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Abstract

Choosing the right portfolio is a crucial goal for investors. Two key factors to consider when selecting a portfolio are
return and portfolio risk. This problem can be written as a mathematical programming equation and can be solved
quickly. For instance, some investors choose stocks based on past performance, while others consider factors like
liquidity when making their selections. Additionally, fundamental and technical analysis are often used in stock and
portfolio selection. However, the strategies and methods used to select stocks and portfolios can vary depending on
the current market conditions and the investor’s level of knowledge. This article focuses on designing and explaining
a portfolio optimization model using the cuckoo optimization algorithm. Results show that the best value of the
utility function increases as the number of iterations increases. The growth value of the best value of the utility
function is higher in the initial iterations and gradually decreases until it reaches zero, indicating that the algorithm
has converged to the optimal solution. This research fills a gap in the study of investment portfolio optimization using
nested optimization models. Additionally, the study finds that shares selected from industries with better performance
make up a higher proportion of the portfolio.
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1 Introduction

One of the important topics discussed in the stock market that investors, whether natural or legal persons, should
consider is choosing the optimal investment portfolio [25]. In this regard, investors seek to choose the best investment
portfolio according to the amount of risk and its potential return. The traditional investment approach is to strive for
the highest return while minimizing risk. In other words, investors view return as a favorable factor and the variance
of returns (risk) as an unfavorable element [17].

According to financial theories, investors have preferences that make them not risk-averse but loss-averse and,
therefore, willing to bear high risk. Also, individuals may make decisions under the influence of society or other
individuals, contrary to traditional theories [10]. However, investment risk is one of the most important issues for
investors. The results of many traditional studies show a positive relationship between risk and return [7, 8].
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Therefore, one of the challenges in forming an asset portfolio is determining the optimal ratio or weight of assets
in the investment portfolio to reduce risk. In portfolio optimization, the main issue is the optimal selection of assets
and securities that can be prepared with a certain amount of capital. Although minimizing risk and maximizing
investment returns seems simple, several methods have been used to form an optimal portfolio [9]. By accepting the
traditional investment theory and the basic assumption of investors’ risk aversion, the challenge of forming an optimal
stock portfolio can be solved.

In 1952, Markowitz [12] solved this challenge by pointing out that by forming a portfolio at a certain level of
risk, one can achieve more returns or, on the contrary, bear less risk at a certain level of return [7, 8]. Markowitz
[13] expressed the modern portfolio theory (MPT) as a mathematical formula. He designed and solved a constrained
optimization problem to obtain the optimal weight of investments in the portfolio (which meets the condition of
maximum return at a certain level of risk or minimum risk at a certain level of return for the investment portfolio
desired by the investor) by which the optimal weight vector of investments in the portfolio can be obtained [22]. In
fact, Markowitz [13] determined the optimal allocation of an investor’s wealth to various investments that he wishes
to hold by maximizing the return or minimizing the portfolio’s risk at a certain level of return. Markowitz’s most
important idea is to use the standard deviation of investment portfolio returns as a measure of risk. The Markowitz
model considers the same term as standard portfolio optimization [19].

However, during the portfolio optimization process, we also face some realistic limitations, such as stock size,
number of stocks, transaction cost, and portfolio size. This model is based on assumptions that are rarely true in
practice. When the aforementioned real restrictions (ceiling and floor restrictions, restrictions on investment weight
and types of financial risks, etc.) are added to the portfolio optimization, the problem quickly becomes a highly complex
set, resulting in an optimal problem. We will face the creation of a comprehensive portfolio, and here Markowitz’s
solution and contract methods, such as quadratic programming, will no longer be applicable [15]. In such a situation,
metaheuristic optimization methods are usually used to interact with the extensive portfolio optimization problem.

In this research, a multi-objective operational research model has been used to obtain the weight of investment
shares, maximize investment returns, and minimize other factors such as systemic and non-systematic risks. This
model is an extended model of Markowitz’s mean-variance model to which some limitations have been added, the
most important of which are [16]: 1- Limiting the number of portfolio shares and 2- Incorporating ceiling and floor
restrictions.

Ceiling and floor restrictions are what make this research different from the past and have an innovative aspect.
These limitations are as follows:

1. Limitation on the number of shares in the portfolio: The number of assets in a portfolio is often either fixed or
capped at a given value. Through the introduction of a binary variable Zi (which means that if asset i is present
in the portfolio, it is equal to one, and otherwise, it is zero), this limitation can be expressed in the form of the
following relationship (wi: shows the share of each weight gives) [21]:

n∑
i=1

Zi ≤ K where Z =

{
1, if wi > 0
0, if wi = 0

This restriction is imposed to facilitate portfolio management and reduce portfolio management costs. However,
the above unequal form is quite common. Also, a lower limit can be introduced in the form of the following
relationship:

Kmin ≤
n∑

i=1

Zi ≤ Kmax

At the same time, this limitation can also be expressed in the form of equality:

n∑
i=1

Zi = k

It should be mentioned that the limit of the number of stocks in the portfolio is sometimes considered an objective
function.

2. Ceiling and floor restrictions:
Applying ceiling and floor restrictions, additionally considering a minimum and maximum ratio (εi and γi,
respectively) for the weight of each asset is allowed to be kept in the portfolio, such that Wi ≥ 0, εi ≤ Wi ≤ γi,
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where (i = 1, ..., k). In other words, the share of the portfolio for a particular asset changes in a given interval
[24].

εi ≤ Wi ≤ γi, (i = 1, ..., k)

Ceiling limits (upper limit limits) are introduced to prevent exceeding a specific asset ratio, and floor limits
(lower limit) are used to avoid the cost of managing very low asset ratios [18].

This research uses more effective and efficient metaheuristic optimization algorithms to solve the problem of
comprehensive portfolio optimization. Moreover, by comparing the answers, the error probability can be almost zero.
During this research, metaheuristic optimization methods are well-designed and researched, and then they are used
to optimize the portfolio despite some fundamental limitations in the market. Finally, the developed algorithms are
implemented to solve the extended portfolio optimization problem.

Therefore, what distinguishes the current research from other similar research and is considered as the innovation
of the upcoming research:

� Solving the problem of comprehensive portfolio optimization using more effective and efficient metaheuristic
algorithms, which use the latest and most efficient metaheuristic optimization algorithms to calculate the optimal
weight of baskets, which can reduce the probability of error to almost zero by comparing the answers.

� In this research, more effective and efficient metaheuristic optimization algorithms are used to solve the problem
of comprehensive portfolio optimization. By comparing the answers, the error probability can be almost zero.
During this research, metaheuristic optimization methods are well-designed and researched, and then they are
used to optimize the portfolio despite some fundamental limitations in the market. The developed algorithms
are all implemented to solve the extended portfolio optimization problem.

According to the explanations mentioned in this article, we seek to design and explain the portfolio optimization
model by using the cuckoo optimization algorithm, and finally, we seek to answer the questions of the optimal portfolio
with return goals, financial risks (risks; What is the market, liquidity and systematic) with metaheuristic algorithms
in listed companies? Furthermore, can the portfolio formed using metaheuristic optimization algorithms guide the
market to achieve maximum profit? Finally, is there a significant difference between the models proposed in portfolio
optimization?

2 Literature review

In recent years, studies have been conducted to optimize stock portfolios, with researchers and investors investing in
various algorithms to improve portfolio performance. Bačević et al. [2] investigated the relationship between operating
capital flow and the market value of listed companies using seasonal stochastic algorithms. Their results showed that
capital operations are significantly related to market value management and have different effects on companies in
different situations. This helps create a benchmark for the market or industry and provides a scientific basis and
decision support for target companies as they implement their investments. Additionally, Feshari and Nazari [6] used
a multi-objective evaluation approach in their research titled ”Prediction of the mean-variance model for the selection
of mandatory portfolio assets” to achieve improved results compared to the traditional average variance criteria and
the standard Markowitz mean-variance model.

They used an artificial neural network model to predict future capital returns and then performed the optimization
process using multi-objective evaluation algorithms. The research results showed that the Pareto solutions approach,
which includes maintaining sufficient diversity, resulted in better outcomes compared to the Markowitz model.

In summary, there has been a growing interest in optimizing stock portfolios through various algorithms and
studies. Bačević et al. [2] and Feshari and Nazari [6] are examples of research that have contributed to this field by
investigating the relationship between operating capital flow and market value, and using a multi-objective evaluation
approach to improve portfolio performance. These studies provide valuable insights and decision-making support for
investors and researchers looking to optimize their stock portfolios.

Also, Wang et al. investigated multivariate dependence risk and portfolio optimization: an application to a mineral
stock portfolio. They proposed an integrated framework for modeling and evaluating relatively large dependent
matrices using minimum risk of optimal securities and considering five risk indicators within the global financial crisis.
The methodology was applied to two portfolios of the mining sector with 20 assets (iron ore-nickel and gold) from the
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stock exchange. Results showed that the proposed method is a powerful tool for modeling the change of dependence
risk under three different periodic scenarios in addition to optimizing portfolios with complex dependence patterns,
and on average, the portfolio optimization results converged in some stocks [23].

Additionally, Babazadeh and Esfahanipour focused on average deviation and risk in their study, conducting a
robust analysis for adverse (downside) risk in portfolio management in stock markets with price volatility. They
investigated the average deviation and adverse risk frameworks concerning portfolio management, using the highly
volatile Karachi Stock Exchange in Pakistan as an example. They proposed and addressed factors that affect portfolio
optimization, such as the right size of the portfolio, the process of sorting the portfolio, the butterfly effect in choosing
suitable algorithms, and the endogeneity problem. The results showed that the adverse risk framework performed
better than the mean-variance Markowitz framework, and that if the asset returns have high skewness, then the
amount of difference will be significant. They recommended using adverse risk instead of variance as a measure of risk
in investment decisions [1].

Markowitz [13] defines risk measures using variance or standard deviation. Mazraeh et al. (2022) further inves-
tigated this concept in their study, ”Optimization of the portfolio (stock portfolio) for total sequence assets: limit
risk index versus Markowitz.” Using the returns of 500 S&P stocks from 2001 to 2011, they investigated portfolio
optimization strategies based on the marginal risk index (ERI). In this method, the multivariate limit value theory
minimizes the possibility of significant portfolio losses. With data on more than 400 stocks, their study appears to
be the first to apply the marginal value technique to large-scale portfolio management. The primary purpose of this
research was to investigate the practical application potential of ERI. The performance of this strategy was measured
against the minimum portfolio variance and the equal weight portfolio. These basic strategies are essential criteria
for large-scale applications. Their study included annual portfolio profit, maximum drawdown, transaction costs,
portfolio density, and asset dispersion in the portfolio. They also investigated the effect of an alternative estimator of
the sequence index. The results showed that for wide-sequence assets, the ERI strategy performed much better than
the minimum variance and equal-weight portfolios [14].

Additionally, Erwin and Engelbrecht [5] in their research titled ”Reminder Algorithm for Optimizing Principled
Mandatory Capital with Transaction Costs”, achieved the following results: They proposed the reminder approach,
which is a combination of the algorithm and programming, to investigate the problem of selecting optimal capital
with linear transaction costs. In this method, in addition to specifying assets, including the capital, it also includes
the business operations performed at the time of capital balancing.

Moreover, finally, Chen et al. [3] in their research titled ”Application of Multi-Objective Genetic Algorithms for
Public Project Portfolio Selection”, have reached the following results: They considered the possible rapid increase
of portfolios and the preference relationship of asymmetry in the decision-maker to implement portfolio time and
capital calculations. High complexity in actual conditions requires evaluation algorithms, but in providing objectives,
evaluation algorithms are inefficient, so to overcome the problem, an extensive multi-objective genetic algorithm
was used. In this decision-making situation, it is assumed that the decision-maker can evaluate the parameters for
structuring the superior relationship. On the other hand, in this research, a method was assumed in which each
heterogeneous group obtains its best portfolio. Then, these individual solutions are aggregated into a group with the
best acceptable portfolio, in which the group’s satisfaction or dissatisfaction is maximized.

3 Research method

3.1 Modeling and solving the model using the cuckoo optimization algorithm

In this section, a stock portfolio with low risk and high return was selected by presenting a proposed model based
on the cuckoo optimization algorithm.

3.1.1 Modeling

In this part, we design a model that includes the initial model of the cuckoo optimization algorithm along with
various changes and limitations. The proposed model is an extension of the cuckoo optimization algorithm.

� Proposed model

The Cuckoo Optimization Algorithm (COA) is presented by Rajabioun [20] to provide an optimal solution to
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the problems. The model used in this article is developed and presented as follows:

maxλ

(
N∑
i=1

wiµi

)
− (1− λ)

 N∑
i=1

N∑
j=1

wiwjcov(µi, µj)


where wi =

xicizi∑N
j=1 xicizi

&λ ∈ [0, 1]

st:
N∑
i=1

zi = M ≤ N ; N ∈ N, ∀i = 1, ..., N zi ∈ {0, 1} (3.1)

N∑
i=1

xicizi ≤ B (3.2)

0 ≤ BLi ≤ xici ≤ BHi ≤ B (3.3)∑
is

wis ≥
∑
is

wis′ ; ∀ys, ys′ ̸= 0; s, s′ ∈ {1, 2, ...,S}, s < s′ (3.4)

where ys =

{
1, if

∑
is
zi > 0

0, if
∑

is
zi = 0

; is,s′ ∈ {1, 2, ..., N{}}

� Symbolisation

N : the number of shares available, M : the portfolio size,λ is a weighting parameter that determines how much
the investor values the portfolio’s performance. Obviously, (1− λ), it determines how much the investor values
the variance of the portfolio.

µi: yield of the i-th stock, cov(µi, µj): covariance between the yield of the i-th stock and the yield of the j-th
stock, xi: the number of the i-th stock in the portfolio, ci: the price of the i-th stock, wi: the ratio of the i-th
stock in the portfolio (the ratio of the budget allocated to the i-th stock from the total available budget), zi: zero
and one variable that indicates the presence or absence of the i-th share in the portfolio, B: the total available
budget, BLi

: the minimum budget that can be invested on the i-th share, BHi
: the maximum budget that can

be invested on the i-th share, is: The index of the share that belongs to the industry of s, S: the total number
of industries, ys: a variable of zero and one that indicates the presence or absence of a share of the s-th industry
in the basket.

� Description of the model

� The goal of the model is to maximise the return of the portfolio
(∑N

i=1 wiµi

)
and also to minimise its variance(∑N

i=1

∑N
j=1 wiwjcov(µi, µj)

)
(it should be noted that the standard deviation of the return (square root of

the variance) is considered as the risk of the portfolio) [17]. These two goals are combined by the weighting

parameter λ and have become maxλ
(∑N

i=1 wiµi

)
− (1− λ)

(∑N
i=1

∑N
j=1 wiwjcov(µi, µj)

)
in the form of a goal

[3].

� Constraint 1 specifies the size of the basket (the number of stocks in the basket).

� Constraint 2 considers the total available budget. However, the maximum value of
∑N

j=1 xicizi should be equal
to the investor’s budget.

� Constraint 3 places upper and lower limits on the capital allocated to each set of available shares. If there
is no such limit, the capital allocated to a share may be a large percentage of the available budget, which is
undesirable.

� Constraint 4 states that in M shares selected from among N available shares, more capital should be allocated
to the shares belonging to the industry with better performance. It is assumed that industry 1 has the best
performance and industry S has the weakest performance, and the industries are sorted in descending order in
terms of performance. Suppose that there are shares from two industries, ”s” and ”s′”, which s has a better
performance than s′(s < s′) in the basket (i.e. ys, ys′ ̸= 0), in this case, the relation

∑
is
wis ≥

∑
is′

wis′ states
that the total proportion of shares belonging to the industry is greater than the proportion of shares belonging
to the industry s′.
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3.1.2 Choosing the optimal basket using the cuckoo optimization algorithm

In this part, the presented model is solved using the cuckoo optimization algorithm, and the optimal basket is
determined. The cuckoo optimization algorithm is based on Darwin’s evolutionary theory, and the solution to the
problem is gradually improved. A chromosome represents each potential solution. The algorithm starts with a set
of solutions called the initial population. Then, the solutions from one population are used to produce the following
population, and the new population is expected to be better than the previous population. Selection from the current
population to create the next population is based on their fitness. Naturally, more appropriate solutions have more
chances to reproduce. This process continues until the end condition is established (such as the number of populations
or the improvement rate of the solution) [4]. The general procedure of the proposed cuckoo optimization algorithm is
as follows:

1. Construction of the initial population (parents) of size npop

2. Calculation of the value of the utility function for each parent using the following relationship [11]:

λ

(
N∑
i=1

wiµi

)
− (1− λ)

 N∑
i=1

N∑
j=1

wiwjcov(µi, µj)

−

(
1−

∑N
j=1 xicizi

B

)

3. Selecting from parents using the roulette wheel mechanism and pairing them two by two to create children using
the combination operator.

4. Selecting parents randomly in order to create children using the mutation operator.

5. Calculating the value of the utility function for each child.

6. Sorting the chromosomes in the population (parents and children) in descending order of the values of the utility
function from the highest value to the lowest value and then choosing the first npop chromosome from the sorted
list as the parent of the following population.

7. Repeating steps 3 to 6 until the stop criterion is established.

3.2 Coding

One of the important factors in the design of the cuckoo optimisation algorithm is the design of the coding system
to determine the way of displaying the problem’s solution and the mutual effect of this coding on the combination and
mutation operators. In the genetic algorithm, each potential answer is represented by a chromosome.

In this research, each potential answer is represented by a two-part chromosome placed next to each other. The
first part of the chromosome (the integer part) takes integer values, and the second part (the binary part) takes zero
and one values. It should be noted that the length of each of these sections (the number of genes in each) is equal to
the number of available stocks (N). The length of the chromosome is equal to twice the number of stocks available.
The i-th gene in each part of the chromosome represents the i-th contribution (i = 1, 2, ..., N).

If the i-th gene (i = 1, 2, ..., N) in the binary section takes a value of zero, it means that the i-th share is not in the
basket (i.e. zi = 0), and if it takes a value of one, it means that the i-th share is in the basket (i.e. zi = 1). The value
of the i-th gene (i = 1, 2, ..., N) in the correct chromosome indicates how many i-th shares should be purchased. By
multiplying the genes of the first part of the chromosome in the second part (multiplying the i-th gene value of the
first part by the i-th gene value of the second part), a chromosome is obtained whose i-th gene represents the number
of the i-th share in the basket (i.e. xi).

3.3 Primary population

The initial population is the initial answer to the problem. The cuckoo optimisation algorithm starts searching and
exploring the answer space from these answers. The way to generate the initial population in different meta-heuristic
methods differs according to the problem. In some problems, the initial population is generated completely randomly.
Additionally, according to the characteristics of the problem, innovative methods are used while maintaining the
property of randomness to generate the initial population. It is also possible to randomly generate a percentage of the
initial population and the rest using heuristic methods.

In this research, the initial population is generated completely randomly. It should be noted that the chromosome
is acceptable to apply within the model’s limits. Otherwise, a new chromosome will be generated randomly. It should
be noted that the population size is 20 (npop = 20).
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3.4 Assessment

The value of the desirability function is calculated using the following relationship to determine each chromosome’s
degree of desirability (the degree of fitness or the degree of competence). The higher the value of the chromosomal
utility function, the better that chromosome (potential answer).

λ

(
N∑
i=1

wiµi

)
− (1− λ)

 N∑
i=1

N∑
j=1

wiwjcov(µi, µj)

−

(
1−

∑N
j=1 xicizi

B

)

The utility function is the same as the objective function of the λ
(∑N

i=1 wiµi

)
−(1−λ)

(∑N
i=1

∑N
j=1 wiwjcov(µi, µj)

)
model, from which the value

(
1−

∑N
j=1 xicizi

B

)
has been subtracted. The term

(
1−

∑N
j=1 xicizi

B

)
is considered a

penalty for constraint 2 (the budget constraint). The penalty amount will be zero if the entire available funds are
spent on the stock purchase (i.e. X). Naturally, the smaller the amount of the total available budget is spent on buying
shares, the greater the penalty will be; as a result, the value of the utility function will decrease. In fact, with the
maximisation of the utility function, in addition to the maximisation of the objective function (maximisation of the
return and minimisation of the variance of the portfolio), constraint 2 (budget constraint) tends to be equality.

Combination operator:

In the recombination process, a pair of chromosomes is selected from the parents and combined to create a new
pair of chromosomes.

In this research, a pair of chromosomes is first selected for the combination process using the roulette wheel
mechanism. In this selection mechanism, the higher the fitness of a chromosome, the more likely it is to be selected.
Then, the mathematical combination operator creates a new pair of chromosomes. It should be noted that the new
chromosomes must comply with the model’s limitations. Otherwise, the unacceptable chromosome is removed, and
the combination operator is applied again.

Jump operator:

Leaping is critical to the success of the Cuckoo optimisation algorithm, as it avoids getting stuck in local optima
and determines the direction of the search. In other words, the mutation causes more points of the solution space to
be searched and the possibility of obtaining better solutions increases.

In this research, a chromosome is randomly selected from the parents. Then, the uniform mutation operator is
used on the correct part of the chromosome, and the swap mutation operator is used on the binary part to create a
new chromosome. It should be noted that the new chromosome must apply within the model’s limits. Otherwise, that
chromosome is not accepted, so it is removed, and the mutation operator has applied again.

Set parameters:

To determine the type of operators of the proposed algorithm (combination and mutation operators), the size of
the population (npop), the number of generations to stop the algorithm and other influential parameters, the proposed
algorithm has been adjusted, that is, the influential parameters have been tested with different values, and finally the
best values have been reported.

Stop criterion:

The stop criterion for running the algorithm in the proposed algorithm is the number of iterations (number of
population or generation produced). In this research, the number of generations to stop is 1000 generations.

4 Findings

4.1 The results of the cuckoo optimisation algorithm on the proposed model

As mentioned earlier, the statistical population of the research is related to 69 companies from the five mentioned
industries from 2011 to 2019. In order to display the results quickly, we code each industry and each company and
use the relevant code to display the results.

It is assumed that the importance of return and variance of the portfolio is the same for the investor (i.e. λ = 0.5).
Also, the available budget is equal to 100 million Rials (i.e. B = 100000000), and at least 99.8% of the available
budget must be spent in the proposed basket. Therefore, the maximum budget that can be invested in the i-th share
is 25% of the total available budget (i.e. BHi = 0.25B).
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4.1.1 The test of the normality of the distribution of variables

The Kolmogorov-Smirnov test was used to check the normality of the distribution of the variables. The output
table of the K-S test in SPSS software for this variable is described in table 1. According to the above table and
Kolmogorov Smirnov’s Z statistic, since the significance level for all variables is greater than 0.05, the H0 hypothesis
is confirmed, so with 95% confidence, it can be said that the mentioned variables in the above models have a normal
distribution.

Table 1: Test of normality of distribution of variables
Variable Significance level Z Kolmogorov Smirnov Result
Stock returns 0.4696 0.6697 The distribution is normal
Stock risk 0.0688 0.4528 The distribution is normal
Stock liquidity 0.1225 0.3458 The distribution is normal
Return on assets 0.1498 0.2918 The distribution is normal
Earning per share 0.1194 0.0895 The distribution is normal
Price to earnings per share 0.2591 0.9437 The distribution is normal

Table 2: The results of the cuckoo optimisation algorithm for a portfolio of 5 stocks in 10 executions
Execution number The value of the

utility function
Portfolio return Portfolio variance Percentage of budget

spent
1 0.188 0.378 0.00059 99.922
2 0.169 0.345 0.00663 99.995
3 0.161 0.325 0.00321 99.996
4 0.167 0.342 0.00543 99.955
5 0.178 0.358 0.00157 99.989
6 0.189 0.378 0.00121 99.933
7 0.209 0.422 0.00279 99.933
8 0.185 0.373 0.00216 99.985
9 0.176 0.358 0.00437 99.961
10 0.186 0.375 0.00182 99.985
Average 0.181 0.365 0.00298 99.971
Standard deviation 0.013 0.025 0.00184 0.025

Table 3: The results of the cuckoo optimisation algorithm for a portfolio of 7 stocks in 10 executions
Execution number The value of the

utility function
Portfolio return Portfolio variance Percentage of budget

spent
1 0.197 0.397 0.00098 99.918
2 0.205 0.412 0.00099 99.994
3 0.205 0.413 0.00189 99.986
4 0.167 0.336 0.00053 99.981
5 0.181 0.363 0.00074 99.969
6 0.192 0.387 0.00163 99.984
7 0.175 0.355 0.00382 99.958
8 0.171 0.344 0.00068 99.974
9 0.178 0.361 0.00343 99.962
10 0.187 0.377 0.0022 99.971
Average 0.186 0.375 0.00169 99.97
Standard deviation 0.012 0.026 0.001 0.02

The results of the proposed cuckoo optimisation algorithm for the five stock portfolio in 10 times of execution are
given in table 2, and the information about the best five stock portfolio resulting from these ten times of execution is
shown in table 9. As can be seen in table 9, in a basket of 5, if 2275 shares of 2, 1727 shares of 8, 769 shares of 14,
1696 shares of 40 and 811 shares of 43 are purchased, the return of the portfolio is maximised, and the variance of the
portfolio is minimised. In this case, the optimal portfolio will be 42.26%, and its optimal risk (standard deviation)
will be equal to 0.28%. On the other hand, the budget constraint is also met (we assumed that at least 99.8% of
the total available budget should be spent in the proposed portfolio). Also, as can be seen, the better the industrial
performance (the lower it ranks or the smaller the corresponding code), the shares selected from that industry have a
higher proportion of the portfolio. Industry 1, 59.96%, Industry 3, 23.31% and Industry 4, 16.72% of the portfolio.
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Table 4: The results of the cuckoo optimisation algorithm for a portfolio of 10 stocks in 10 executions
Execution number The value of the

utility function
Portfolio return Portfolio variance Percentage of budget

spent
1 0.204 0.413 0.0017 99.833
2 0.172 0.356 0.0108 99.991
3 0.179 0.36 0.0012 99.988
4 0.203 0.408 0.0004 99.97
5 0.201 0.405 0.0013 99.991
6 0.192 0.385 0.0008 99.999
7 0.188 0.381 0.0025 99.949
8 0.185 0.371 0.0007 99.989
9 0.198 0.398 0.0005 99.984
10 0.201 0.405 0.0009 99.972
Average 0.192 0.388 0.0021 99.967
Standard deviation 0.01 0.019 0.0029 0.0465

Table 5: Cuckoo optimisation algorithm results for 12 stock portfolio in 10 executions
Execution number The value of the

utility function
Portfolio return Portfolio variance Percentage of budget

spent
1 0.177 0.356 0.0019 99.991
2 0.185 0.373 0.0019 99.986
3 0.201 0.406 0.0031 99.959
4 0.199 0.401 0.0018 99.962
5 0.184 0.37 0.0012 99.977
6 0.189 0.386 0.006 99.974
7 0.182 0.365 0.0007 99.998
8 0.195 0.391 0.0011 99.988
9 0.179 0.362 0.0034 99.991
10 0.2 0.403 0.0007 99.894
Average 0.189 0.381 0.0022 99.972
Standard deviation 0.0085 0.0175 0.0015 0.0287

Table 6: Cuckoo optimisation algorithm results for 15 stock portfolios in 10 executions
Execution number The value of the

utility function
Portfolio return Portfolio variance Percentage of budget

spent
1 0.19 0.383 0.0021 99.997
2 0.187 0.376 0.0007 99.99
3 0.182 0.366 0.0019 99.993
4 0.206 0.414 0.0009 99.995
5 0.178 0.363 0.0063 99.988
6 0.2 0.404 0.002 99.994
7 0.203 0.409 0.0011 99.987
8 0.196 0.395 0.0011 99.998
9 0.193 0.387 0.0002 99.981
10 0.199 0.399 0.0005 99.999
Average 0.194 0.389 0.0017 99.992
Standard deviation 0.0087 0.0165 0.0016 0.0054

Table 7: Cuckoo optimisation algorithm results for 17 stock portfolios in 10 executions
Execution number The value of the

utility function
Portfolio return Portfolio variance Percentage of budget

spent
1 0.192 0.384 0.0001 99.999
2 0.198 0.398 0.0003 99.984
3 0.201 0.403 0.0003 99.995
4 0.186 0.375 0.002 99.981
5 0.186 0.373 0.0008 99.984
6 0.189 0.378 0.0003 99.976
7 0.202 0.404 0.0005 99.995
8 0.184 0.370 0.0009 99.995
9 0.203 0.408 0.0006 99.995
10 0.207 0.416 0.0013 99.99
Average 0.195 0.391 0.0007 99.99
Standard deviation 0.0079 0.0158 0.0005 0.0073
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Table 8: Cuckoo optimisation algorithm results for 20 stocks portfolio in 10 executions
Execution number The value of the

utility function
Portfolio return Portfolio variance Percentage of budget

spent
1 0.191 0.385 0.0024 99.997
2 0.196 0.394 0.0006 99.993
3 0.195 0.392 0.0011 99.982
4 0.186 0.373 0.0006 99.999
5 0.196 0.394 0.0006 99.989
6 0.19 0.382 0.0001 99.989
7 0.195 0.393 0.0019 99.992
8 0.185 0.371 0.0009 99.996
9 0.199 0.4 0.0001 99.996
10 0.192 0.386 0.0012 99.984
Average 0.193 0.387 0.001 99.992
Standard deviation 0.0045 0.0089 0.0006 0.0052

Table 9: Information about the best basket of 5 items obtained from 10 times execution
Share code Industry

code
Number of
shares

Share ratio in
the basket

Industry ratio in
basket

A portfolio of five

2 1 2275 0.216
0.5998 1 1727 0.171

14 1 769 0.212
40 3 1696 0.233 0.233
43 4 811 0.167 0.167

The value of the utility function 0.2092
Portfolio return 0.4225
Portfolio variance 0.0027
Percentage of budget spent 99.9339

Table 10: Information about the best basket of 7 items obtained from 10 times execution
Share code Industry

code
Number of
shares

Share ratio in
the basket

Industry ratio in
basket

A portfolio of seven

1 1 1133 0.179

0.76
7 1 395 0.078
8 1 1904 0.188
14 1 325 0.089
15 1 1565 0.224
43 4 317 0.065

0.239
60 4 778 0.173

The value of the utility function 0.2055
Portfolio return 0.4132
Portfolio variance 0.0018
Percentage of budget spent 99.9867

The results of the proposed cuckoo optimisation algorithm for the 7-stock portfolio in 10 executions are given in
Table 3, and the information about the best 7-stock portfolio from these ten executions is shown in Table 4. As can
be seen in table 10, in a basket of 7, if 1, 7, 8, 14, 15, 43 and 60 shares are purchased in the number mentioned in the
table, the yield of the basket is maximised, and the variance of the basket is minimised (return The optimal portfolio,
in this case, will be equal to 41.33% and its optimal risk (standard deviation) will be equal to 4.35%. On the other
hand, the budget constraint is also met (we assumed that at least 99.8% of the total available budget should be spent
in the proposed portfolio). Also, as can be seen, the better the industrial performance (the lower rank or the smaller
the corresponding code), the shares selected from that industry have a higher proportion of the portfolio. Industry 1,
76.08% and Industry 4, 23.92% of the portfolio.

The results of the proposed cuckoo optimisation algorithm for the 10-stock portfolio in 10 times of execution are
given in Table 4, and the information about the best 10-stock portfolio resulting from these ten times of execution is
shown in Table 11. As can be seen in the table 11, in a basket of 10, if the number of shares 6, 8, 18, 24, 30, 38, 43,
61, 66 and 69 are purchased in the number mentioned in the table, the efficiency of the basket is maximised, and The
variance of the portfolio is minimised (the optimal return of the portfolio, in this case, will be equal to 41.40% and its
optimal risk (standard deviation) will be equal to 4.20%). On the other hand, the budget constraint is also met (we
assumed that at least 99.8% of the total available budget should be spent in the proposed portfolio). Also, as can be
seen, the better the industrial performance (the lower rank or the smaller the corresponding code), the shares selected
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Table 11: Information about the best basket of 10 obtained from 10 executions
Share code Industry

code
Number of
shares

Share ratio in
the basket

Industry ratio in
basket

A portfolio of ten

6 1 4709 0.1658
0.264

8 1 990 0.0981
18 2 4 0.0009

0.21
24 2 1938 0.2098
30 3 231 0.0441

0.191
38 3 772 0.1471
43 4 504 0.104

0.167
61 4 429 0.0638
66 5 717 0.122

0.165
69 5 294 0.0439

The value of the utility function 0.2044
Portfolio return 0.4139
Portfolio variance 0.0017
Percentage of budget spent 99.8338

from that industry have a higher proportion of the portfolio.

In this basket, the question may arise that in the results, why it is suggested that share 18 be bought in the
number of 4 shares, if it is suggested to buy another share like share 6, in the number of 4709, and the reason for
these differences in what The reason is that in this numerical example, there is no limit for the minimum budget that
can be invested on the i-th share (i.e. BLi = 0). In other words, the i-th share can be purchased in any quantity. If
the investor does not want a significant difference in the number of shares purchased, it is better to consider a limit
for the minimum budget that can be invested on the i-th share.

Table 12: Information about the best basket of 12 items obtained from 10 times execution
Share code Industry

code
Number of
shares

Share ratio in
the basket

Industry ratio in
basket

A portfolio of twelve

28 3 360 0.0744

0.5179
39 3 543 0.1866
40 3 1513 0.2079
41 3 183 0.0489
43 4 40 0.0082

0.2566
50 4 632 0.0699
54 4 300 0.0758
60 4 81 0.0181
61 4 569 0.0845
66 5 541 0.0919

0.225468 5 719 0.0056
69 5 519 0.0774

The value of the utility function 0.2013
Portfolio return 0.4066
Portfolio variance 0.0031
Percentage of budget spent 99.9596

The results of the proposed cuckoo optimisation algorithm for the 12 stock portfolio in 10 times of execution are
given in table 5, and the information about the best 12 stock portfolio resulting from these ten times of execution is
shown in table 12. As can be seen in table 12, in a basket of 12, if the number of shares mentioned in the table is
purchased, the yield of the basket is maximised, and the variance of the basket is minimised (the optimal yield of the
basket, in this case, will be equal to 40.66% and its optimal risk (standard deviation) will be equal to 5.59%. On the
other hand, the budget constraint is also met (we assumed that at least 99.8% of the total available budget should be
spent in the proposed portfolio). Also, as can be seen, the better the industrial performance (the lower rank or the
smaller the corresponding code), the shares selected from that industry have a higher proportion of the portfolio.

The results of the proposed cuckoo optimisation algorithm for a portfolio of 15 stocks in 10 runs are given in Table
6, and the information about the best portfolio of 15 stocks from these ten runs is shown in Table 13. As can be seen
in table 13, in a basket of 15, if the specified number of shares mentioned in the table is purchased, the yield of the
basket is maximised, and the variance of the basket is minimised (the optimal yield of the basket, in this case, will
be equal to 41.45% and Its optimal risk (standard deviation) will be equal to 3.04%. On the other hand, the budget
constraint is also met (we assumed that at least 99.8% of the total available budget should be spent in the proposed
portfolio). Also, as can be seen, the better the industrial performance (the lower rank or the smaller the corresponding
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code), the shares selected from that industry have a higher proportion of the portfolio.

Table 13: Information about the best basket of 15 items obtained from 10 executions
Share code Industry

code
Number of
shares

Share ratio in
the basket

Industry ratio in
basket

A portfolio of fifteen

1 1 662 0.1049

0.5908

2 1 84 0.0079
7 1 811 0.1609
8 1 629 0.0622
9 1 128 0.0362
14 1 791 0.2183
21 2 60 0.015

0.2096
24 2 1800 0.1946
31 3 35 0.0068

0.1302
41 3 462 0.1234
43 4 24 0.0049

0.0456
51 4 62 0.0101
52 4 72 0.0132
57 4 173 0.0173
63 5 211 0.0235 0.023

The value of the utility function 0.2067
Portfolio return 0.4144
Portfolio variance 0.0009
Percentage of budget spent 99.995

Table 14: Information about the best basket of 17 items obtained from 10 executions
Share code Industry

code
Number
of shares

Share ratio in
the basket

Industry ratio in
basket

A portfolio of seventeen

1 1 894 0.1417

0.3919

3 1 228 0.0124
6 1 510 0.0179
7 1 768 0.1524
11 1 32 0.0097
15 1 401 0.0575
28 3 73 0.15

0.3536
29 3 117 0.05
33 3 90 0.0095
38 3 291 0.0553
41 3 838 0.2236
42 4 153 0.0501

0.1305
60 4 360 0.0804
63 5 474 0.0528

0.1238
66 5 371 0.063
67 5 5 0.0005
68 5 95 0.0074

The value of the utility function 0.2073
Portfolio return 0.4161
Portfolio variance 0.0013
Percentage of budget spent 99.9908

The results of the proposed cuckoo optimisation algorithm for a portfolio of 17 stocks in 10 times of execution are
given in table 7, and the information about the best portfolio of 17 stocks obtained from these ten times of execution
is shown in table 14. As can be seen in table 14, in a basket of 17, if the number of shares mentioned in the table is
purchased, the yield of the basket is maximised, and the variance of the basket is minimised (the optimal yield of the
basket, in this case, will be equal to 41.62% and Its optimal risk (standard deviation) will be equal to 3.65%. On the
other hand, the budget constraint is also met (we assumed that at least 99.8% of the total available budget should be
spent in the proposed portfolio). Also, as can be seen, the better the industrial performance (the lower rank or the
smaller the corresponding code), the shares selected from that industry have a higher proportion of the portfolio.

The results of the proposed cuckoo optimisation algorithm for the 20 stocks portfolio in 10 execution times are
given in table 8, and the information about the best 20 stock portfolio resulting from these ten execution times is
shown in table 15. As can be seen in the table 15, in a basket of 20, if the number of shares mentioned in the table is
purchased, the yield of the basket is maximised, and the variance of the basket is minimised (the optimal yield of the
basket, in this case, will be equal to 40.02%, and its optimal risk (standard deviation) will be equal to 1.39%. On the
other hand, the budget constraint is also met (we assumed that at least 99.8% of the total available budget should be
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Table 15: Information about the best basket of 20 obtained from 10 times execution
Share code Industry

code
Number of
shares

Share ratio in
the basket

Industry ratio in
basket

A portfolio of twenty

6 1 2913 0.1024

0.4289
7 1 710 0.1409
8 1 629 0.0622
14 1 322 0.0888
15 1 240 0.0344
17 2 284 0.0543

0.1758
19 2 145 0.0699
21 2 11 0.0027
24 2 451 0.0487
30 3 11 0.0021

0.147534 3 13 0.0012
38 3 758 0.1441
43 4 424 0.0873

0.1343
47 4 134 0.0161
52 4 125 0.0229
57 4 47 0.0047
59 4 10 0.0031
64 5 100 0.0439

0.113265 5 3 0.0005
66 5 405 0.0688

The value of the utility function 0.1999
Portfolio return 0.4001
Portfolio variance 0.0001
Percentage of budget spent 99.9967

spent in the proposed portfolio). Also, as can be seen, the better the industrial performance (the lower rank or the
smaller the corresponding code), the shares selected from that industry have a higher proportion of the portfolio.

The graph of the convergence process of the proposed cuckoo optimisation algorithm in different generations
for different basket sizes (5, 7, 10, 12, 15, 17 and 20) is shown in figures 1 to 8. In this diagram, the horizontal
axis represents the number of iterations (the number of populations or generations produced), and the vertical axis
represents the best utility function value in each iteration (population or generation). As can be seen, the utility
function’s best value increases with the number of iterations. Therefore, the growth value of the best value of the
utility function is higher in the initial iterations and gradually decreases until it reaches zero; that is, the algorithm
converges to the optimal solution.

Figure 1: Convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 5
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Figure 2: Convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 7

Figure 3: Convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 10

Figure 4: Convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 12
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Figure 5: The convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 15

Figure 6: Convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 17

Figure 7: Convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 17
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Figure 8: Convergence trend diagram of the proposed cuckoo optimisation algorithm for the best basket of 20

5 Discussion and conclusion

Due to the possible rapid increase of portfolios, the asymmetry preference relationship in the decision-maker should
be computable to implement the time-investigation of portfolio and capital. High complexity in actual conditions
requires evaluation algorithms, but in providing objectives, evaluation algorithms are inefficient, so to overcome this
problem, cuckoo optimization has been used. In this decision-making situation, it is assumed that the decision-maker
can evaluate the parameters for structuring the superior relationship. On the other hand, in this research, a method
is assumed in which each of the heterogeneous groups obtains its best portfolio, and then these individual solutions
are aggregated in a group with the best acceptable portfolio, in which the group’s satisfaction or dissatisfaction is
maximized.

The simultaneous development and improvement of the cuckoo optimization algorithm and the creation of complex
formulations in the financial and economic fields have led to a mutual interest for both research communities. Therefore,
the classification chosen for this research distinguishes between the portfolio optimization problem and the use cases
in this field.

Besides, in this research, in order to achieve results in the field of how to report the rate of return for the higher
effectiveness and efficiency of the monthly return compared to the annual return, two different portfolios are formed
using each algorithm and with the help of annual and monthly inputs. In the following, to measure and compare the
performance of three groups of algorithms, experts, and novices in the stock market, the collection of their selected
portfolios has been done through a questionnaire. All research portfolios, i.e. eight selected portfolios of algorithms,
forty selected portfolios of brokers as samples of experts and selected portfolios of individual investors present in the
stock market as samples of newbies, in actual market conditions over six months, which is called the test period, were
learned and applied.

In the proposed model, due to the permission of borrowing and short selling, we can expect to achieve a portfolio
return higher than the highest return on available assets.

The yield and risk of the formed portfolios were determined based on the weights provided by each model. In the
Iranian market, the actual returns from both methods are not significantly different. This is because the real risk of
optimized portfolios with the stable method is lower than that of optimized portfolios with the classical method.

The findings of the research fill the study gap in the optimization of the investment portfolio, and also, according
to the results of the present research, suggestions for using these results are presented as follows:

1. The attention of law-making institutions, including the stock exchange organization, the Tehran Stock Exchange
Company, and brokerages and investment companies, to the effectiveness of the censoring model method based
on the cuckoo optimization algorithm in optimizing the portfolios.

2. According to the findings of this research, suggesting to capital market activists, decision-makers, financial
analysts, and potential and actual investors of the stock exchange to analyze investment plans in financial assets
and securities using censorship models based on special attention paid to the cuckoo optimization algorithm
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in the optimization of portfolios, as mentioned in this research. Because the use of this method leads to the
selection of the optimal investment portfolio with minimum risk and maximum efficiency, while also doubling
the transparency of the decision-making environment and the results.

References

[1] H. Babazadeh and A. Esfahanipour, A novel multi period mean-VaR portfolio optimisation model considering
practical constraints and transaction cost, J. Comput. Appl. Math. 361 (2019), 313–342.
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