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Abstract

1
In this present investigation, for functions of the form f(z) = -+ Zf:lip ar2*, which are analytic in the punctured
z
unit disk U* = {# € C: 0 < |z| < 1}, we introduce a new subclass of meromorphically p-valent functions and
investigate convolution properties, Coefficient estimates and contianment for this subclass.
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1 Introduction
Let 3, denote the class of mermorphic p-valent functions of the form
1 - k
fE) =S+ D adt, (1.1)
k=1—p
which are analytic and p-valent in the punctured unit disk

Ur={zeC: 0<|z| <1}

If feX,isgiven by(l.1) and g € ¥, given by

—+o0
1 .
g(Z) = 27:0 + Z bkzka
k=1-p
then the Hadamard product (or convolution) f x g of f and g is defined by

1 =
(f+9)(2) ==+ > axbp2®. (1.2)

zP
k=1—p
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For two function f and g analytic in U, we say that the function f(z) is subordinate to g(z) in U and write f < g
or f(z) < g(z) (z € U), if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1, shuch
that f(z) = w(g(z)), (see [9, [11]). Gasper and Rahman in [3] defined the g-derivative of a function f(z) of the from

([L.3) by

flaz) — f(@)
Df(s) = 1.3
where z € U* and 0 < ¢ < 1. From (L.3) for a function f(z) given by (1.1)) we get
q_p -1 = k—1 *
where
¢" -1 2 k—1
[klq := 1 Sl tata e td (1.5)

also [k];, — 1 as ¢ — 1.So we conclude lim, 7 Dyf(2) = fl(z),z € U*. Many important properties of certain
subclasses of meromorphic p-valent functions were studied by several authors including Aouf and Srivastava [2], Joshi
and Srivastava [4], Liu and Srivastava[7], Liu and Owa [6], Liu and Srivastava [§], Ravichandran, Sivaprasadkumar
and Subramanian [12].

2 Preliminaries

Using the subclasses defined by Mostafa, Aouf, Zayed and Bulboaca in[I0], Now we introduce new subclasess of
mermorphic p-valent functions a and investigate convolution properties and cofficien estimates for these subclasses as
follows:

Definition 2.1. For 0 <A <1, -1 < B <A <1, and b € C* = C\{0}, let £,S; ,[b; A, B] be the subclass of ¥,
consisting of function f(z) of the form(|1.1)) and satisfying the analytic criterion

1—q¢? 1 D 1—q7? 1+ A
q—1 b (L= AE0) f(2) = A2Dg f(2) q—1 1+ Bz

q

Also, let £,K, 1[b; A, B] be the subclass of ¥, consisting of function f(z) of the form(l.1) and satisfying

—-P

1—q¢? 1 ZDq(%Zqu(Z)) . 1—q7? < 1+ Az (2.2)
q - = — — — ) .
=1 b (- ML) (2D, f(2) = A2Dg(F47 2D, f(2)) 41 1+ Bz
Tt is easy to verify from (2.1]) and (2.2)) that
1_qg-P
f €S, K a[b: A, B] == _ql 2Dy f(2) € 5,87 ,[b; A, Bl. (2.3)

we note that

L. For p =1 we get 3,5, \[b; A, B] = 315, ,[b; A, B] = XS5 ,[b; A, BJ, (see [1]).
2. For p =1 we get X,/C,2[b; A, B] = 1K 2 [b; A, B] = £K,.1[b; A, B], (see [1]).

3 Main Result

In this section we give some new subclasses of mermorphic p-valent functions.
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3.1 subclasses %,S; ,[b; A, B] and X,Kq,x[b; A, B]

In the first theorem we give some necessary and sufficieint conditions for member of subclass ¥,S; \[b; A, B].

Theorem 3.1. If f € ¥, then f € X,57 ,[b; A, B] if and only if

1+ {(1 —>\1;ET> M(8,p) — (g + q%)}z

p 1
for all z € U* and 0 € [0,27). Where
1 + Be'?
M(0,p) = —— e (3.2)
qpb[l —q q—1 + (A - Bq q—1 )6 ]
Proof . It is easy to verify that for any f € ¥, the next relations hold:
1
f(z) * 20—2) f(2), (33)
and -
1 1+ quj_l 1-— q
— = D . 4
ﬂ@*{ﬂu—@u—q@ zwwl—@u—qa] g7 1Pl G4

First, if f € X,87 [b; A, B], in order to prove that (3.1)) holds we will write (2.1) by using the definition of the
subordination, that is

2D, (2) B S e D L e e e e S
(1 - ML) f(2) — AzD,f(2) 1+ Bu(z) + 15 Bul?) . (35)

where w is a Schwarz function, hence
1—-q7P 1—-q7P
qg—1

{1+ Be 12D, f(2) - [bla
1—qgP 1—qg P .
T A)—-B~—% " )ei?(1— A
q-1 q-1 q-1
for all z € U* and 6 € [0, 7). Using (3.3) and (3.4)), the relation (3.6) may be written as

1—q7? 1—q7? 1—q7? 1—q7? 1—q7? 1—q7? 1—q7P| 40
- - B - A b —-1) - b(¢B —A)-B !
Z{< q-1 -1~ qg—1 X([(q q—1 ) q—1]+[(q q-1 ) q—l}e

— [b(¢B

10 [srgir=as - w0 ) el -]
+ {b(quq—_q;p —A)— qu—_qlp] eie} [f(z) * Zp(ll_z)} } 20, .

which is equivalent to

_ 1—q~ P 14+ Be®? _ A
1+ {(1 A q-1 ) qPb[1—g1za” +(A—Bq1?+_1p)e“’] (a+ qp)} :

q—1

2P(1 —z)(1 — gz2)

z | f(z) = #0, (3.8)

where z € U, 6 € [0,27) and thus the first part of Theorem (3.1) was proved. Reversely, suppose that f € ¥, satisfy
the condition (3.1)). Like it was previously shown, the assumption (3.1]) is equivalent to (3.6]), hence

2D, f(2) B e e = I sl e
(1= ASL2) f(2) — AzDy f(2) 1+ Bei® 11 B )

P

(3.9)




266 Golmohammadi, Alishahi

for all z € U and 6 € [0, 27). Denoting

o 2Dy f(2)
() (1= A0 f(2) = A2Dyf (2)

and

q—1 q—1 q—1 q—1
14+ Bz ’

ooy = LT D~ paB R ) - B -

The relation (3.9) means that

and

(L(z) = 0(2) = [bla 55 — 1) = 2.

Thus, the simply connected domain is included in a connected component of C\1(L(U)). Therefore, using the fact
that ¢(0) = ¢(L(0)) and the p-valent function ¥, it follows that ¢(2) < 9(2), which implies that f € %,Sy \[b; A, B].
Thus, the proof of Theorem ({3.1)) is completed. [J
Theorem 3.2. If f € X, then f € X,/ A[b; 4, B] if and only if

p+2

1— _qP 2 p+1l_q 1—qg~P A

Zp {f(z) . 1- 1Eqp z+ {({_sz + qz ql_qp ] {(1 - A qgl ) M(@,p) - (Q+ qp)}:|
(1= 2)(1 - qz2)(1 - ¢*2)

for all z € U* and 6 € [0,27), where M (0, p) is given by ([3.2]).

£0 (3.10)

Proof . From 1) it follows that f € ¥,K, x[b; A, B] if and only if ®,(2) := 112D, f(2) € Y8y lb; A, B]. Then,

1—q—P

accoding to Theorem (3.1, the function ®, belongs to ¥,S; A[b; A, B] if and only if

2[®q(2) * g(2)] # 0, (3.11)

for all z € U and 0 € [0,27), where

_ y1—q7? 14+ Be'? _ BN
1+ {(1 A q—1 ) qu[lfql_q7p+(Aqu1;z;p Yeif] (Q+ qp)} z

9(z) = (i q_’;)<1 . (3.12)
A simple computation shows that
Cglgz) —g(z) (1-¢")—(1—q¢"*?)2
D) =00 T P )an 00— - ¢2) (313)

— P 2P+l _ _ lfq_”) 1+Be'?
[(¢—q")z+q2°(q 1)]((1 A q—1 Bl =T (A Bg =L T )eit)]

q"(q —1)2Pt1(1 = 2)(1 = ¢2)(1 — ¢°2)
(¢+2))
q*(q — 1)zPH(1 = 2)(1 = q2)(1 — ¢°2)

+

and therefore

_lfqp+2 q—qP @®ti_1 o ( _ lfq_p) 14+ Bet?
Dqg(2) : R aPbl1—g G5 + (A= B 5t )e’]
z z =

"9 (1-2)(1—¢2)(1- ¢22)

@+ )]

(1=2)(1—q2)(1—¢*2)

1—¢
1—qP
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Using the above relation and the identity

+

q—1 q—1
== = —2Dqf(2)] x g(2) = f(z) * [mZDqg(Z)] (3.14)
it is easy to check that (3.11]) is equivalent to (3.10). O
Theorem 3.3. If f € ¥, then f € X,57 ,[b; A, B] if and only if
[u = 20K [0 - 5550 + (A - gBLE e b? (1-MG55) (4 + Be) kg

}akz’”p #0

1+; quK

for all z € U* and 6 € [0, 2m).

ol

) (4 - B e

1—3117) + (A—qB%)ew]

Proof . If f € 3, then from Theorem ({3.1)) we have

L+ (1= A B — (g4 )2
a1 7 grb[1—q221 P +(A- BTl )ei] @
P = = 0 3.15
2[f(2) * e | # (315)
for all z € U* and 6 € [0, 27), since
1 1 =
= — [k 3.16
2P(1—2)(1 —qz) 2P + Z +rle (3.16)
k=1—p
it follows that
_y1-¢7? 14+Be*? _ A
1 (1 )\ q—1 )q”b[l—qlzi;p—i-(A—Bql?%_lp)ew] (Q+ qp)Z
2P(1—2)(1 — gz2)
1 > 1 —q7P 1 —|— Be®? A
:7+ Z [ ( —1) 1q ie_ip][k—kp”k (3.17)
keTop q gPb[l — ¢+ + (A= Bgi4h)e?] g

and we may that easily check that (??) is equvalent to (3.15]). O

3.2 Duality
In this section, we by using the definitions of the duality in[5], for a set V' C A, The dual set V, by V*is defined as

1
v z{gEA; ;(f*g)(z);é()for alleVandzeU}.
Now, for a set W C X, the dual W, denoted by W*, is defined as
W = {gGZp; 2P(f*g)(2) #0 for alleWcmdzE[U}.

The standard reference to duality for convolutions is the morograph by Rucheweyh [14], and his paper [13]. Assume
that f € ¥,. By Theorem ), f € X,8; \[b; A, B if and only if

2(f(2)#hol) £0, 2 €T, (3.18)
where
_ 1—q -p 1+Bei9 o A
ho(z) = o {(1 M ) aPOL-q G (A= Bttt )] o+ Q”)}Z 3.19
o(2) = 2P(1—2z)(1 — gz2) (3.19)
and

1+Be“9
M(6, 3.20
2= T (A- Belgt)e’] (520
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Moreover, for f € ¥,. By Theorem(3.1), f € X,S; ,[b; A, B] if and only if

2(f(2) % Lo(2)) #0, 2z €U,
for all z € U* and 6 € [0,27)., where M (0, p) is given by 1, where

1_qP+

s+ [Zifjﬁz + g2 qfqgl} {(1 - /\1;3;”) M(0,p) — (q+ q%)}
2P(1 —2)(1 — g2)(1 — ¢22) ’

1-—

L,(z) =

Definition 3.4. We define W* as follows:
Wy = (3,8;.[b; 4, B])"
= {ho(2) € Ty () £ ho(2))(2) £ 0, f €SS, A, B], 0 €[0,2m) |
and
WC* — (Ep’Cq,)\[b;AvB])*
{1ez) €5 () ¥ 1c(2)(2) 20, f € 5Kualts A, B}

. 1 0 .
Theorem 3.5. Let function hy(z) = > + 2 k=1p cpz® € Wg. The

1—q7? 1+ B

¢ =1 "gro[l — ¢*7545" + (A — Bgi4h))]

el < (rgrg 4+ g -

A -
g+ ) kgt g 4 g

Proof . Let hy € W*. Then we have

! {A=AZEMO,p) — (a+ ) }2
h(,v(z) = +
2P(1—2)(1 — qz) z2P(1—2)(1 —qz)

1
= Z—p(1+(1+q)z+(1+q+q2)22+~~-+qk+p*1)

{Q-255M0.0) — (a+ )}
+ — T (4 g+ )+ g
1 = X
= 7"‘ Z Ciz
z k=1—p
where
= 2 4y gkt i _ AN 2 g gkt
= (Hatg+ 4N (=A== )MO,p) = (g J)p — (L +a+g 4 +¢7)
and so
- l—q7? A -
el < (Tgtg? 4+ g™ { - ) )M(H,p)—(q+q7>}—(1+q+q2+~-~+q’“+” D
where

1+ Be®?

gb[l — ¢ 4 (A — Bgrih)et?]

M(e,p) =
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1
Corollary 3.6. Let f(z) = > + Zzozl—p apz* € 3,. if

> [0t a+a+ (- - L

A A

+(1+ g+ + -+ ") e <1,

Then f € ¥,KC, 2[b; A, B].

1
Proof . Let ho(2) = — + 3237, _, cxz® € Wy The we have
z

2|(f(2) * ho(2))]

oo
|1 + Z akckzk|

k=1-p
[eS)

> 1= > Jarlleell
k=1-p
[eS)

> 1= ) axlle
k=1—p

> 0.

Thus 2P(f(2) * he(2)) # 0 and now form Theorem 2.1 we have f € ¥,57 \[b; A, B]. U
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