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Abstract

It is well known that the solution of fractional models proved to be a powerful tool in studying various problems which
appear in the sciences of real life. In view of the fact that economic applications are accelerating at an amazing pace, and
the large number of modeling in this speciality, it has expanded the number of problems. So, our contribution is based
on finding generalized solutions of a fractional differential equation known for their applications in microeconomics and
finance and creating an algorithm which allows us to estimate the coefficients of this type of equation. And to really
illustrate our results we will choose a model known in the stochastic literature by COGARCH but with fractional
derivative, to demonstrate the asymptotic behavior of the estimators, including the impact of fractional order on the
space of stochastic differential equations.
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1 Introduction

Stochastic models have received increasing attention for their ability to represent in the domain of complex systems.
This research axis has become necessary not just for mathematicians and staticians but also for people of chemistry
and biology and more importantly for economists and physicists [12]. In economics, most phenomena take stochastic
modeling, and the same for physics, there are several phenomena that require stochastic theory to model them [2].
And as a historical overview, Great credit goes to the biologist R. Brown in 1827, who had found the observation of
a very irregular motion displayed by a pollen particle immersed in a fluid, and the applications of this field are not
only applied in biology, it took about 80 years until Einstein and Smouluchowsk gave the logical interpretation of this
phenomenon [3]. By a general definition we can say that Brownian motion is the archetypal problem of stochastic
process theory [4].
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Fractional differential equations with Brownian motion have proven to be a powerful tool in the study of various
problems in the life sciences, especially in economics and finance, the question that arises, why exactly in economics
and finance. One of the main reasons for the success of fractional differential equations in science when the description
of financial phenomena becomes locally simplified [11]. For example, most financial phenomena take shape of a
differential equation and through unknown circumstances the phenomenon is pushed to take the form of a fractional
derivative. Differential equations inaugurated modern theoretical quantitative science. which requires economists and
theoretical mathematicians to understand the best numerical modeling and simulation methods in finance field [10].
According to the theory of influence of the research tools between them, it has been constituted what is called a
coupling between the stochastic equations by the fractional derivative operator which is now called by the stochastic
fractional differential equations. This idea gives a great opening to mathematicians to optimize the modelling of this
type of models to use them in the in several applications. Through this study, we will shed light on the influence of
fractional order on proposed sample of equations. the paper organized on the following plan

Second section is an extension to the theoretical study of a sample of stochastic processes with a fractional
derivative and of exposing and generalizing some theorems of stochastic analysis. In third section we estimat model
coefficients with moments method, the study is enriched by clear fractional theory. Fourth section based on the
quote algorithm for estimating coefficients of fractional models as a generalized case. Fifth section illustrated by
numerical simulations to prove the value of theoritical study.

2 Preliminaries

The fractional derivative is not considered as the classical derivative, for certainty we can say that the classical
derivative is a particular case of the fractional derivative, in this chapter we will expose the great famous definitions
of fractional differential calculus which help us to specify the solutions of our sample models. First, we pose the
generalized definition of an integral known by Riemann integral, which is used to extract the fractional derivative.

We define left Riemann integral of order γ > 0 over the a finite interval [a, b] ⊂ R of function x by its expression

Iγ(a,t)x(t) =
1

Γ(γ)

∫ t

a

(t− s)γ−1x(s)ds, t > a. (2.1)

On the other hand, the right Riemann integral of same order γ defined by the following expression

Iγ(t,b)x(t) =
1

Γ(γ)

∫ b

t

(s− t)γ−1x(s)ds, t < b. (2.2)

Such as Γ(θ) is Gamma function defined by its expression

Γ(θ) =

∫ ∞

0

tθ−1 exp(−t)dt, Re(θ) > 0.

holds, in particular if θ ∈ N, then
Γ(θ + 1) = θΓ(θ)

Definition 2.1. The left and right Riemann Liouville derivatives dγ
(a,t)x(t) and dγ

(t,b)x(t) of order γ of order are

defined by

dγ
(a,t)x(t) =

dN

dtN
I
(N−γ)
(a,t) x(t) (2.3)

=
1

Γ(N − γ)

dN

dtN

{∫ t

a

(t− s)N−γ−1x(s)ds

}
, N ∈ N.

and

dγ
(t,b)x(t) = (−1)N

dN

dtN
I
(N−γ)
(t,b) x(t) (2.4)

=
(−1)N

Γ(N − γ)

dN

dtN

{∫ t

a

(s− t)N−γ−1x(s)ds

}
, N ∈ N
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where N = [γ] + 1, [.] means the integer part of γ. It can easily be noticed that

dN
(a,t)x(t) = d0

(t,b)x(t) = x(t).

In addition to

dN
(a,t)x(t) = x(N)(t)

dN
(t,b)x(t) = (−1)Nx(N)(t)

Definition 2.2. The left and right Caputo fractional derivatives defined as follows

d
(C,γ)
(a,t) = dγ

(a,t)

{
x(t)−

N−1∑
i=0

x(i)(a)

i!
(t− a)i

}
(2.5)

and

d
(C,γ)
(t,b) = dγ

(t,b)

{
x(t)−

N−1∑
i=0

x(i)(b)

i!
(b− t)i

}
(2.6)

3 Some Basics of Stochastic Construction

This section is devoted to exposing and developing what is needed from the notions of stochastic equations, and
the most famous theorems in the stochastic literature, and their impact in our study, and on the other hand, the
preliminaries of fractional calculations, then we construct the sample which we will study, this sample which brings
together the two stochastic and fractional derivative properties. First we will expose the preliminary bases for the
maternal model {

dx(t) = g(t, x(t)dt+ h(t, x(t))dw(t)
x(t0) = c0, t0 ≤ t ≤ M < ∞ . (3.1)

We start with the following theorem in reference [16].

Theorem 3.1. Let a stochastic process (x(t))t∈R defined in a probability space (Ω, A, P ) with expression (2.1), where
w(t) is Brownian motion, g and h tow measurable functions on the interval [t0,M ] , and these functions are checked
on the following conditions. There exists a constant C > 0 such that
A : |g(t, x(t)− g(t, y(t)|+ |h(t, x(t)− h(t, y(t)| ≤ C |x(t)− y(t)|
This property is known by the Liptischizian condition.
B : |g(t, x(t))|2 + |h(t, x(t))|2 ≤ C2(1 + x2(t)).
This condition is called restriction on growth. Then, the process accepts the unique solution.

Proof . This theorem must be proven because of its great importance in the following remarks, first we shall prove
the uniqueness of solution we would like to show that

E |x(t)− y(t)|2 = 0 for all t ∈ [t0,M ],

and we suppose that
E |x(t)− y(t)| = 0.

Such as y(t) and x(t) are two continuous solutions, in this case must be define a function φ

φk(t) =

{
1, if |x(t)| ≤ k and |y(t)| ≤ k
0, otherwise

Since φk(t) = φk(t)φk(s), s ≤ t, we have

φk(t)(x(t)− y(t)) = φk(t)

∫ M

t0

φk(s){g(s, x(s))− g(s, y(s))}ds+
∫ M

t0

φk(s){h(s, x(s))− h(s, y(s))}dw(s).
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We apply Lipschitiz condition to bound the integral

Φ(s) = |g(s, x(s))− g(s, y(s)|+ |h(s, x(s))− h(s, y(s)| .

φk(s)Φ(s) ≤ kφk(s) |x(s)− y(s)| ≤ 2k2.

By Schwartz inequality we find

E
[
φk(t) |x(t)− y(t)|2

]
≤2E

∣∣∣∣∣
∫ M

t0

φk(s)E{g(s, x(s))− g(s, y(s))}ds

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣
∫ M

t0

φk(s){h(s, x(s))− h(s, y(s))}dw(s)

∣∣∣∣∣
2

≤2(M − t0)

∫ t

t0

Eφk(s) |g(s, x(s))− g(s, y(s))|2 + |h(s, x(s))− h(s, y(s))|2

≤C0

∫ t

t0

Eφk(s) |x(s)− y(s)|2 ds = 0.

Which shows that
E |x(t)− y(t)|2 = 0.

□

Remark 3.2. If x(t) and y(t) are two solutions for equation (2.1), then

P

(
sup

t0≤t≤M
|x(t)− y(t)| = 0)

)
= 1.

Proof. See refrence [9].

3.1 General theorem construction

Many complex in nature and technology are described by differential equations,{
d
(C,β)
(0,t) x(t) = F (t, x(t), w(t))

x(0) = ξ, t ∈ [t0, T ]
.

The conditions of the first theorem on a stochastic process hold if the process is stochastic and fractional. Acronym.
we will call these models fractional Stochastic processes. Now, we construct the following theorem.

Theorem 3.3. Let (x(t))t∈R Frac-stochastic process defined in a probability space (Ω, A, P ) with the following ex-
pression

d
(C,q)
(t0,t)

x(t) = g(t, x(t)dt+ h(t, x(t))dw(t), (3.2)

where, g and h are defined in the previous theorem and are checked on the following conditions. Let a constant C > 0
such that

1 : |g(t, x(t)− g(t, y(t)|+ |h(t, x(t)− h(t, y(t)| ≤ C |x(t)− y(t)|

2 : |g(t, x(t))|2 + |h(t, x(t))|2 ≤ C2(1 + x2(t)).

Then, the process (3.2) accepts the solution.

Proof . The proof is very simple if we write process (3.2) under the following form

Iq(t0,t)d
(C,q)
(t0,t)

(x(t)) = Iq(t0,t)g(t, x(t)dt+ Iq(t0,t)h(t, x(t))dw(t).

In addition to being
(C,q)
(t0,t)

(x(t)) = dq(t0,t)(x(t)− x(t0)), 0 < q < 1.
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And

Iq(t0,t)d
(C,q)
(t0,t)

(x(t)) = Iq(t0,t)d
q
(t0,t)

(x(t)− x(t0)), 0 < q < 1

= x(t)− x(t0)

Also, the two functions Iq(t0,t)g and Iq(t0,t)h are conducive the tow propreties 1 and 2. Thus, we will reach the

following mathematical writing

x(t) = Iq(t0,t)g(t, x(t)dt+ Iq(t0,t)h(t, x(t))dw(t) + x(t0).

which shows that the sample of Frac-Stochastic models is a generalized case for stochastic models. Where N = [γ] + 1
for γ /∈ N. We can extract the simple case which γ ∈ ]0, 1[ has to be applied several times in physics{

d
(C,γ)
(a,t) = dγ

(a,t) {x(t)− x(a)}
d
(C,γ)
(t,b) = dγ

(t,b) {x(t)− x(b)}
.

If our function x(i)(t) is bounded {
∣∣maxx(i)(t)

∣∣ = K, i ∈ N}, and N tends to infinity, in this case we have

∣∣∣d(C,γ)
(t,b)

∣∣∣ ≤

∣∣∣∣∣dγ
(t,b)

{
maxx(t)−

N−1∑
i=0

max(x(i)(b))

i!
(b− t)i

}∣∣∣∣∣
≤

∣∣∣maxx(i)(t)
∣∣∣ ∣∣∣∣∣dγ

(t,b)

{
1−

N−1∑
i=0

(b− t)i

i!

}∣∣∣∣∣ , N → ∞.

≤ K
∣∣∣dγ

(t,b) {1− exp(b− t)}
∣∣∣

< ∞.

□

We will recall some theoretical bases in the space of stochastic calculus, the stochastic process w(t) is called a
standard Brownian if the following conditions are satisfied

a) w(0) = 0.

b) w(t) is almost surely continuous in t.

c) w(t) has independent increments.

d) w(t)− w(s) obeys the normal distribution with mean zero and variance t− s.

There are fundamental properties that characterize brownian motion that need to be applied from the simulation
section and among these properties we have

w(
i+ 1

N
)− w(

i

N
) =

εi√
N

,

such that the sequence εi represents independent standard Gaussian random variables. Consider the sample of stochas-
tic models with a first fractional derivative in the sense of Riemann Liouville with a Brownian motion dγ(a,t)w(t)

dγ
(0,t)x(t) = β(t)x(t)dρ

(0,t)w(t).

We discuss in a simple way the model solutions for the case ρ = γ = 1 we will find

dx(t)

x(t)
= β(t)dw(t).

Then, ∫
dx(t)

x(t)
=

∫
β(t)dw(t).
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Which shows that the solution is

x(t) = c exp

{∫
β(t)dw(t)

}
.

Property

Suppose g : [0, T ] → R is continuously differentiable function, with g(0) = g(T ) = 0, we défine∫ T

0

gdw(t) = −
∫ T

0

g′(t)w(t)dt.

This property known in the literature of stochastic calculus, by PWZ definition relative to the three mathemati-
cians (Paley, Wiener and Zygmund). Here we need to represent Brownian motion so that we can construct the solution
to the frational differential equation. So, we will take the famous brownian motion example see reference [8]. We can
prove in the same way that the property remains correct in the case of fractional derivative

w(t) =

∞∑
k=0

√
2εk

sin {(k − 0.5)πt}
(k − 0.5)π

. (3.3)

So, we have
dγx(t) = β(t)x(t)dρw(t). (3.4)

First we have

dρw(t) =
1

Γ(ρ)

∫ t

0

(t− s)ρ−1w(s)ds.

We can write the model in the form{
d
(c,γ)
(0,t)x(t) = β(t)x(t)dρw(t) = F (t, x(t), w(t))

x(0) = x(T ) = φ
. (3.5)

Lemma 3.4. The fractional equation with a Brownian motion (3.4) accepts a solution of the form

x(t) = x(0) +
1

Γ(γ)

∫ t

0

{
(t− s)γ−1x(s)

1

Γ(ρ)

∫ s

0

(t− s)ρ−1w(s)ds

}
dt.

Proof . It is easy to obtain that

dρw(t) =
1

Γ(γ)

∫ t

0

(t− s)ρ−1w(t)dt

We study the equations in the case ρ = 1 et γ remains containing in the interval ]0, 1[ , and we keep the coefficient
β(t) as constant. Then, the equation becomes{

d
(C,γ)
(0,T )x(t) = β(t)x(t)dw(t)

x(0) = x(T ).
(3.6)

We insert the Riemann-Liouville integral on both sides of the equation, we find

Iγd
(C,γ)
(0,T )x(t) = Iγβ(t)x(t)dw(t).

x(t)− x(0) =
1

Γ(γ)
β(t)

∫ T

0

(T − s)γ−1w(t)dx(t)dt.

By application PWZ property we find

x(t) = x(0) +
1

Γ(γ)

∫ t

0

{
(t− s)γ−1x(s)

1

Γ(ρ)

∫ s

0

(t− s)ρ−1w(s)ds

}
dt.
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We can also obtain the solution of the equation numerically, where among the approximate properties of Brownian
motion the Polygonal approximation.

wn = wti + (wti+1 − wti)
t− ti

ti − ti+1
t ∈ [ti, ti+1]

dqx(t) = g(t, x(t))dt+ h(t, x(t))dw(t), 0 < q ≤ 1 (3.7)

□

4 Estimation

There are many approaches to estimation, and the samples of different stochastic models are innumerable and very
complicated. Then, the nature of the approach is not always valid for estimation. In the stochastic literature, there are
several methods for estimating nonlinear models in the continuous case, but the best known is the method of moments.
For our sample, the COGARCH models were compiled by the statisticians Haug, Kluperllberg, Linder and Zapp in
2005 [4]. Moreover, this type of model is a special case of continuous stochastic models. And besides, the moment
approach gives better estimation results. And to apply this method, it is necessary to specify a private category of
fractional stochastic models. This model has acquired quite some attention in the physics literature relatively to its
probabilistic properties and asymptotic behavior of its statistical inference{

d
(C,q)
(0,t) x(t) = γ0(t)x(t) + γ1(t)dt+ γ2(t)dw(t)

x(0) = x0, 0 < q < 1
(4.1)

(x(t))t>0 defined on some probability space (Ω, A, P ) denoted by a fractional derivative in the Caputo sense, where
{(γi(t))t∈R, i = 0, 1 or 2} the coefficients part of the frac-stochastic model, such as γ0(t)γ1(t)γ2(t) ̸= 0, w(t) represents
brownian motion process.

Assumption 1: [4]. Under the following conditions, for any T > 0

a)

∫ T

0

|γi(t)| dt < ∞, i = 0, 1.

and
2γ0(t) < 0.

Theorem 4.1. Under Assumption 1, we have the mean defined E(x(t)) = m(t), and the variance v(t) and

C(t, s) = E {(x(t)−m(t))(x(s)−m(t))} , t > s.

Functions of process (4.1) generated by its frac-stochastic expression are written respectively by

m(t) = φ(t)m(0)

v(t) = φ(t)

{
v(0) +

∫ t

0

φ−1(s)γ2
1(s)dt

}
C(t, s) = φ(t)φ−1(s)v(s), t ≥ s ≥ 0.

where

φ(t) = exp

{∫ t

0

2γ0(z)dz

}
.

To demonstrate this theorem it is necessary to write the model (4.1) in the form of a product between a classical
derivative and a function. Then, we will apply the theorem 2.1 of reference [14].

d
(C,q)
(0,t) x(t) = θ(t)dx(t)

= γ0(t)x(t)dt+ γ1(t)dw(t).
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In this case, the model will be written in a pure stochastic way

dx(t) = θ−1(t) {γ0(t)x(t)dt+ γ1(t)dw(t)} .

The coefficients which we will estimate and we will designate by the following vector

δ = (γ0(t), γ1(t), γ2(t)).

Corollary 4.2. Under assumption 01 we have the following results
m (0) = −γ1(t)

γ0(t)

v(0) =
γ2
2(t)

|2γ2
0(t)|

v(h) = v(0) exp {γ0(t) |h|}

Corollary 4.3. It is assumed here that δ̂ = (γ̂0,N (t), γ̂1,N (t), γ̂2,N (t)), where N represents the sample size. Then we
have 

m̂ (0) = − γ̂1,N (t)
γ̂0,N (t)

v̂(0) =
(γ̂2,N (t))2

2|γ̂0,N (t))|2

v̂(h) = v(0) exp {γ̂0,N (t)) |h|}

We seek the estimators through subconditions v̂(0) → 0 and v̂(h) → 0.

4.1 Consistency and Asymptotic Properties of Estimators

In the case of nonlinear models of discrete time series, the problem consistency and asymptotic properties of the
estimators is solved by the famous theorem of Klimko and Nilsen [1]. But in the continuous stochastic case it suffices
to verify the algirithem of the corollaries. To extract the asymptotic behavior of the estimators it is necessary to
establish in the generalized sense the following theorem.

Theorem 4.4. Let (x(t))t≥0 a fractional stochastic differential equation generated by the expression (4.1), with its
coefficients, and when the fractional order tends to zero. The conditions v̂(0) → 0 and v̂(h) → 0 are checked. Then

H-1) δ̂ = (γ̂0,N (t), γ̂1,N (t), γ̂2,N (t)) → δ = (γ0(t), γ1(t), γ2(t)), when N → ∞.

H-2)
√
N(δ̂ − δ)

G→ N(0, 1),
where G indicates convergence in law.

Proof . The description of the equation with Euler approach’s and applying the theorem of Klimko and Nilsen, the
proof is obtained simply. □

5 Simulation

Simulation plays a fundamental role in demonstrating the efficiency of sample process estimation proposed in our
study.

5.1 Model Simulation

This section is devoted to the simulation of the model (4.1) with real coefficients, the case where q = 1 represents
the simulation of a classic model, which shows that fractional derivation is a generalization of normal derivation.
We keep the same values for coefficients γ0, γ1 and γ2 in order to make a constructive comparison between the two
situations. we use here some convergence criteria noted as follows, γi, i = 0, 1 and 2 true values, but compared to the
estimated values noted γ̂i,N , i = 0, ..., 2, where N sample size, NS (number of simulations) , RMSE noted the root
mean square error, here we consider the true values to be γ0 = 0.015, γ1 = 0.05 and γ2 = 0, 1. To make a simulation
it is necessary to take an example of Brownian movement defined by the expression (3.3) in reference [15].

w(t) =

∞∑
k=0

√
2εk

sin {(k − 0.5)πt}
(k − 0.5)π

,
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N NS γ̂0 γ̂1 γ̂2
1000 250 0.0245 0.0396 0.1456

q = 0.90 1500 250 0.0185 0.0511 0.0986
3000 250 0.0162 0.0587 0.1234

Table 1: Estimation for Frac-stochastic (4.1) model with true values γ0 = 0.015, γ1 = 0.05 and γ2 = 0, 1

N NS γ̂0,N γ̂1,N γ̂2,N
1000 500 0.0164 0.0548 1.4857

q = 0.5 1500 500 0.0245 0.0785 1.0142
3000 500 0.0137 0.0864 0.9765

N NS γ̂0,N γ̂1,N γ̂1,N
1000 500 0.1009 0.0458 1.2227

β = 0.2 1500 500 0.0354 0.2012 1.0165
3000 500 0.0199 0.1025 0.1253
N NS γ̂0,N γ̂1,N γ̂1,N
1000 500 0.0175 0.0589 1.1245

β = 0.1 1500 500 0.0402 0.0412 1.7856
3000 500 0.0114 0.0415 0.9896

Table 2: Estimation for Frac-stochastic (4.1) model with true values γ0 = 0.015, γ1 = 0.05 and γ2 = 0, 1

where the sequence (εi)i∈N is mutually independent standard Gaussian random variables. and by the polygonal
approximation we have

wn = wti + (wti+1 − wti)
t− ti

ti − ti+1
, t ∈ [ti, ti+1].

RMSE
β N NS γ̂0,N γ̂1,N γ̂1,N
0.7 1000 1000 0.0125 0.0102 0.0245
0.8 2000 2000 0.3125 0.0012 0.0290
0.9 5000 5000 0.0123 0.0223 0.0103

Table 3: RMSE for all situations simulation
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5.2 Conclusion

We can notice that the classical case of COGARCH(1,1) presents a better approximation between the estimated
values and the real values, which substantially shows the asymptotic behavior of the estimators in Table 1, where we
notice that increasing the sample size and the number of simulations guarantees the convergence of the estimators
to the real and almost identical values in the case N=3000 and NS=500. The frac-stochastique case keeps the same
asymptotic behavior of the estimated values in terms of increasing NS and N which is illustrated in Table 2. Where
numerical illustration in the Table 2 of our model simulation shows that the increase, the simulation in the second
table proves that the increase in the value of the fractional derivative q makes the convergence clear between the
model coefficients and their estimators each time (q = {0.2, 0.5 or 0.9}, since if we compare Tables 3 and 2, we observe
that the estimation by the moment approach very efficient in the models which take a fractional form because the
estimated values of case q=0.9 almost closer to the estimated values of model. In Table 1 with the increase in the
sample size N and NS. In most physicists the derivative according to Caputo is the best approximation, we observe
when q tends to 1 then we will find the best approximation which shows that the Frac-stochastic model is the best
approximation in our simulation. In Table 3, we observe that the RMSE criterion tends to zero where q approaches 1
with some perturbations. According to some experienced papers and estimation in this genre it can be deduced that
fractional stochastic differential models are generalizations of stochastic models.
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