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Abstract

Fractional derivatives are suitable for describing several physical phenomena. The construction of efficient analytical
and numerical methods for the solutions of ordinary and partial fractional differential equations is an active research
area and it is of great interest to the researchers. The Caputo fractional derivative is of great use in the modelling
and simulation of phenomena where consideration is given to the interactions within the past and problems with
nonlocal properties. This study considers the use of a hybrid of the Sumudu Transform method for constructing the
solution of nonlinear equations that describe the processes in the functional and structural materials. This study
considers the models that are given by the integer-order derivatives, Caputo derivatives of fractional variable orders
and Caputo derivatives of fractional variable orders that are associated with delays. The study applies a hybrid of
Sumudu Transform to present solutions for each considered model and makes use of graphs to show the correlation
among the models. The study is of great importance in the numerical and experimental characterization of the decay
properties of functional and structural materials.
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1 Introduction

Nuclear reactors are the heart of a nuclear power plant (see, e.g, [24, 9]). Figure 1 is an example of typical nuclear
reactor fueled with Uranium 235. The nuclear reactor is made up of the reactor itself and a heat exchanger. The
reactor is fueled with uranium elements that are enclosed by graphite moderators and eclipsed by charge tubes through
which the fuel elements and boron control rods are loaded. A pressure vessel that is walled by a concrete shield houses
the whole reactor (see, e.g, [24, 9]). Xenon 135 (135Xe) is an important product of Uranium 235 fission. Studies
show that little of 135Xe results directly from fission (see, e.g, [11, 19, 17]). The major souce of 135Xe is the decay
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Figure 1: A nuclear reactor (see, e.g, [21]).

chain Tellurium-135 (13552 Te with β− decay, 19 sec) to Iodine 135 (13553 I with β− decay 6.6 hr) to 135Xe. The time rate
of production rate of 135Xe depends on the 135I concentration and therefore on the local neutron flux history. The
half-life of 135Te is so short ( 19 sec), that 135I can be considered as the primary fission product. 135I is not a strong
absorber of neutron but it decays to produce poison 135Xe. It is an important role that the half-life of 135I play in the
production of 135Xe, since 90% of available 135Xe comes from the decay of 135I. The decay of 135I is characterized by
the differential equation

I ′(t) = γ − λI(t), (1.1)

where I(t) denotes the number of 135I
(
atoms/cm3

)
i.e. the atom density of iodine, λ is the decay constant for 135I

and the product of thermal neutron flux, macroscopic fission cross-section and effective fission yield of the isotope is
γ, which is a constant (see, e.g, [16, 7, 8]). The solution of the linear differential equation (1.1) is obtained as

I(t) = γ/λ+ (I(0)− γ/λ) e−λt,

where I(0) signifies 135I at the time t = 0. An equilibrium state exits for 135I when its rate of production is equal
to its rate of removal. This equilibrium state is referred to as 135Xe reservoir as 135I undergoes complete decay to
xenon. One can determine the 135I equilibrium concentration from (1.1) by setting I ′(t) = 0. At equilibrium, the 135I
concentration remains constant and it is determined as

I(t) = γ/λ.

The equilibrium 135I concentration is proportional to the fission reaction rate and therefore to the reactor power
level. Studies on 135I are extremely essential as they can help the engineers and operators to have perfect knowledge
of the behavior of a reactor with 135Xe. Studies such as this can help to predict and respond to the transients induced
by equilibrium or non-equilibrium xenon distribution.

Fractional calculus generalizes differentiation to non-integer-orders. Fractional differential equations are highly
esteemed for their application in modelling complex phenomena and they play important roles in the study of evolution
of a system. The applications of fractional differential equations have been demonstrated in mechanics, physics,
chemistry, control theory, to mention just a few (see, e.g, [14]). Applications of fractional differential equations in
many fields fascinates scientists and engineers. It is preferrable in several occasion to describe physical phenomena by
using fractional derivative operators (see, e.g, [6]). Many dynamical systems have delays that are associated with them
as their natural components. Mathematical models that contain delays have potential for more vitality and suitability
in describing physical systems. Delay Differential Equations (DDEs) of the form

I ′(t) = f (t, Ii(t), Ii(αt)) , (1.2)

where i = 1, 2, 3, ..., n and α > 0 is a constant delay, are referred to as pantograph differential equations. A device
called ’pantograph’ was used for the first time in the construction of an electric locomotive in 1851. In 1960, the British
Railways opted to design a new type of electric locomotive, which can move the trains faster. The new fast-speed
electric locomotive had pantograph as a noticable component. By the structure, an overhead wire supplies current to
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the pantograph. This structure of pantographs is essetial for the locomotive to move. Ockendon and Taylor employed
the mechanism of the pantograph to propose DDEs of the form (1.2) [13]. Recent studies on pantograph differential
equations and their applications include [15, 1, 2, 3].

135I is a major source of an artificial element that has a tremendous impact on the operation of a nuclear reactor.
Where the global correlation but not only local characteristics is desirable, fractional derivative operators are preferable
as they can give more insight than the integer-order derivative operators [18]. This paper studies the models that
describe the decay of 135I and applies a hybrid of Sumudu Transform (ST) method to present solutions to the models
that are given by the integer-order derivative operators, Caputo derivatives of fractional variable orders and Caputo
derivatives of fractional variable orders that are associated with delays.

2 Preliminaries

This section introduces some definitions and proposition that are pertinent to the results which this paper presents.
Throughout this paper, the set of real, natural and rational numbers will be denoted by R,N and Q, respectively.

Definition 2.1. Consider

Ω =
{
I(t) : ∃ Q, τ1, τ2 > 0, |I(t)| < Qe|t|/τj , if t ∈ (−1)j × [0,∞)

}
,

which is a set of functions (see, e.g, [4]). I(t) ∈ Ω for all real t ≥ 0. ST is an integral method and the ST for a given
function I(t), will be denoted by S[I(t)] = I(u), defined as

I(u) =

∫ ∞

0

I(tu)e−tdt, u ∈ (−τ1, τ2). (2.1)

In equation (2.1), the inverse ST of I(u) is the function I(t). The relation between a function I(t) and its inverse
I(u), will be denoted by I(t) = S−1[I(u)]. Other well integral method is the Laplace transform, defined as

L(u) = L[I(t)] =
∫ ∞

0

I(t)e−stdt, s > 0, (2.2)

for a given function I(t). It can be observed from equations (2.1) and (2.2) that the duality relations between ST and
Laplace transform are given as

I (1/s) = sL(s), L (1/u) = uI(u).

ST is an impressive and a broad way to obtain a Lagrange multiplier. ST yields an accurate result quickly and
it does not impose any restriction on the results. For arbitrary two given functions I(t), F (t) ∈ Ω, and for arbitrary
constants α and β,

S [αI(t) + βF (t)] = αS [I(t)] + βS [F (t)] ,

which shows that ST satisfies linear property (see, e.g, [20, 5, 4, 10]). For an integer order derivative, its ST is expressed
as

S

[
dI(t)

dt

]
=

1

u
[I(u)− I(0)] , (2.3)

and for the n-order derivative, the ST is given as

S

[
dnI(t)

dtn

]
=

1

un

[
I(u)−

n−1∑
k=0

uk d
kI(t)

dtk
|x=0

]
. (2.4)

Definition 2.2. Let a > 0, b > 0 be positive real numbers. The left and right sided Caputo-fractional derivatives of
order µ are defined respectively as

C
a D

µI(t) =
1

Γ (1− µ)

∫ t

a

(t− τ)−µI ′(τ)dτ

and

CDµ
b I(t) =

−1

Γ (1− µ)

∫ b

t

(τ − t)µI ′(τ)dτ,

where 0 < µ < 1 (see, e.g, [4] Theorem 4.1 and 4.2). Consequently, the ST for Caputo-fractional derivatives of order
µ has the form (see, e.g, [6])

S
[
C
0 D

µI(t)
]
= u−µ (S [I(t)]− I(0)) . (2.5)
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Table 1: Frequently used Sumudu Transforms

I(t) I(u) = S [I(t)]
1 1
t u
tn

n! un

eat 1
1−au

sin at
a

u
1+a2u2

cos at 1
1+a2u2

ebt−eat

b−a , b ̸= a 1
(1−bu)(1−au)

Table 1 gives the ST of some frequently used functions.

Proposition 2.3. Let ϕ, φ : [0,∞) → R, then the classical convolution product is given by

(ϕ× φ)(t) =

∫ t

0

ϕ(t− x)φ(x)dx.

The ST for the convolution product is given by

S [(ϕ× φ)(t)] = uS[ϕ(t)]S[φ(t)]
= uϕ(u)φ(u).

Definition 2.4. One parameter Mittag-Leffler function Eµ(t) is defined as

Eµ(t) =

∞∑
n=0

tn/(nµ)!, µ > 0.

The following results about Mittag-Leffler functions and ST are well known (see, e.g, [12]):

(i) S [Eµ (−atµ)] = 1
1+auµ ;

(ii) S [1− Eµ (−atµ)] = auµ

1+auµ .

3 Main results

This study presents a hybrid of variational iterative method with ST for solving delay differential equations with
Caputo derivatives of fractional variable order. Then the results are applied to obtain the solutions of a differential
equations that characterize the decay of 135I.

3.1 Hybrid Sumudu Variational (HSV) method

In this study, a blend of variational iterative method with ST will be referred to as Hybrid Sumudu Variational
(HSV) method. Variational iterative method posseses adorable features such as flexibility, consistency and effectiveness
(see, e.g, [22, 23] and references there in), which motivates its choice in this study as the most suitable companion for
amalgamation with the ST.

3.1.1 Presentation of HSV method

The Caputo derivatives of fractional variable orders play important roles in the modelling of real-life phenomena
where it is essential to give attention to the interactions within the past and also problems with nonlocal properties
(see, e.g, [18]). The HSV method is presented for solving a given nonlinear universal equation that involves delay and
Caputo derivative of fractional variable order µ,

C
a D

µI(t) + Φ [I(t)] + Ψ [I(t/2)] = ω(t), (3.1)
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subject to the initial conditions
I(0) = I0, (3.2)

where Φ is a linear operator, Ψ is a nonlinear operator and ω(t) is a given continuous function. Taking the ST of (3.1)
gives

S
[
C
a D

µI(t)
]
= S [ω(t)− Φ [I(t)] + Ψ [I(t/2)]] .

Refer to (2.5) with a = 0, to obtain

u−µ (S [I(t)]− I(0)) = S [ω(t)− Φ [I(t)]−Ψ [I(t/2)]] .

Since I(0) = I0 by (3.2), we have

u−µ (I(u)− I0) = S [ω(t)− Φ [I(t)]−Ψ [I(t/2)]] .

Therefore, the HSV formula is given as

In+1(u) = In(u) + α(u)

(
In(u)− I0

uµ
− S [ω(t)− Φ [I(t)]−Ψ [I(t/2)]]

)
, n ∈ N. (3.3)

Considering S [Φ [I(t)]−Ψ [I(t/2)]] as the restricted term in taking the classical variation operator on both sides
of (3.3) leads to

δIn+1(u) = δIn(u) + α(u)
1

uµ
δIn(u),

from which a Lagrange multiplier is obtained as

α(u) = −uµ. (3.4)

Substituting (3.4) into (3.3) and taking its inverse ST gives the explicit iteration formula

In+1(t) = In(t) + S−1

[
−uµ

(
In(u)− I0

uµ
− S [ω(t)− Φ [In(t)]−Ψ [In(t/2)]]

)]
= I1(t) + S−1 [uµS [ω(t)− Φ [In(t)]−Ψ [In(t/2)]]] ,

with the initial approximation which is given as I1(t) = S−1
[
−uµ

(−I0
uµ

)]
= I0S−1 [1] = I0.

3.1.2 Variable coefficients fractional differential equations with delay

Suppose the given general nonlinear problem (3.1) contains variable coefficients such that the equation has the
form

C
a D

µI(t) + λΦ1[I(t)] + γ(t)Φ2[I(t)] + Ψ [I(t/2)] = ω(t), (3.5)

where λ is a constant, γ(t) is a variable coefficient, Φ1 and Φ2 denote linear operators and other terms remain as
defined in (3.1). Taking the ST of (3.5) and further computations give the HSV formula

In+1(u) = In(u) + α(u)

(
In(u)− I0

uµ
− S

[
ω(t)− λΦ1[I(t)]− γ(t)Φ2[I(t)]−Ψ [I(t/2)]

])
, n ∈ N. (3.6)

Considering S [γ(t)Φ2[I(t)] + Ψ [I(t/2)]] as the restricted term in taking the classical variation operator on both
sides of (3.6) leads to

δIn+1(u) = δIn(u) + α(u)
1

uµ
δIn(u),

from which a Lagrange multiplier as
α(u) = −uµ.

Substitute for α(u) in (3.6) and take its inverse ST to obtain the explicit iteration formula

In+1(t) = In(t) + S−1

[
−uµ

(
In(u)− I0

uµ
− S [ω(t)− λΦ1[In(t)]− γ(t)Φ2[In(t)]−Ψ [In(t/2)]]

)]
= I1(t) + S−1 [uµS [ω(t)− λΦ1[In(t)]− γ(t)Φ2[In(t)]−Ψ [In(t/2)]]] ,

with the initial approximation which is given as I1(t) = S−1
[
−uµ

(−I0
uµ

)]
= I0S−1 [1] = I0.
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3.2 New models for decay of Iodine 135

In this section, new mathematical models that involve Caputo derivatives of fractional variable orders are introduced
for the decay of decay of 135I.We obtain the solutions of the newly introduced models for the decay of 135I and compare
them with solution of the existing model that is associated with integer order derivative. We apply the ST method to
obtain the solution of the newly introduced model that is not associated with delay while we apply the HSV method
which we presented in Section 3.1 to the newly introduced model that is associated with delay. We choose suitable
parameters for the variables and use Matlab 2015 to plot the graphs of the solutions of the models to show their
comparison.

3.2.1 Models with Caputo-fractional derivatives for decay of 135I

An analogueue of the differential equation (1.1), given with Caputo derivatives of fractional variable orders for the
decay of 135I has the form

C
a D

µI(t) = γ − λI(t), I(0) = I0, (3.7)

where µ ∈ (0, 1). We shall solve (3.7) by using the ST method. Taking the ST of (3.7) gives

S
[
C
a D

µI(t)
]
= γ − λS [I(t)] ,

which leads to
u−µ (S [I(t)]− I(0)) = γ − λS [I(t)] .

Since it is given that I(0) = I0, it is obtained that

u−µ (I(u)− I0) = γ − λI(u). (3.8)

Factorising (3.8) leads to

I(u) =
u−µI0 + γ

u−µ + λ

=
u−µI0
u−µ + λ

+
γ

u−µ + λ
. (3.9)

Taking the inverse ST of (3.9)

I(t) = S−1

[
u−µ

u−µ + λ

]
I0 + S−1

[
γ

u−µ + λ

]
= S−1

[
1

1 + λuµ

]
I0 +

γ

λ
S−1

[
λuµ

1 + λuµ

]
.

Then by Definition 2.4 (i) and (ii),

I(t) = I0Eµ (−λtµ) + γ/λ (1− Eµ (−λtµ)) . (3.10)

The real values are assigned to the constants by setting λ = 0.3, γ = 0.1, µ = 0.65 and I0 = 1, which signifies
the value of 135I at the time t = 0. Figure 2 compares the solution given by the integer order differential equation
(1.1) with the solution given by the differential equation (3.7) that is associated with Caputo derivatives of fractional
variable orders. In addition, by setting λ = 0.3 and γ = 0.1, Figure 3 displays the effect of variation of fractional order
µ, of Caputo derivative operators.

3.2.2 Models with Caputo-fractional derivatives and time delay for decay of 135I

We shall introduce a time delay into the differential equations with Caputo derivatives of fractional variable orders
for the decay of 135I, to propose a new model. An analogue of the differential equation (3.7), associated with time
delay is given as

C
a D

µI(t) = γ − λI(t/2), (3.11)

where µ ∈ (0, 1) and I(0) = I0.
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Figure 2: Comparison of solutions of differential equations with integer order derivatives with fractional order derivatives.

Remark 3.1. Notice that (3.11) is quite different from (3.7) as delay is present in (3.11). Generally, the presence of
delays in a mathematical model can improve its vitality and suitability in describing several phenomena. However,
the presence of delay in an equation makes it more difficult to obtain its solution. In this case, the ST method that
was used to obtain the solution of (3.7) is not suitable to solve (3.11) due to its association with delay.

We shall apply HSV method (that was presented in Section 3.1) to solve (3.11). Starting with taking the ST of
(3.11) to obtain

S
[
C
a D

µI(t)
]
= γ − λS [I(t/2)] .

By applying (2.5) with a = 0, we obtain

u−µ (S [I(t)]− I(0)) = γ − λS [I(t/2)] ,

which is equivalent to
u−µ (I(u)− I0) + λS [I(t/2)]− γ = 0,

since S [I(t)] = I(u) and I(0) = I0. Consequently, HSV iteration formula is given as

In+1(u) = In(u) + α(u)

(
In(u)− I0

uµ
+ λS [In(t/2)]− γ

)
, n ∈ N. (3.12)

Considering In(t/2) as the restricted term while taking the classical variation operator on both sides of (3.12),
gives

α(u) = −uµ.

Substituting for α(u) in 3.12 and taking its inverse-ST gives the explicit iteration formula

In+1(t) = In(t) + S−1

[
−uµ

(
In(u)− I0

uµ
+ λS [In(t/2)]− γ

)]
= I1(t)− S−1 [uµ (λS [In(t/2)]− γ)] .

where the initial approximation I1(t) = S−1 [I0] = I0S−1 [1] = I0. Therefore, the successive iteration formula is
obtained as {

I1(t) = I0,

In+1(t) = I0 − S−1 [uµ (λS [In(t/2)]− γ)] .
(3.13)
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Figure 3: Effects of variation of fractional order of Caputo derivative operators.

Notice that I1(t/2) = I0, therefore

I2(t) = I0 − S−1 [uµ (λS [I1(t/2)]− γ)] = I0 − S−1 [(λI0 − γ)uµ] = I0 − (λI0 − γ)S−1 [uµ]

= I0 − (λI0 − γ)
tµ

µ!
= I0

(
1− λ

tµ

µ!

)
+ γ

tµ

µ!
.

Notice that I2(t/2) = I0

(
1− λ tµ

2µµ!

)
+ γ tµ

2µµ! , therefore

I3(t) = I0 − S−1 [uµ (λS [I2(t/2)]− γ)] = I0 − S−1

[
uµ

(
λS

[
I0

(
1− λ

tµ

2µµ!

)
+ γ

tµ

2µµ!

]
− γ

)]
= I0 − S−1

[
uµ

(
λ

(
I0

(
1− λ

uµ

2µ

)
+ γ

uµ

2µ

)
− γ

)]
= I0 − S−1

[
I0

(
λuµ − λ2u

2µ

2µ

)
+ λγ

u2µ

2µ
− γuµ

]
= I0 − I0

(
λ
tµ

µ!
− λ2 t2µ

2µ(2µ)!

)
− λγ

t2µ

2µ(2µ)!
+ γ

tµ

µ!

= I0

(
1− λ

tµ

µ!
+ λ2 t2µ

2µ(2µ)!

)
+ γ

(
tµ

µ!
− λ

t2µ

2µ(2µ)!

)
.

Notice that I3(t/2) = I0

(
1− λ tµ

2µµ! + λ2 t2µ

23µ(2µ)!

)
+ γ

(
tµ

2µµ! − λ t2µ

23µ(2µ)!

)
, therefore

I4(t) = I0 − S−1 [uµ (λS [I3(t/2)]− γ)]

= I0 − S−1

[
uµ

(
λS

[
I0

(
1− λ

tµ

2µµ!
+ λ2 t2µ

23µ(2µ)!

)
+ γ

(
tµ

2µµ!
− λ

t2µ

23µ(2µ)!

)]
− γ

)]
= I0 − S−1

[
uµ

(
λI0

(
1− λ

uµ

2µ
+ λ2u

2µ

23µ

)
+ λγ

(
uµ

2µ
− λ

u2µ

23µ

)
− γ

)]
= I0 − S−1

[
λI0

(
uµ − λ

u2µ

2µ
+ λ2u

3µ

23µ

)
+ λγ

(
u2µ

2µ
− λ

u3µ

23µ

)
− γuµ

]
= I0 − λI0

(
tµ

µ!
− λ

t2µ

2µ(2µ)!
+ λ2 t3µ

23µ(3µ)!

)
− λγ

(
t2µ

2µ(2µ)!
− λ

t3µ

23µ(3µ)!

)
+ γ

tµ

µ!

= I0

(
1− λ

tµ

µ!
+ λ2 t2µ

2µ(2µ)!
− λ3 t3µ

23µ(3µ)!

)
+ γ

(
tµ

µ!
− λ

t2µ

2µ(2µ)!
+ λ2 t3µ

23µ(3µ)!

)
.
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Figure 4: Graph of the models with Caputo-fractional derivatives that are associated with delay.

Notice that I4(t/2) = I0

(
1− λ tµ

2µµ! + λ2 t2µ

23µ(2µ)! − λ3 t3µ

26µ(3µ)!

)
+ γ

(
tµ

2µµ! − λ t2µ

23µ(2µ)! + λ2 t3µ

26µ(3µ)!

)
, therefore

I5(t) =I0 − S−1 [uµ (λS [I4(t/2)]− γ)]

=I0 − S−1

[
uµ

(
λS

[
I0

(
1− λ

tµ

2µµ!
+ λ2 t2µ

23µ(2µ)!
− λ3 t3µ

26µ(3µ)!

)
+ γ

(
tµ

2µµ!
− λ

t2µ

23µ(2µ)!
+ λ2 t3µ

26µ(3µ)!

)]
− γ

)]
+ λγ

(
uµ

2µ
− λ

u2µ

23µ
+ λ2u

3µ

26µ

)
− γ

)]
=I0 − S−1

[
λI0

(
uµ − λ

u2µ

2µ
+ λ2u

3µ

23µ
− λ3u

4µ

26µ

)
+ λγ

(
u2µ

2µ
− λ

u3µ

23µ
+ λ2u

4µ

26µ

)
− γuµ

]
=I0 − λI0

(
tµ

µ!
− λ

t2µ

2µ(2µ)!
+ λ2 t3µ

23µ(3µ)!
− λ3 t4µ

26µ(4µ)!

)
− λγ

(
t2µ

2µ(2µ)!
− λ

t3µ

23µ(3µ)!
+ λ2 t4µ

26µ(4µ)!

)
+ γ

tµ

µ!

=I0

(
1− λ

tµ

µ!
+ λ2 t2µ

2µ(2µ)!
− λ3 t3µ

23µ(3µ)!
+ λ4 t4µ

26µ(4µ)!

)
+ γ

(
tµ

µ!
− λ

t2µ

2µ(2µ)!
+ λ2 t3µ

23µ(3µ)!
− λ3 t4µ

26µ(4µ)!

)
.

Hence, it can be deduced that
I1(t) = I0,

In(t) = I0

n−1∑
k=0

(−λ)
k tkµ

2
k
2 (k−1)µ(kµ)!

+ γ

n−1∑
k=1

(−λ)
k−1 tkµ

2
k
2 (k−1)µ(kµ)!

, n ∈ N, n > 1,

I(t) = lim
n→∞

In(t).

(3.14)

Figure 4 shows the solution of the model (3.11) for different values of µ. Figure 4 is obtained by setting the
parameters in the differential equation (3.11) to be λ = 0.3, γ = 0.1 and I0 = 1. Figure 4 displays how the solutions
vary as µ varies. Setting µ = 0.75, Figure 5 shows the iterations of the model with Caputo-fractional derivatives and
time delay for the decay of 135I.

Conclusion

This paper presents fractional differential equations that are analogue of an integer-order differential equation,
which describes the decay of 135I. The paper introduces new mathematical models that involve Caputo derivatives
of fractional variable orders for the decay of 135I. The paper presents a hybrid of ST and applied it to obtain the
solutions of three different models that charaterises the decay if 135I. The paper considers the models that are given
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Figure 5: Iterations of the model with Caputo-fractional derivatives and time delay for decay of 135I.

by the integer order derivatives, Caputo derivatives of fractional variable orders and Caputo derivatives of fractional
variable orders that are associated with delays. The Caputo fractional derivative is of great use in the modelling and
simulation of phenomena where consideration is given to the interactions within the past and problems with nonlocal
properties. The paper present the graphs of the solutions for the models to show the correlation among them. In
general, this study is of great importance in the numerical and experimental characterization of the decay property of
the functional and structural materials.

Abbreviations:
DDEs: Delay Differential Equations
HSV: Hybrid Sumudu Variational
ST: Sumudu Transform
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