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Abstract

e

In this investigation, using Opoola differential operator (D™ (u, B,t) f(2)), a new integral operator: I, 3% (f1, ..., fa)(2) :
A" — A is defined in the unit disk, U = {z € C' : |z] < 1}; and we investigated the Univalence conditions of this
generalized operator. Finally, a number of corollaries and remarks which show the extension of our results are presented.
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1 Introduction and definitions

Let A denote the family of functions, f(z) that are analytic in the unit disk ,U = {z € C': |z] < 1}. Let S be the
subclass of f(z) € A that are of the form

f(2) =z+Zakzk (1.1)
k=2

which are univalent in U Let S*, C' and K denote respectively the subclasses of S known as class of starlike functions
with respect to the origin,class of convex functions and class of Close-to-convex functions. Let A and S denote the
classes of all functions as defined above. Next, we define some well known subclasses of A, denoted by Az, K, K3, K3 5
and S(p) respectively as follow:

AQCA:{fEA:f(z):z—FZakzk (zeU,agz())}
k=3

z;ég')zg—l‘<l zeU}

KocK={feK:f'(0)=0 zeU}

KCA:{feA:
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K2’6CK2:{f€K2:

?;{;;;3—1‘<1—§, 0<d<1 zeU}

"
_E
(75)
In [22], Opoola introduced the following differential operator:

D™ (u,B,t)f(z): A— A

D, B,1) f(2) = f(2)
DY(u, B,1)f(2) = 2De f(2) = tzf'(z) = 2(B — )t + [1 + (B — p = DU f(2)

S(p)CA:{fEA: <p, 0<p<2 peR zEU}

D™(u, B,4)f(2) = 2De(D™ (1, B, ) f(2)), m €N (1.2)

If f(z) is given by (1.1),then from (1.2), we see that
D™ (s, B,t) 24> [+ (k48— p— 1" az" (1.3)
k=2

where, 0 < p < §,t>0and m € Ng = N UDO).

Remark 1.1. (i) when 8 = p,t =X, D™(u, 1, A) f(2) = D} f(2) is the Al-Oboudi Differential operator in [IJ.
(ii) when 8 = p, t = 1,D™(u, p, 1) f(2) = D™ f(z) is the Salagean Differential operator introduced in [30].

Alexander in [2] introduced and investigated a univalent Integral operator and was continued by Libera in[I8]. In
[4], Bernardi generalized the work of Libera where he gave the conditions for which the operator is starlike , convex
and close-to-convex in the unit disk,U.Being an interesting area of research,many results have been obtained by many
scholars.We refer interested readers to the works in [3, [5 [7} 8 13| 14} 16, 17, 19, 23, 24|, 25 27, 28, B1] for more
information on different univalent integral operators.

Motivated by the works of Bulut [9, [10, 111 12, 15], where a differential operator was used to define integral oper-
ators; we generalize Bulut’s work and others by using Opoola differential operator and defined a generalized Integral
operator,and investigated the conditions for which the operator is univalent in the unit disk, U = {z € C : |z| < 1}.
The operator and the results generalize some existing results.

Now we introduce a new general integral operator by means of Opoola differential operator.

Definition 1.2. Let n € N,m € Ny, t, 5> 0,0 < pu < p,0 € C with R(o) >0and a; € C,(j =1,2,...,n), we define
Imo'

the integral operator I,"5° (f1, ..., fn)(2) : A" :— A by

I (1o fu) (2) = a/o ule- 1>H(’””)fﬂ()> duy , z€U (1.4)

where fi1,..., fn € A and D™ (p, 5,t)f;(2) is the Opoola differential operator defined in (|1.3]).

Remark 1.3. (i) Forne N,o =1,a; € C,j=1,2,...,n in (L.4), we have the integral operator

I (o F)(2) = /H(W)du sev 5)

j=1
where f1,..., fn € A and D™ (u, 8,t) f;(2) is the Opoola differential operator defined in (1.3).
(ii) For n = 1,0 = 1, € C in (1.4]), we have the integral operator

T uf(2) = {/O <Dm(”’§’t)f(“))adu}, zeU (1.6)
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where f € A and D™ (u, 8,t)f(z) is the Opoola differential operator defined in (|1.3)).
(iif) For n € Nym € No,0 = 1,0 € C, 8 = p,t = X and D™ (p, s, A) f(2) = DY f;(2),5 = 1,2,...,n, we have the

integral operator
I(f1, . fo)(2) = /0 (W)m <W>a du, zeU (1.7)

u u

which was introduced by Bulut, DY f;(2) is the Al-Oboudi differential operator in [15].
(iv) For n € N,o,a; € C,D%u, B,1) f;(2) = f;(2) € S,j = 1,2, ...,n, we have the integral operator

L(frso f)(2) = {cr/o (fliu)) (W) ' du}a, ceU (1.8)
in [6].
(v) Forne N,o =1,a; € C, D, B,t) f;(2) = fj(z) € S,j =1,2,...,n, we have the integral operator

Ity fi)(2) = {/0 (fliu)fl (f”i“)y" du}, ceU (1.9)
in [6].

(vi) Form=0,n=1,0=1,a1 = l,as = a3z = ... = a,, = 0, and D°(, B,t) f1(2) = f(z) € A, we have Alexander
integral operator

106 = [ Mau, ev (1.10)
0
in [2].
(vii) For m = 0,n = 1,0 = 1,a[0,1],a2 = a3 = --- = a,, = 0, and D(p, 1, t) f1(2) = f(2) € A, we have the
integral operator
1@ = [ (1) w seu (111)
0

in [20].

2 Relevant Lemmas

In order to prove our main results, we need the following Lemmas.

Lemma 2.1 (General Schwarz Lemma). [2I] Let the analytic function f(z) be regular in the disk
Ur={z€C:|z| <R},
with | f(z)] < M for fixed M. If f(z) has one zero and multiplicity order bigger than m for z = 0, then

FE < o™ (2 € Un).

The equality can hold only if f(z) = e* Igf[n z™, where 6 is a constant.

Lemma 2.2. [29] Let a be a complex number with Rea > 0 and f(z) € A. If f(z) satisfies

2f"(2)
f'(z)

then, for any complex number 8 with £(8) > R(«), the integral operator

1— |Z‘2ﬂ?a

o

<1 (z€U),

1

ﬂ/ztﬁlf’(t)dt}ﬁ =4

0

Fy(z) = {

is analytic and univalent in U.
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Lemma 2.3. [26] Let a € C, (R(a) > 0) and ¢ € C(|c|] < 1: ¢ # —1). Suppose also that the function f(z) given by
(1.1) is analytic in U. If
21"(2)

af'(z)

2a 2a
clz]™ + (1 —12[7)

<1 (z€U),

then the function F,,(z) defined by

Fo(z) := {a/oz to‘lf’(t)dt}i — .

is analytic and univalent in U.

Lemma 2.4. [32] If a function f(z) € S(p), then

22 f'(2) 2
e 1 <plf
3 Main Results

Theorem 3.1. Let a1,...,a,,0 € C,;m € No,t > 0,8 > 0,0 < pp < 3, and each of the functions f; € 4,5 =1,...,n
and

(D™, B,1)f5(2)) .
(D™ (1, B, 1) f;(2) 1’“’ €U (3.1)

and R(o) > 377, e > 0, then the integral operator I, (f1, ..., fn)(2) defined by (1.4) is in the univalent class S.
Proof . Since f; € A,j =1,...,n by (3.1), we have

(D™ (1 8.0 15(2)) _ 2+ Syl (k5 — p— D] ag ;24

z z

=1+ Z L4+ (k+8—p—1)]"a,2""

for all z € U and m € Ny. Let us define a function h(z) by

o = [T (LR 05) ™, 652)

! u
Jj=1

So that by Fundamental Theorem of Calculus, we have

ﬁ ({2t 20560)” 53

for all z € U. This equality implies that

) e (ZHELONEDY (27805
=ay [In (D™ (u, B,t) f1(2)) —Inz] 4+ -+ + ap In (D™ (p, 5,t) fn(2)) —Inz]. (3.4)

By differentiating the above equality logarithmical, we have

h//(Z) . (Dm(:u757t)f1(z))/ _ l o (Dm(:u7ﬁ7t)fn(z))/ _1
s T ™ [ D7 (1, B ) 2 (2) ] e [ D7 (j1. 5. 1) (2) } (3.5)
Then
Zh”(z) - n N Z(D"L( B?t)f](z))/ B
W) = { D .01, (2) 1] (3:6)
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2R(o) zh(2)

h'(z)

12|

R(o)

So by the condition of the Theorem, we find
D™ (1, 8,0)15(2)) 1’)

L[z &~ A 8,
%(a) 2"”'( D, 5, 0)15(2)

L= Izl i:|aj| < (10) f]aj\ <1 (3.7)
j=1

since %’3]{;8;), - 1’ < 1, and R(o) > 2?21 |aj|. Finally by applying Lemma for the function h(z), we

proved that 3% (f1,.... fa)(2) € S. O

Remark 3.2. If we set 5 = pu,0 = 1 in Theorem then we have [I5, Theorem 2.3].
Remark 3.3. If we set m = 0,0 =1 in Theorem then we have [6, Theorem 1].

Corollary 3.4. Let a; > 0,0 € C,m € Ng,t > 0,6 > 0,0 < 1 < 3, and each of the functions f; € A j =1,2,...,n
If f; € A,j =1,2,...,n, satisfies the inequality (3.1) and R(c) > >""" | @;, then the integral operator I ﬁ /L(fl" s Jn)
defined by (1.4]) is in the univalent class S.

Remark 3.5. If we set 3 = y,0 = 1 in Corollary [3.4] we get [I5, Corollary 2.5].

Theorem 3.6. Let M; > 1 and suppose that each of the functions f; € A,j = 1,2, ..., n satisfies the inequality

Z2(D™(p, B, 1) £5(2))'
(D™ (s B,1) f3(2))°

-1/ <1, zeUmeN,. (3.8)

Also, let aq,...,an,0 € C with R(o) > Y0 |oy| (2M; +1) > 0. If [D™(p, 8,8) f;(2)] < My,z € U,j =1,2,...,n
then the integral operator Itmﬁaﬂ (f1, .-, fn) defined by (1.4)) is in the univalent function class S.

Proof . We know from the proof of Theorem [3.1] that

W'(2)| _ < 2(D™(p, B, ) f5(2))
W) | < 21 (" isnra 1) 39
So by the imposed condition, we find
L— M7 | 207(2) | _ L= [ § (D™ (1, B,6) f5(2))’
Rl W | < e = (et (340
By Schwarz Lemma, we get |D™(u, 8,t)g;| < M; |z|, R = 1, therefore
1— |Z|2§T|‘:(U) zh”(z) 1— |Z|2§R(o) n ( ( B, t)fj ))/ " )
wor | | = e 2= e | !
1 B 2R(c) n Dm " ,
O Z'”( e | EURSURSY
Z\aﬂ (2M;+1)<1 (3.11)

22(D™ i (2)) n . .
since Wm — 1] < 1l and R(o) > > 2%, loj| (2M; + 1). By applying Lemma for function h(z), we

prove that Ignﬁ‘fu(fl7 v fn) €S O
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Corollary 3.7. Let M; > 1,a; > 0 and suppose that each of the functions f; € A,j = 1,2,...,n, satisfies the
inequality (3.8). Also, let o, 0 € C with R(0') > 3", |a| (2M;+1) > 0. If|Dm(u B, fi(2)| < My, 2z€U,j=1,...,n
then for any complex number o with R(c) > R(«), the integral operator I; B u(fl’ woiy Jn)(2) defined by is in the
univalent function class S.

Corollary 3.8. Let M > 1 and suppose that each of the functions f; € A,j = 1,2, ..,n, satisfies the inequality .
Also, let aq, ..., an, 0 € C with R(0) > 2M +1) Y7, |ej| > 0. If |[D™(w, B, 1) fi(2)] < M,z € U,j = 1,2, ..., n, then for
any complex number o with (o) > R(«), the integral operator It"g u(fl’ ey Jn)(2) defined by is in the univalent
function class S.

Corollary 3.9. Suppose that each of the functions f; e A,j = 1,2,...,n satisfies the inequality (3.8)). Also, let
a1,y iy, 0 € C with R(o) > 3310 |a;| > 0. If [D™(p, B, 1) fi(2)] < 1 z € U,j=1,2,..,n, then for any complex
number o with %(c) > R(a), the integral operator I} u(fl’ vy fn)(2) deﬁned by (3.10) is in the univalent function
class S.

L
|

Remark 3.10. In Corollary
(i) If we set 0 = 1,8 = p, then we obtain Theorem 2.6.
(if) f we set 0 = 1,05 > 0,5 = 1,2,...,n, then we have [15, Corollary 2.8].

Theorem 3.11. Suppose that each of the functions f; € 4,7 = 1,2, ..., n, satisfies the inequality

2(D™(w, B, 1) fi(2))" .
w0 S P (3.12)

Also, let a, ..., ap,0 € C, with R(o) > 31" | |a;| > 0, and let ¢ € C be such that |¢] <1 — ﬁ > i1 ], then
the integral operator Itmﬁ(L(fl, wory fn)(2) defined by (1.4) is in the univalent class S.

Proof . We know from the proof of Theorem [3.1] that

h(z) o[22 (s 8,0 f5(2)
W (z) =2 ’{ D™ (u, B,1) fi(2) 1]' 319

j=1

We have that

C|Z‘2U + (1 _ |Z|20)Zh”(2’) _ C|Z|2” + (1 _ |Z‘2a)§ Zaj {Z(Dm(uvﬁat))fj(z))/ _ 1:| ) (314)

j=1
Then
20 20 Zh/l(z) _ 20 20 1 - Z(Dm :u’vﬁvt)f (Z )/ o
elof” + (= o) 2 = el + (1 - o %;aﬂ[ B ) ]
1= [o| < (z(D IRV
sl ;'O‘J' D0

since W - 1‘ <1, R(o) > Z - lajland [ <1 — ( y Z; 1 laj|. Finally, applying Lemmafor the

function h(z), we prove that ;"% (f1, ... f)(2) € S. O

Corollary 3.12. Suppose that each of the functions f; € A,j € {1,...,n}, satisfies the inequality (3.12)). Also,let
a] > 0,0 € C, with (o) > """ | a;, and let ¢ € C be such that |¢] <1 — % >%_, @, then the integral operator

Iy u(fl" .y fn)(2) defined by (1.4) is in the univalent class S.
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Theorem 3.13. Let M; > 1 and suppose that each of the functions f; € A,j = 1,2, ..., n, satisfies the inequality

Z2(D™ (1, B, 1) f5(2))'
(D™ (s B,1) f3(2))°

Also, let aq,...,a,,0 € C with R(o) > >0, |a;| (2M; + 1) > 0, and let ¢ € C be such that |¢] < 1 —

%Z?ﬂ\aﬂ(ZM +1). If [D™(w,B,t)fi(2)] < My (2 € U,j = 1,2,...,n), then, for any complex number o

with R(0) > R(e), the integral operator tBUH(fl,. . fn)(2) defined by (L.4) is in the univalent function class S.

-1/ <1, zeUmeN,. (3.16)

Proof . We know from the proof of Theorem [3.1] that
' n D™ t)f. !

hl(z) i=1 Dm(:u7ﬁ7t)fj(z)
Therefore,
20 _ Z2<7 Zh”(Z) —c Z20 _ 220 l - o Z(Dm(uvﬁat)fj(z))/ _
4 (= o TS el ) |l e ). (318
Then
20 _ 20 h/I(Z) =l 220 20 1 = O Z(Dm(,lj,7ﬁ,t)fj(2 )/ _
clof + 1= 2D oz 4 |>U;;j[ Db ) ]
S\c|+ Z|ag| ’t))g((j)))/ —1’
<le| + Lo _Jz z_; |ovs] ( D 5::))}3((;))/ + 1) : (3.19)

By Schwarz Lemma, we get |D™(u, 5,t)g;| < M; |z|, R = 1, therefore

_| ‘_~_ Zl J|< Dm(:u 5 t)f](z>)

D7 .01 (2))?
<k+w§jlﬂ<

(D™ (1, B, ) f5(2))’
<|e| + e ‘Z|a1| (2M; +1)

zh'"(z)
oh/(2)

20 20
clz[™ + (1 —[27)

)

—1’Mj+Mj+1>

(D™, B8,1) f5(2))?

<le| + W ; o] (2M; +1) < 1, (3.20)
2 m : . . .
since Z(Ig?n(lslfﬁ,i,)t}fé;))g - 1‘ <land|<1- ( ) > i1 lej (2M; + 1). Finally, applying Lemma for function
h(z), we proved that I[”B‘:L(fl, s fn)(z) €S, O

Corollary 3.14. Let M; > 1,05 > 0 and suppose that each of the functions f; € A,j = 1,2,,...,n satisfies the
1nequahty (3-16). Also let o € C with R(o) > Y7 a;(2M; + ) > 0, and let ¢ € C be such that |¢] < 1 —
%(U) P 1aj(QM +1). If [D™(p, B, 1) fj(2)| < My, 2 € U, j = 1,...,n, then the integral operator I;";° (f1,..., fa)(2)
defined by (1.4]) is in the univalent function class S.

Corollary 3.15. Let M > 1, and suppose that each of the functions f; € A,j = 1, ..., n satisfies the inequality m
Also, let o, ..., a0, 0 € C with R(0) > (2M +1) Y, |aj| > 0, and let ¢ € C be such that |¢] <1 — (2M +1) Z Q.

If [D™(p, B, ) fi(2)] < M,z € U,j =1,2,...,n, then the integral operator It";f#(fl, ooy fn)(2) defined by is in the
univalent function class S.
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Corollary 3.16. Suppose that each of the functions f; € A,j = 1,2,...,n satisfies the inequality (3.16). Also,
let aq,...,an,0 € C with R(o) > 33" |a;| > 0, and let ¢ € C be such that |¢] < 1 — %Z?ﬂ laj]. If
|D™(u, B,1) fi(2)] < 1,2 € U,j = 1,2,...,n, then the integral operator I;';° (f1,..., fn)(2) defined by (L.4) is in
the univalent function class S.

Theorem 3.17. Let ¢ be a complex number, |D™(p, 5,t) f;(2)] < M;, M; > 1,forall j =1,2,...,n, D™(u, 5,t)f;(z) €
S(p;), for j =1,2,...,n, with a1, ..., an, 0 € C such that

Z' |(2M )pj+2]M
= @i 2M; — ’

Also, let || <1— % > eyl W, then the integral operator 1% (fi, ..., fa)(2) defined by (L4) is
J
in the univalent function class S.

Proof . Since D™ (u, ,t) f;(2) € S(p;), so by Lemma 2.4, we have

22(D™(p, B, 1) £5(2))
(Dm(:uv B, t)fj(z))g

From |D™(u, 8,t) f;(2)| < M;, for any j =1, ...,n and by using Lemma we get |[D™(u, B,t)f;(2)| < Mj |z|,R =
1. From the proof of Theorem we have that

1’ gpj|z|2, zeU (3.21)

zh” ZO‘J[ ", g ))]J:J(Z)) _1} (3.22)

and so

zh'"(2)
e

n
< Z|%’|<
j=1

2(D™(p, B, 1) fi(2))

+ 1) . (3.23)

By Schwarz Lemma, we get |D™(u, 5,t)g;| < M; |z|, R = 1, therefore

h// D’”(,u B t)fj( ))/ A
Z' J'( D, B0 () v +1) (3:24)
and
zh” D™ (u, B, ) fi(2))" _ _
Z\ J|( R )fJ(Z))Q 1'MJ+MJ+1>. (3.25)
Thus,
zh! (2 i 9 n
e DMICEETES DB SRR
< i laj| (pj M + 2M; + AM? + 8M3 + ...) (3.26)

because 2M;, 4M7,8M?, ... > 1. Which implies that

:’;()) g 04]|<ij +2]\24i\/[i1>
<3 oy (B2 e £2IM (327)

2M; — 1
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Now, from
2 20+ 20" (2) 1 |zh"(2) 1 |zh"(2)
1-— < — — 2
HOEE G | = o ey | = Ry | ) 325
This implies
2 20 20 (2) - @M —1)p; + 2] M;
1-— < — E <1 2

Smce le] <1-— %(U) > i eyl % by Lemma the integral operator I]'3% (f1, ..., fa)(2) defined by
is in the univalent function class S. OJ

Corollary 3.18. Let ¢ be a complexnumber, [D™ (g, 8,1) fj(2)] < M, M; = M > 1,for j =1,2,....,n, D™ (1, 8,4)f;(2) €
S(p;), for j =1,2,...,n, with

'> Z o [(2M 2M)pj +2]M

where o, a; are complex numbers. If |¢| <1 — ﬁa) Do eyl W then 1,5 (fi, ..., fa)(2) € S

Corollary 3.19. Let ¢ be a complex number, |[D™(u, 8,t) f;(2)| < M,M; =M >1,forj =1,2,...,n, D" (u, B,t) fi(z) €
S(p;), for 7 =1,2,...,n, |ay| = || with

)

where o, a are complex numbers. If |¢] < 1 — % Z?_l W M > 1, then by Lemma the integral
operator I3 (f1,..., fa)(2) € S

Theorem 3.20. Let ¢ be a complex number,| D™ (u, 3,t) f;(2)| < M;,M; > 1, for all (j = 1,...,n), D™(u, 8,t) f;(2) €
K35, for (j =1,...,n), such that

Z o [( +(n(n+1))/2] M
where o, o; are complex numbers. If |¢] < 1 — éR(d) ZJ 1151 [(1=65) + (n(n+1))/2] M;, M; > 1 then, the integral
operator I, (f1,..., fn)(2) defined by (L.4) is univalent in U.

Proof . Using the proof of Theorem we have

h'(2) _ N~ [AD7 (B0 F(2)
3, [ (3.30)

W) 2| T D (8.0,
()| N (2D B 1) fi(2))
e | < 21 " oesora | +1) (331
By Schwarz Lemma, we get |D™(u, 5,t)g;| < M; |z|, R = 1, therefore
h” (D™ (1, B, 8) 15 ()| 5 -
Z' oo ([Tt | +1) (532
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and

h//

D™ (u, B, ) fi(2))" . _
D (1, B,4)f5(2))? 4M*%+Q- (3.33)

}:A(

Thus,

n
laj| (1 —6;)M; + M; +1) < Z%\ )M + 2M;)

-

<.
Il
Jan

loj| (1 —8;) M + Mj +2M; + 3M; + ... +nM;)

-

<.
Il
-

<D layl [(1 = 6))M; + (n(n+1)/2) Mj]. (3.34)

Now, we evaluate the expression

2"+(1|z|2”)'zf2,/((2 <le |+|i_| hl;S) <|c|+ﬁ> Z/;(>) . (3.35)
Then
(-2 <l | <l s §jmﬂ + (il 1)/2) M,
This implies that
2 +(1|22")j;,((2 <1

Since |¢| < 1—% doimn leyl [(1 = 65) + (n(n + 1)/2)] M; by Lemma the integral operator, I3 (f1, ..., fa)(2) €
S. 0

Corollary 3.21. Let ¢ be a complex number, [D™(u, 3,t) f;(2)] < M, M > 1forall (j =1,2,...,n), D™ (u, 5,t) fij(2) €
Kss,, for j =1,2,...,n, such that

}:aﬂ +(n(n+1))/2] M

where o, a; are complex numbers. If |¢] < 1 — % > iz eyl [(1=05) + (n(n +1))/2] M, M > 1 then, the integral

Imo'

operator I, 3° (fi,..., fn)(2) defined by (1.4) is univalent in U.

Corollary 3.22. Let ¢ be a complex number, |[D™(u,3,t)f;j(2)] < M,M > l,a1 = --- = o, = « for all (j =
1,2,...,n), D™(p, B,t)f;(2) € Ky for j =1,...,n, such that

0) > |a] Y [(1—6;) + (n(n +1)/2] M
j=1

where 0, o; are complex numbers. If |¢| < 1— %(U) > =1 [(1=6;) + (n(n+1))/2] M, M > 1 then, the integral operator
1730, (f1, s fn)(2) defined by (1.4) is univalent in class S.

Conclusion

In conclusion, a new generalized integral operator is defined in the unit disk U and conditions for univalency of
the integral operators in U are investigated.Results obtained generalize some existing results.
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