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Abstract

In this paper, we give a complete description of the generalized hypergeometric functions, introduced by Faraut and
Korányi on the Cartan domain. We establish some Gauss type contiguous relations between these functions on the
two Cartan domains of type I2 and type IV4 analogous to the classical relations in the one variable case.
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1 Introduction

In [12] Herz has introduced the generalized hypergeometric functions with a matrix argument. These functions have
been object of intensive study in multivariate statistical analysis. In fact one can express probability densities occurring
naturally. In [3] Constantine has defined these functions in terms of zonal polynomials. Later, in [1, 2, 4, 5] a class
of homogeneous invariant polynomials two or more matrix arguments, which generalise the zonal polynomials; many
of their basic and integral properties are studied in real cases. Generalized hypergeometric functions associated with
arbitrary symmetric cones were considered by J. Faraut and A. Korányi [8]. A more general class of hypergeometric
functions was introduced by A. Korányi [13]. In [18] Z. Yan established that the generalized hypergeometric functions

2F
(a)
1 (α, β; γ;x1, ..., xr) is the unique solution of the system of the partial differential equations

x1(1− xi)
∂2F

∂x2
i

{
γ − a

2
(r − 1)−

[
α+ β + 1− a

2
(r − 1)

]
xi +

a

2

r∑
j=1,j ̸=i

xi(1− xi)

xi − xj

} ∂F

∂xi

− a

2

r∑
j=1,j ̸=i

xj(1− xj)

xi − xj

∂F

∂xj
= αβF, i = 1, ..., r

subject to the conditions that

1. F is a symmetric of x1, . . . , xr and

2. F is analytic at x1 = · · · = xr = 0 and F (0) = 1.
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D V C dimV (r,a,b)
In,m(n ≤ m) Mn,m(C) nm (n, 2, m-n)
IIn(n even) {z ∈ Mn(C); tz = −z} n

2 (n− 1) (n2 , 4, 0)

IIn(n odd) {z ∈ Mn(C); tz = −z} n (n−1)
2 (n−1

2 , 4, 2)
IIIn {z ∈ Mn(C); tz = z} 1

2n(n+ 1) (n, 1, 0)
IVn Cn n (2, n-2, 0)
V M1,2(O) 16 (2, 6, 4)
VI {z ∈ M3,3(O); tz̄ = z} 27 (3, 8, 0 )

Table 1: Irreducible bounded symmetric domains of non-compact type.

Also Z. Yan obtained some analogues of classical results about hypergeometric functions and, in particular he
established integral representations of the generalized hypergeometric functions. He obtained the asymptotic behavior

of p+1F
(a)
p . As an application, he gave the generalized Rudin-Forelli inequalities in function theory on a bounded

symmetric domain, which are due to J. Faraut and A. Korányi for 2F
(a)
1 (α, β; γ; t1, ...., tr) with special α, β and γ, see

[9].

The aim of this paper is to give some Gauss type contiguous relations between the Faraut-Korányi hypergeometric
functions on the two Cartan domains (of rank 2) of type III2 and type IV3. The proofs rely on an interesting integral
representation for the zonal functions ϕm: Namely

ϕm(t1, t2) =
Γ(a)

Γ(a2 )
2

∫ 1

0

[t1 − (t1 − t2)y]
m1−m2 (t1t2)

m2 [y(1− y)]
a
2−1

dy. (1.1)

The paper is organized as follows. In Section2 we give some notations and preliminaries. In Section3, we get some
Gauss type contiguous relations between the Faraut-Korányi hypergeometric functions on the two domain of type III2
and type IV3.

2 Notations and preliminaries.

2.1 General setting.

In this section, we review some well known results of Jordan algebra and symmetric domains (referring to [10, 11, 15]
for more details of this subject).

Let D ⊂ Cd be a Cartan domain, i.e. D is an irreducible bounded symmetric domain in the Harish-Chandra
realization. This is equivalent to saying that D is the open unit ball of Cd with respect to a certain norm ||.|| such
that the group G := Aut(D) of all biholomorphic automorphisms of D acts transitively on D. By [15] there exists a
triple product {., ., .} : Cd ×Cd ×Cd −→ Cd, so that V C := (Cd, ||.||, {., ., .}) is a Jordan-Banach∗-triple(JB∗-triple).
The maximal compact subgroup of G is K := {g ∈ G; g(0) = 0} = G ∩GL(V C), and D = G/K.

We denote by r,a,b, d and p the rank, the characteristic multiplicities, the dimension and the genus of D, respec-
tively

d = r +
r(r − 1)

2
a+ rb, p = 2 + (r − 1)a+ b. (2.1)

where O is the 8-dimensional Cayley algebra. A tripotent v ∈ V C is an element satisfying {v, v, v} = v. The Peirce
decomposition associated with the tripotent v is

V C := V C
1 (v)⊕ V C

1
2
(v)⊕ V C

0 (v) (2.2)

where V C
ν (v) := {z ∈ V C; {v, v, z} = νz}, ν = 1, 1

2 , 0. The associated Peirce projection Pν(v) is the projection whose
range is V C

ν (v) and whose kernel is the sum of the other two Peirce subspace. The space V C
ν are sub-triples of V C, and

the rank of the tripotent v is by definition the rank de V C
1 (v). We define Sj= the set of tripotent of rank j = 0, 1, ..., r,

S := Sr is the Shilov boundary of D. Let us choose a frame e1, e2, ..., er, i.e. a maximal set of tripotents of rank one
which are pairwise orthogonal i.e. {ei, ei, ej} = 0 whenever i ̸= j. The tripotent

e = e1 + e2 + ...+ er
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is maximal (having rank r) and thus V C
0 (e) = 0. The stabilizer of e in K. namely

L := {k ∈ K; k(e) = e}

will play an important role in the sequel. Notice that since K acts transitively on S, we have S = K/L. More
generally, K acts transitively on the frame, and in particular it is transitive on each of the Sj . The sub-triple V C

1 (e)
has the structure of a JB∗-algebra with respect to the product z ◦ w := 1

2{z, e, w} and the in volution z∗ := {e, z, e},
and e is the unit of V C

1 (e).

The real part of V C
1 (e)i.e., the subset

X = X1(e) := {x ∈ V C
1 (e); x∗ = x}

of self-adjoint elements of V C
1 (e) is a Euclidien (or formally-real) Jordan algebra, with determinant (”norme”) and

trace polynomials
∆(z) = det(z) and tr(z) := ⟨z, e⟩ (2.3)

respectively. Here ⟨z, w⟩ denotes the unique K-invariants scalar product on V C satisfying ⟨e1, e1⟩ = 1. The set

Ω := {x2; x ∈ X, ∆(z) ̸= 0}

is the symmetric cone associated with X. The group L, restricted to X, coincides with the Jordan- algebra automor-
phisms of X. In particular, it is transitive on the frames of orthogonal minimal idempotents in X whose sum is the
unit element e.

For 1 ≤ j ≤ r, let uj = e1 + e2 + ...+ ej and let ∆j denote the determinant polynomial of the Jordan sub-algebra
(V C)(j) := V C

1 (uj) extended to all of V C via ∆j(z) := ∆j(Pj(uj)z). Note that ∆r = ∆. The conical function associated
with s = (s1, ..., sr) ∈ Cr is defined by

∆s(x) := ∆1(x)
s1−s2∆2(x)

s2−s3 .....∆r−1(x)
sr−1−sr∆r(x)

sr , ∀x ∈ Ω. (2.4)

The Gindikin-Koecher Gamma function associated with the cone Ω is defined for s = (s1, ..., sr) ∈ Cr with
ℜ[sj ] > (j − 1)a2 by the convergent integral

Γ
(a)
Ω (s) :=

∫
Ω

e−tr(x)∆s(x)∆(x)
−d1
r dm(x), (2.5)

where d1 := dimR(X) = r(r−1)
2 a + r. It is Known that Γ

(a)
Ω can be expressed as a product of ordinary Gamma

functions:

Γ
(a)
Ω (s) := (2π)

d1−r
2

r∏
j=1

Γ(sj − (j − 1)
a

2
). (2.6)

When s = m consists of integers such that m1 ≥ ... ≥ mr ≥ 0, we write m ≥ 0. In this case ∆m is a polynomial.
For m ≥ 0, the K-irreducible component Pm is the finite linear span {∆m ◦ k, k ∈ K}. Equipped with the Fischer (or
Fock) scalar product

⟨f, g⟩ : = f(∂)g(z̄) |z=0

= π−d

∫
Cd

f(x)g(x)e−|x|2dm(x),

each space Pm becomes a finite-dimensional Hilbert space of function on Cd, and thus has a reproducing kernel
Km(x, y), holomorphic in x and anti-holomorphic in y. The Faraut-Korányi functions [9, 18] on D are defined by

2F
(a)
1 (α, β; γ;x) :=

∑
m≥0

(α)m(β)m
(γ)m

Km(x, e). (2.7)

Here (.)m is the generalized Pochhammer symbol

(α)m :=

r∏
j=1

(α− j − 1

2
a)mj

, where (α)k := α(α+ 1)...(α+ k − 1). (2.8)
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Each Pm contains a unique L-invariant polynomial ϕm satisfying the normalization condition ϕm(e) = 1

ϕm(x) =

∫
L

∆m(k.x)dk.

The polynomials ϕm are related to the reproducing kernels Km by the formula we have

Km(x, e) =
dm

(dr )m
ϕm(x), (2.9)

where dm := dimPm. It is known that the last dimension is given by the formula

dm =
(dr )m

(q)m
πm

where

q :=
r − 1

2
a+ 1

and

πm :=
∏

1≤i<j≤r

mi −mj +
j−1
2 a

j−1
2 a

( j−i+1
2 a)mi−mj

( j−i−1
2 a+ 1)mi−mj

.

Therefore, the Faraut-Korányi hypergeometric functions on D can be written as

2F
(a)
1 (α, β; γ;x) :=

∑
m≥0

(α)m(β)m
(γ)m

1

(dr )m
dmϕm(x). (2.10)

Remark 2.1. The Faraut-Korányi hypergeometric functions 2F
(a)
1 (α, β; γ;x) is invariant under L acting on x. There-

fore, if x =
r∑

j=1

tjcj is the spectral decomposition of x,

2F
(a)
1 (α, β; γ;x) =2 F

(a)
1 (α, β; γ; t1, t2, ..., tr). (2.11)

Remark 2.2. Such functions ϕm had been introduced by Hua and posed the problem of finding explicit analytic
formula of them. In [14], Lassale and Schlosser gave a complex explicit analytic development for ϕm, and more
generally for the Macdonald polynomial; they have used combinatoric analysis but the explicit expressions obtained
are very complicated. Hence Hua’s problem remained open except for the case of the Lie ball [7] and the case of the
matricial ball where the zonal polynomials are Schur functions. When V = Sym(m,R), they have been much studied
in multivariate statistical analysis (see [17]). As a result of work by Debiard [6] and Macdonald [16] it has become
clear that in the case of any Euclidean Jordan algebra they are special cases of the so-called Jack polynomials.

2.2 Bounded symmetric domains of type I2 and type IV3.

For any matrix a we denote respectively by ta and ā the transpose and conjugate of a.

Type I2: Let D2 be the domain of matrices of order 2 satisfying I2− z tz̄ > 0 (positive definite). Let G = SU(2, 2)

be the group of matrices SL(4,C) which leave invariant the hermitian form on C4

z1z̄1 + z2z̄2 − z3z̄3 − z4z̄4.

The group G acts on D2 by

g.z = (az + b)(cz + d)−1, (2.12)

for every g =

(
a b
c d

)
in G and every z ∈ D2. The action of G on D2 is transitive. Thus as homogeneous space, we

have the identification D2 = G/K, where K is the stabilizer in G of 0 given by

K = S(U(2)× U(2)) =

{(
a 0
0 d

)
; a ∈ U(2), d ∈ U(2) et det ad = 1

}
.
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Consider on the space of matrices V C = M(2,C) the product defined as follows if z = x ◦ y = 1
2 (xy + yx).

Then V C is a Jordan algebra of rank two with an identity element e = I2 and the Koecher’s determinant ∆ is

∆(z) = det z.

Let

{
c1 =

(
1 0
0 0

)
, c2 =

(
0 0
0 1

)}
be a fixed Jordan frame in V = Herm(2,C). Every z ∈ V C can be written

as the form

z = k.

2∑
j=1

tjcj ,

with k ∈ K and 0 ≤ t1 ≤ t2. Then the spectral norm of z ∈ V C is

|z| = sup
j∈{1,2}

tj

and we can define D2 in V C as the open unit ball for the spectral norm

D2 = {z ∈ M(2,C)/ |z| < 1}.

Let L be the stabilizer of I2 in K

L =

{(
a 0
0 a

)
; a ∈ U(2) et det a = ±1

}
≃ U(2).

Thus the L-invariant zonal function ϕm on D2 in M(2,C) is given by

ϕm(z) =

∫
U(2)

∆m(k.z)dk; m ∈ ∧ = {(m1,m2) ∈ Z2/ m1 ≥ m2},

where dk is the normalized Haar measure on U(2) and ∆m is the conical polynomial defined in [10] by

∆m(z) = ∆1(z)
m1−m2∆(z)m2 , ∆1(z) = z11, ∀z = (zij)1≤i,j≤2 ∈ M(2,C).

Type IV4: The Bounded symmetric domains of type IV3 ( Lie ball) in C4 is defined by

D4 =
{
z =t (z1, z2, z3, z4) ∈ C4/ 1− 2tz̄z + |tzz|2 > 0, |tzz| < 1

}
,

here z is viewing as 4× 1 matrix.

The group SO(4, 2) consisting of the matrices g in SL(6,R) such that gtJg = J , where J =

(
−I4 04,2
02,4 I2

)
. The

group SO(4, 2) acts on D4 by

g[z] = g.z =

(
Az +B

(
i
2 (1−

t zz)
1
2 (1 +

t zz)

))(
(−i, 1)

(
Cz +D

(
i
2 (1−

t zz)
1
2 (1 +

t zz

)))−1

, (2.13)

for every g =

(
A B
C D

)
in G et every z ∈ D4. The action of SO(4, 2) on D4 is transitive. In fact, the connected

component of the identity, SO0(4, 2) acts transitively. We will let G denote this group. Thus as homogeneous space,
we have the identification D4 = G/K, where K is the stabilizer in G of 0 given by K = SO(4)× SO(2).

Consider on V C = (R3 × R)C = C4 the product defined as follows if z = xy,{
z1 = x1y1 + x2y2 + x3y3 + x4y4
zj = x1yj + xjy1, j ∈ {2, 3, 4}.

Then V C is a Jordan algebra of rank two with an identity element e =t (1, 0, 0, 0) and the Koecher’s determinant
∆ is

∆(z) = z21 + z22 + z23 + z24 .
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Let {c̃1 = 1
2
t(1, 0, 0, 1), c̃2 = 1

2
t(1, 0, 0,−1)} be a fixed Jordan frame in V = R3 ×R. Every z ∈ V C can be written

as the form

z = k.

2∑
j=1

tjcj ,

with k ∈ K and 0 ≤ t1 ≤ t2. Then the spectral norm of z ∈ V C is

|z| = sup
j∈{1,2}

tj

and we can define D4 in V C as the open unit ball for the spectral norm

D4 = {z ∈ C4/ |z| < 1}.

Let L̃ be the stabilizer of e in K

L̃ =






ϵ 0 0 0
0 A
0
0

 04,2

02,4 ϵI2

 ; ϵ = ±1, A ∈ SO(3)

 ≃ SO(3).

Thus the L̃-invariant zonal function ϕm on the Lie ball in C4 is given by

ϕm(z) =

∫
SO(3)

∆m(k.z)dk; m ∈ ∧ = {(m1,m2) ∈ Z2/ m1 ≥ m2},

where dk is the normalized Haar measure on SO(3) and ∆m is the conical polynomial defined in [10] by

∆m(z = (z1, z2, z3, z4)) = ∆1(z)
m1−m2∆(z)m2 , ∆1(z) = z1 + z4.

Remark 2.3. If z1 = t1c1 + t2c2 =

(
t1 0
0 t2

)
and z2 = t1c̃1 + t2c̃2 = 1

2
t(t1 + t2, 0, 0, t1 − t2), the zonal function

ϕm(z1) on domain of type I2 coincide with the zonal function ϕm(z2) on domain of type IV4.

By using the formula (1.1) and integrating by parts, we obtain

ϕm(t1, t2) = 2
tm2
1 tm1+1

2 − tm2
2 tm1+1

1

(t2 − t1)(m1 −m2 + 1)
.

Thus the Faraut-Korányi hypergeometric functions on the two Cartan domains of type I2 and type IV4 are given by

2F
(2)
1 (α, β; γ; k1.z1) =2 F

(2)
1 (α, β; γ; k2.z2), k1 ∈ L, k2 ∈ L̃

= 2F
(2)
1 (α, β; γ; t1, t2)

= 2

∞∑
m2=0

∞∑
m1=m2

(
(α)m1

(α− 1)m2
(β)m1

(β − 1)m2

(γ)m1
(γ − 1)m2

(m1 + 1)!m2!

)
(m1 −m2 + 1)

tm2
1 tm1+1

2 − tm2
2 tm1+1

1

(t2 − t1)
.

3 Gauss type contiguous relations.

In this section, we establish the Gauss type contiguous relations between the Faraut-Korányi hypergeometric
functions on the two Cartan domains of type I2 and type IV4 generalizing the classical contiguous relation

x(1− x)
d

dx
2F1(α+ 1, β + 1; γ + 1;x) + (γ − (α+ β + 1)x) 2F1(α+ 1, β + 1; γ + 1;x)− γ 2F1(α, β; γ;x) = 0,

where 2F1(α, β; γ;x) is the classical Gauss hypergeometric Function. Let H(2)(α, β; γ; t1, t2) denote the following
function

H(2)(α, β; γ; t1, t2) =
2

t2 − t1
2F

(2)
1 (α, β; γ; t1, t2).
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Theorem 3.1. It holds that

2F
(2)
1 (α, β; γ; t1, t2) =

(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)

[ ∂2

∂t1∂t2
2F

(2)
1 (α− 1, β − 1; γ − 1; t1, t2)

+
1

(t2 − t1)

{( ∂

∂t2
− ∂

∂t2

)
2
F

(2)
1 (α− 1, β − 1; γ − 1; t1, t2)

}
− 1

(t2 − t1)2
2F

(2)
1 (α− 1, β − 1; γ − 1; t1, t2)

]
.

Proof . We use the formula (a− 1)k+1 = (a− 1)(a)k to rewrite H(2)(α, β; γ; t1, t2) as

H(2)(α, β; γ; t1, t2) =
(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)
∞∑

m2=0

∞∑
m1=m2

(
(α− 1)m1

(α− 2)m2
(β − 1)m1

(β − 2)m2

(γ − 1)m1(γ − 2)m2(m1 + 1)!m2!

)
m2(m1 + 1)(tm2−1

1 tm1
2 − tm2−1

2 tm1
1 ).

=
(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)
G(2)(α− 1, β − 1; γ − 1; t1, t2).

Since
∂2

∂t1∂t2

[
(tm2

1 tm1+1
2 − tm2

2 tm1+1
1 )

]
= m2(m1 + 1)(tm2−1

1 tm1
2 − tm2−1

2 tm1
1 )

we have

G(2)(α− 1, β − 1; γ − 1; t1, t2) =
∂

∂t1∂t2
H(2)(α− 1, β − 1; γ − 1; t1, t2)

From the fact that

2F
(2)
1 (α, β; γ; t1, t2) =

(t2 − t1)

2
H(2)(α− 1, β − 1; γ − 1; t1, t2)

=
(t2 − t1)(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)

× ∂2

∂t1∂t2

( 1

t2 − t1
2F

(2)
1 (α− 1, β − 1; γ − 1; t1, t2)

)
we get

2F
(2)
1 (α, β; γ; t1, t2) =

(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)

[ ∂2

∂t1∂t2
2F

(2)
1 (α− 1, β − 1; γ − 1; t1, t2)

+
1

(t2 − t1)

{( ∂

∂t2
− ∂

∂t2

)
2F

(2)
1 (α− 1, β − 1; γ − 1; t1, t2)

}
− 1

(t2 − t1)2
2F

(2)
1 (α− 1, β − 1; γ − 1; t1, t2)

]
.

□

By applying the Euler type transformation [10, 18]

2F
(2)
1 (α− 1, β − 1; γ − 1; t1, t2) =

[
(1− t1)(1− t2)

]γ−α−β+1

2F
(2)
1 (γ − α, γ − β; γ − 1; t1, t2)

to each term in the Theorem 3.1 and simple calculation we get the following corollary.
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Corollary 3.2.

2F
(2)
1 (α, β; γ; t1, t2) =

(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)

[
(1− t1)(1− t2)

]γ−α−β

[{
(γ − α− β + 1)(γ − α− β)− (1− t1)(1− t

2
)

(t2 − t1)2

}
2F

(2)
1

(
γ − α, γ − β; γ − 1; t1, t2

)
−

{ (1− t1)(1− t2)

(t2 − t1)
+ (γ − α− β + 1)(1− t1)

} ∂

∂t1
2F

(2)
1

(
γ − α, γ − β; γ − 1; t1, t2

)
+

{ (1− t1)(1− t
2
)

(t2 − t1)
− (γ − α− β + 1)(1− t2)

} ∂

∂t2
2F

(2)
1

(
γ − α, γ − β; γ − 1; t1, t2

)
+ (1− t1)(1− t2)

∂2

∂t2∂t1
2F

(2)
1

(
γ − α, γ − β; γ − 1; t1, t2

)]
By apply the Pfaff type transformation [10, 18]

2F
(2)
1 (α− 1, β − 1; γ − 1; t1, t2) =

[
(1− t1)(1− t2)

]1−α

2F
(2)
1

(
α− 1, γ − β; γ − 1;

t1
t1 − 1

,
t2

t2 − 1

)
to each term in the Theorem 3.1 and simple calculation we get an other corollary.

Corollary 3.3.

2F
(2)
1 (α, β; γ; t1, t2) =

(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)

[
(1− t1)(1− t2)

]−α−1

{[
α(α− 1)

(
(1− t1)(1− t2)

)
−

(
(1− t1)(1− t2)

)2

(t2 − t1)2

]
2F

(2)
1

(
α− 1, γ − β; γ − 1;

t1
t1 − 1

,
t2

t2 − 1

)
+

[
−α(1− t2) +

(1− t2)
2

t2 − t1

]
∂

∂t1
2F

(2)
1

(
α− 1, γ − β; γ − 1;

t1
t1 − 1

,
t2

t2 − 1

)
−

[
α(1− t1) +

(1− t1)
2

t2 − t1

]
∂

∂t2
2F

(2)
1

(
α− 1, γ − β; γ − 1;

t1
t1 − 1

,
t2

t2 − 1

)
+

∂2

∂t1∂t2
2F

(2)
1

(
α− 1, γ − β; γ − 1;

t1
t1 − 1

,
t2

t2 − 1

)}
.

Remark 3.4. If (t1, t2) = (uet, ue−t) the function 2F
(2)
1 (α− 1, γ − β; γ − 1;uet, ue−t) can be written as series in-

volving Gegenbauer polynomials. More precisely, from the formula (1.1), we have

ϕm(uet, ue−t) = 2um1+m2

∫ 1

0

[
cosh t+ (1− 2y) sinh t

]m1−m2

dy

= um1+m2

∫ π

0

[
cosh t+ cos θ sinh t

]m1−m2

sin θdθ

=

√
πum1+m2

8Γ( 12 )
C1

m1−m2
(cosh t),

where C1
k denotes the Gegenbauer (ultraspherical) polynomial of degree k

C1
k(x) =

(−1)k(k + 1)

2k( 32 )k
(1− x2)

−1
2

dk

dxk
(1− x2)k+

1
2 .

Thus

2F
(2)
1 (α, β; γ;uet, ue−t) =
√
π

8Γ( 12 )

∞∑
m2=0

∞∑
m1=m2

(
(α)m1

(α− 1)m2
(β)m1

(β − 1)m2

(γ)m1
(γ − 1)m2

(m1 + 1)!m2!

)
(m1 −m2 + 1)2um1+m2C1

m1−m2
(cosh t).
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Theorem 3.5. It holds that

2F
(2)
1 (α, β; γ;uet, ue−t) =

(γ − 1)(γ − 2)

4(α− 1)(α− 2)(β − 1)(β − 2)[ d2

du2 2F
(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t) +

3

u

d

du
2F

(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t)

− d2

dt2
2F

(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t)− (3− sinh t)

cosh t

sinh t

d

dt
2F

(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t)

]
.

Proof . We use the formula (a− 1)k+1 = (a− 1)(a)k to rewrite 2F
(2)
1 (α, β; γ;uet, ue−t) as

2F
(2)
1 (α, β; γ;uet, ue−t) =

(γ − 1)(γ − 2)

(α− 1)(α− 2)(β − 1)(β − 2)

√
π

8Γ( 12 )[ ∞∑
m2=0

∞∑
m1=m2

(α− 1)m1(α− 2)m2(β − 1)m1(β − 2)m2(m1 −m2 + 1)2

(γ − 1)m1
(γ − 2)m2

(m1 + 1)!m2!
m2(m1 + 1)um1+m2−2C1

m1−m2
(cosh t)

]
.

Since m2(m1 + 1) = 1
4 (m1 +m2)(m1 +m2 − 1) + 3

4 (m1 +m2)− 1
4 (m1 −m2)(m1 −m2 + 2), we have

2F
(2)
1 (α, β; γ;uet, ue−t) =

(γ − 1)(γ − 2)

4(α− 1)(α− 2)(β − 1)(β − 2)[ d2

du2 2F
(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t) +

3

u

d

du
2F

(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t)

−
√
π

8Γ( 12 )

∞∑
m2=0

∞∑
m1=m2

(α− 1)m1
(α− 2)m2

(β − 1)m1
(β − 2)m2

(m1 −m2 + 1)2

(γ − 1)m1(γ − 2)m2(m1 + 1)!m2!

(m1 −m2)(m1 −m2 + 2)um1+m2−2C1
m1−m2

(cosh t)
]
.

From the fact that C1
m1−m2

(x) is a solution following Gegenbauer differential equation

(x2 − 1)
d2f(x)

d2x
+ 3x

df(x)

dx
= (m1 −m2)(m1 −m2 + 2)f(x)

and 
df(cosh t)

d(cosh t)
=

1

sinh t

df(cosh t)

dt
d2f(cosh t)

d2(cosh t)
= − cosh t

sinh2 t

df(cosh t)

dt
+

1

sinh2 t

d2f(cosh t)

dt2
,

we have

d2C1
m1−m2

(cosh t)

dt2
+ (3− sinh t)

cosh t

sinh t

dC1
m1−m2

(cosh t)

dt
= (m1 −m2)(m1 −m2 + 2)C1

m1−m2
(cosh t),

and

2F
(2)
1 (α, β; γ;uet, ue−t) =

(γ − 1)(γ − 2)

4(α− 1)(α− 2)(β − 1)(β − 2)[ d2

du2 2F
(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t) +

3

u

d

du
2F

(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t)

− d2

dt2
2F

(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t)− (3− sinh t)

cosh t

sinh t

d

dt
2F

(2)
1 (α− 1, β − 1; γ − 1;uet, ue−t)

]
.

□

4 Conclusion

The proofs of Theorem 3.1 and Theorem 3.5 rely on interesting integral representation for ϕm on domains of rank
2 (Formula(1.1)).It would be nice to have an analogous representation for general rank r in order to generalize our
results. Future work we will generalize our results of this paper to exceptional domain E6(−14)/SO(10)× SO(2).
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[13] A. Korányi, Hua-type integrals, hypergeometric functions and symmetric polynomials, Int. Symp. Memory of Hua
Loo Keng, Vol.II (Beijing, (1988)). Springer. Berlin, 1991, pp. 169-180.

[14] M. Lassalle and M. Schlosser, An analytic formula for Macdonald polynomials, C. R. Math. Acad. Sci. Paris 337
(2003), 569—574.

[15] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Univ. of California, Irvine, 1977.

[16] L.G. Macdonald, Commuting differential operators and zonal spherical functions, Algebraic Groups Utrecht 1986:
Proc. Symp. Honour of TA, Springer Berlin Heidelberg, 2006, pp. 189–200.

[17] R.J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley, 1982.

[18] Z. Yan, A class of generalized hypergeometric functions in several variables, Canad. J. Math. 44 (1992), 1317–1338.


	Introduction
	Notations and preliminaries.
	General setting.
	Bounded symmetric domains of type I2 and type IV3.

	Gauss type contiguous relations.
	Conclusion

