p,A and Ã are nonnegative constants.

(H2) There exist positive constants ε, η, a, b, c, d, C1, C2, C3, ρ and R such that

ε ∈ (0, 1), η ∈ (0, 1), 2b ≤ min(R, ρ),

A(1 + bp) < b, (4.3)

max

(
a

2
,
d

C2

)
< C1 < min

(
b,

c

C3

)
,

0 ≤ C3

(
(1− ε)

1

Λ
(a− C1) + εC1

)
≤ c, C2 ((1− ε)Λb+ εC1) ≥ d,

where Λ =
min( η

8 Ã,C1)

ρ ·

Remark 4.1. As in [20, Remark 4.1], we can discuss the validity of the inequality (4.3).
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4.1 Main result

Theorem 4.2. If (H1) and (H2) hold then the problem (4.1)-(4.2) has at least one positive solution x ∈ C([0, 1]) such
that a < min

t∈[0,1]
x(t) + 2C1 and max

t∈[0,1]
x(t) < b.

Proof .

Define the Banach space E = C([0, 1]) with the norm ∥x∥ = max
t∈[0,1]

|x(t)| and

P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1], min
t∈[ η8 ,η]

x(t) ≥ Λ∥x∥}, Ω = {x ∈ P : ∥x∥ ≤ ρ} .

For x ∈ P define the convex functionals

β(x) = max
t∈[0,1]

|x(t)|, θ(x) = C3 max
t∈[0,1]

|x(t)|.

For x ∈ P define the concave functionals

α(x) = min
t∈[0,1]

x(t) + 2C1, ψ(x) = C2 min
t∈[ η8 ,η]

x(t).

For x ∈ P define the operators
Tx(t) = (1− ε)x(t) + (ε− 1)C1

Fx(t) = ε

∫ 1

0

G(t, s)f(s, x(s)) ds+ (1− ε)C1, t ∈ [0, 1].

Note that if x ∈ P is a fixed point of the operator T + F then it is a positive solution to the problem (4.1)-(4.2).
We set

A = P ∩B(0, R) = {x ∈ P : ∥x∥ < R},

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b}.

1. For x, y ∈ P, we have
|(I − T )x(t)− (I − T )y(t)| = ε|x(t)− y(t)|, t ∈ [0, 1].

Hence
∥(I − T )x− (I − T )y∥ = ε∥x− y∥.

Thus, I − T : P → E is Lipschitz invertible with a constant γ = 1
ε .

2. Since f is continuous, F is continuous. Also, for x ∈ P, we have

|Fx(t)| = |ε
∫ 1

0

G(t, s)f(s, x(s)) ds+ C1 − εC1|

≤ ε(a1(t) + a2(t)|x(t)|p) + C1

≤ εA(1 + |x(t)|p) + C1

≤ εA(1 + ∥x∥p) + C1 <∞, t ∈ [0, 1]

and

|(Fx)′(t)| = |ε
∫ 1

0

∂G(t, s)

∂t
f(s, x(s)) ds+ C1 − εC1|

≤ |ε(a1(t) + a2(t)|x(t)|p) + C1|
≤ εA(1 + |x(t)|p) + C1

≤ εA(1 + ∥x∥p) + C1 <∞, t ∈ [0, 1].

Consequently, by Ascoli-Arzelà compactness criteria, F : P → E is a completely continuous operator. Then
F : P → E is a 0-set contraction.
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3. Let ω0 ≡ C1 ∈ A(β, b, α, a) ∩ A(θ, c, ψ, d) be a constant, we have

(I − T )x = εx+ (1− ε)C1

(I − T )−1x =
x− C1

ε
+ C1, x ∈ P.

Hence,∣∣(I − T )−1ω0(t)
∣∣ = ∣∣(I − T )−1C1

∣∣ =

∣∣∣∣C1 − C1

ε
+ C1

∣∣∣∣
= C1

< R, t ∈ [0, 1],

and

min
t∈[ η8 ,η]

((I − T )−1ω0(t)) =
C1 − C1

ε
+ C1 = C1 ≥ ΛC1.

Also,

α((I − T )−1ω0) = min
t∈[0,1]

((I − T )−1ω0(t)) + 2C1 = min
t∈[0,1]

((I − T )−1C1) + 2C1

>
C1 − C1

ε
+ 3C1

> a,

and

β((I − T )−1ω0) = max
t∈[0,1]

|(I − T )−1ω0(t)| = max
t∈[0,1]

∣∣∣∣C1 − C1

ε
+ C1

∣∣∣∣
= C1

< b.

Then
(I − T )−1ω0 ∈ A(β, b, α, a).

4. We have A(β, b, α, a) ⊂ P∩B(0, b), then A(β, b, α, a) is bounded and by construction of A, ∂A∩A(β, b, α, a) = ∅.
So, the condition (H1) holds.

5. Let x ∈ P with α(x) = a and either θ(x) ≤ c or θ(Tx+ Fx) > c. Then

α(Tx+ Fx) = min
t∈[0,1]

(Tx(t) + Fx(t)) + 2C1

> a.

Consequently, the condition (H2) holds.
6. Let x ∈ P with β(x) = b and either ψ(Tx+ Fx) < d or ψ(x) ≥ d. Then

β(Tx+ Fx) = max
t∈[0,1]

|Tx(t) + Fx(t)|

= max
t∈[0,1]

∣∣∣∣(1− ε)x(t) + ε

∫ 1

0

G(t, s)f(s, x(s)) ds

∣∣∣∣
≤ (1− ε) max

t∈[0,1]
|x(t)|+ ε max

t∈[0,1]

∫ 1

0

|G(t, s)||f(s, x(s))| ds

≤ (1− ε)b+ εA(1 + ∥x∥p)
≤ (1− ε)b+ εA(1 + bp)

< b.

Consequently, the condition (H3) holds.
7. Let x ∈ P with α(x) = a. Then

α(Tx+ ω0) = min
t∈[0,1]

(Tx(t) + C1) + 2C1

= min
t∈[0,1]

((1− ε)x(t) + (ε− 1)C1 + C1) + 2C1

≥ (1− ε) min
t∈[0,1]

x(t) + εC1 + 2C1

= (1− ε)(a− 2C1) + (ε+ 2)C1

> a,
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and

θ(Tx+ ω0) = C3 max
t∈[0,1]

|Tx(t) + C1|

= C3 max
t∈[0,1]

|(1− ε)x(t) + εC1|

≤ C3

(
(1− ε) max

t∈[0,1]
|x(t)|+ εC1

)
≤ C3

(
(1− ε)

1

Λ
min

t∈[ η8 ,η]
x(t) + εC1

)
≤ C3

(
(1− ε)

1

Λ
(a− C1) + εC1

)
≤ c.

Consequently, the condition(H4) holds.

8. Let x ∈ P with β(x) = b. Then

β(Tx+ ω0) = max
t∈[0,1]

|Tx(t) + C1|

= max
t∈[0,1]

|(1− ε)x(t) + εC1|

≤ (1− ε) max
t∈[0,1]

|x(t)|+ εC1

≤ (1− ε)b+ εC1

< b,

and

ψ(Tx+ ω0) = C2 min
t∈[ η8 ,η]

(Tx(t) + C1)

= C2

(
min

t∈[ η8 ,η]
(1− ε)x(t) + εC1

)
≥ C2

(
(1− ε) min

t∈[ η8 ,η]
x(t) + εC1

)
≥ C2 ((1− ε)Λ∥x∥+ εC1)

≥ C2 ((1− ε)Λb+ εC1)

≥ d.

Consequently, the condition (H5) holds.

9. Let λ ∈ [0, 1] is fixed and x̃ ∈ A(β, b, α, a) is arbitrary chosen. Set

w(t) = λ

∫ 1

0

G(t, s)f(s, x̃(s)) ds+ (1− λ)C1.

We have that w(t) ≥ 0, t ∈ [0, 1], and

w(t) ≤ A(1 + |x̃(t)|p) + (1− λ)C1 < A (1 + bp) + b, t ∈ [0, 1].

So,
∥w∥ < A (1 + bp) + b ≤ ρ,

and

min
t∈[ η8 ,η]

w(t) = min
t∈[ η8 ,η]

(
λ

∫ 1

0

G(t, s)f(s, x̃(s)) ds+ (1− λ)C1

)
≥ λ

η

8
Ã+ (1− λ)C1

≥
min(η8 Ã, C1)

ρ
ρ

≥ Λ∥w∥.
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Therefore ω ∈ Ω. Also, we have

λF x̃(t) + (1− λ)ω0 = λ

[
ε

∫ 1

0

G(t, s)f(s, x̃(s)) ds+ (1− ε)C1

]
+ (1− λ)C1

= λε

∫ 1

0

G(t, s)f(s, x̃(s)) ds+ λ(1− ε)C1 + (1− λ)C1

= λε

∫ 1

0

G(t, s)f(s, x̃(s)) ds− λεC1 + C1

= λε

∫ 1

0

G(t, s)f(s, x̃(s)) ds− λεC1 + C1 − εC1 + εC1

= ε

(
λ

∫ 1

0

G(t, s)f(s, x̃(s)) ds+ (1− λ)C1

)
+ (1− ε)C1

= εw(t) + (1− ε)C1

= (I − T )w(t), t ∈ [0, 1].

Then
λF (A(β, b, α, a)) + (1− λ)ω0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1].

Hence, all the conditions of Theorem 3.1 are satisfied, and it follows that the operator T +F has at least one fixed
point x∗ ∈ A(β, b, α, a), which is a positive solution of the problem (4.1)-(4.2). This completes the proof. □

5 Example

Let,

ε = η =
1

2
, a = 8, b = 10, c = 12, d =

1

3
, C1 = 8, C2 = C3 = 1,

A = 2, Ã =
1

4
,

p =
1

2
, R = 25, ρ = 25.

So,
2b = 20 ≤ min(ρ,R) = 25, A(1 + bp) = 2(1 + 10

1
2 ) = 8.3246 < b = 10,

max

(
a

2
,
d

C2

)
= max

(
4,

1

3

)
= 4 < C1 = 8 < min

(
b,

c

C3

)
= min(10, 12) = 10,

Λ =
min(η8 Ã, C1)

ρ
= 6.25× 10−4,

C3

(
(1− ε)

1

Λ
(a− C1) + εC1

)
= 4 ≤ c = 12,

C2 ((1− ε)Λb+ εC1) = 4.0031 ≥ d =
1

3
.

Thus, (H2) holds. Now, by our main result, it follows that the boundary value problem:
x′′(t) = t+1

4 + 2

√
x(t)

1+x(t)4 , t ∈ (0, 1),

x(0) = x′(1) = 0,

has at least one positive solution.
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