Convolution properties for some subclasses of meromorphic p-valent functions of complex order associated with q-derivative

Mohammad Hassan Golmohammadi, Aboalghasem Alishahi*
Department of Mathematics, Payame Noor University, P.O. Bax 19395-4697, Tehran, Iran

(Communicated by Ali Jabbari)

Abstract

In this present investigation, for functions of the form $f(z)=\frac{1}{z^{p}}+\sum_{k=1-p}^{\infty} a_{k} z^{k}$, which are analytic in the punctured unit disk $\mathbb{U}^{*}=\{z \in \mathbb{C}: 0<|z|<1\}$, we introduce a new subclass of meromorphically p-valent functions and investigate convolution properties, Coefficient estimates and contianment for this subclass.

Keywords: q-derivative, meromorphic function, coefficient bound, extreme point, convex set, partial sum 2020 MSC: 30D30

1 Introduction

Let Σ_{p} denote the class of mermorphic p-valent functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{k=1-p}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disk

$$
\mathbb{U}^{*}=\{z \in \mathbb{C}: 0<|z|<1\} .
$$

If $f \in \Sigma_{p}$ is given by 1.1 and $g \in \Sigma_{p}$ given by

$$
g(z)=\frac{1}{z^{p}}+\sum_{k=1-p}^{+\infty} b_{k} z^{k},
$$

then the Hadamard product (or convolution) $f * g$ of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=\frac{1}{z^{p}}+\sum_{k=1-p}^{+\infty} a_{k} b_{k} z^{k} . \tag{1.2}
\end{equation*}
$$

[^0]For two function f and g analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U} and write $f \prec g$ or $f(z) \prec g(z) \quad(z \in \mathbb{U})$, if there exists a Schwarz function $\omega(z)$, analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$, shuch that $f(z)=\omega(g(z))$, (see [9, 11]). Gasper and Rahman in [3] defined the q-derivative of a function $f(z)$ of the from (1.1) by

$$
\begin{equation*}
D_{q} f(z):=\frac{f(q z)-f(q)}{(q-1) z}, \tag{1.3}
\end{equation*}
$$

where $z \in \mathbb{U}^{*}$ and $0<q<1$. From (1.3) for a function $f(z)$ given by (1.1) we get

$$
\begin{equation*}
D_{q} f(z)=\frac{q^{-p}-1}{(q-1) z^{p+1}}+\sum_{k=1}^{+\infty}[k]_{q} a_{k} z^{k-1}, \quad z \in \mathbb{U}^{*} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}:=\frac{q^{k}-1}{q-1}=1+q+q^{2}+\cdots+q^{k-1} . \tag{1.5}
\end{equation*}
$$

also $[k]_{q} \rightarrow 1$ as $q \rightarrow \overline{1}$.So we conclude $\lim _{q \rightarrow \overline{1}} D_{q} f(z)=f^{\prime}(z), z \in \mathbb{U}^{*}$. Many important properties of certain subclasses of meromorphic p-valent functions were studied by several authors including Aouf and Srivastava [2], Joshi and Srivastava [4], Liu and Srivastava[7], Liu and Owa [6, Liu and Srivastava [8], Ravichandran, Sivaprasadkumar and Subramanian [12].

2 Preliminaries

Using the subclasses defined by Mostafa, Aouf, Zayed and Bulboaca in [10], Now we introduce new subclasess of mermorphic p-valent functions a and investigate convolution properties and cofficien estimates for these subclasses as follows:

Definition 2.1. For $0 \leq \lambda<1,-1 \leq B<A \leq 1$, and $b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$, let $\Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$ be the subclass of Σ_{p} consisting of function $f(z)$ of the form (1.1) and satisfying the analytic criterion

$$
\begin{equation*}
q \frac{1-q^{-p}}{q-1}-\frac{1}{b}\left[\frac{z D_{q} f(z)}{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) f(z)-\lambda z D_{q} f(z)}+\frac{1-q^{-p}}{q-1}\right] \prec \frac{1+A z}{1+B z} \tag{2.1}
\end{equation*}
$$

Also, let $\Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]$ be the subclass of Σ_{p} consisting of function $f(z)$ of the form 1.1) and satisfying

$$
\begin{equation*}
q \frac{1-q^{-p}}{q-1}-\frac{1}{b}\left[\frac{z D_{q}\left(\frac{1-q^{-p}}{q-1} z D_{q} f(z)\right)}{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right)\left(\frac{1-q^{-p}}{q-1} z D_{q} f(z)\right)-\lambda z D_{q}\left(\frac{1-q^{-p}}{q-1} z D_{q} f(z)\right)}+\frac{1-q^{-p}}{q-1}\right] \prec \frac{1+A z}{1+B z} \tag{2.2}
\end{equation*}
$$

It is easy to verify from (2.1) and (2.2) that

$$
\begin{equation*}
f \in \Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B] \Longleftrightarrow \frac{1-q^{-p}}{q-1} z D_{q} f(z) \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B] . \tag{2.3}
\end{equation*}
$$

we note that

1. For $p=1$ we get $\Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]=\Sigma_{1} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]=\Sigma \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$, (see [1]).
2. For $p=1$ we get $\Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]=\Sigma_{1} \mathcal{K}_{q, \lambda}[b ; A, B]=\Sigma \mathcal{K}_{q, \lambda}[b ; A, B]$, (see [1]).

3 Main Result

In this section we give some new subclasses of mermorphic p-valent functions.

3.1 subclasses $\Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$ and $\Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]$

In the first theorem we give some necessary and sufficieint conditions for member of subclass $\Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$.
Theorem 3.1. If $f \in \Sigma_{p}$, then $f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$ if and only if

$$
\begin{equation*}
z^{p}\left[f(z) * \frac{1+\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) M(\theta, p)-\left(q+\frac{\lambda}{q^{p}}\right)\right\} z}{z^{p}(1-z)(1-q z)}\right] \neq 0 \tag{3.1}
\end{equation*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$. Where

$$
\begin{equation*}
M(\theta, p)=\frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q^{-p}}{q-1}+\left(A-B q \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]} \tag{3.2}
\end{equation*}
$$

Proof. It is easy to verify that for any $f \in \Sigma_{p}$ the next relations hold:

$$
\begin{equation*}
f(z) * \frac{1}{z^{p}(1-z)}=f(z) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) *\left[\frac{1}{z^{p}(1-z)(1-q z)}-\frac{1+\frac{1-q}{q^{-p}-1}}{z^{p-1}(1-z)(1-q z)}\right]=\frac{1-q}{q^{-p}-1} z D_{q} f(z) \tag{3.4}
\end{equation*}
$$

First, if $f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$, in order to prove that 3.1 holds we will write 2.1 by using the definition of the subordination, that is

$$
\begin{equation*}
\frac{z D_{q} f(z)}{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) f(z)-\lambda z D_{q} f(z)}=\frac{\left[b\left(q \frac{1-q^{-p}}{q-1}-1\right)-\frac{1-q^{-p}}{q-1}\right]}{1+B \omega(z)}+\frac{\left[b\left(q B \frac{1-q^{-p}}{q-1}-A\right)-B \frac{1-q^{-p}}{q-1}\right] \omega(z)}{1+B \omega(z)} \tag{3.5}
\end{equation*}
$$

where ω is a Schwarz function, hence

$$
\begin{align*}
& z\left\{\left[1+B e^{i \theta}\right] z D_{q} f(z)-\left[b\left(q \frac{1-q^{-p}}{q-1}-1\right)-\frac{1-q^{-p}}{q-1}\right]\right. \\
& \left.-\left[b\left(q B \frac{1-q^{-p}}{q-1}-A\right)-B \frac{1-q^{-p}}{q-1}\right] e^{i \theta}\left[\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) f(z)-\lambda z D_{q} f(z)\right]\right\} \neq 0 \tag{3.6}
\end{align*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0, \pi)$. Using (3.3) and (3.4), the relation (3.6) may be written as

$$
\begin{align*}
& z\left\{\left(-\frac{1-q^{-p}}{q-1}-B \frac{1-q^{-p}}{q-1} z-\lambda \frac{1-q^{-p}}{q-1} \times\left(\left[b\left(q \frac{1-q^{-p}}{q-1}-1\right)-\frac{1-q^{-p}}{q-1}\right]+\left[b\left(q B \frac{1-q^{-p}}{q-1}-A\right)-B \frac{1-q^{-p}}{q-1}\right] e^{i \theta}\right)\right)\right. \\
& f(z) *\left[\frac{1}{z^{p}(1-z)(1-q z)}-\frac{1+\frac{1-q}{q^{-p}-1}}{z^{p-1}(1-z)(1-q z)}\right]+\left\{\left(\lambda \frac{1-q^{-p}}{q-1}-1\right)\left[b\left(q \frac{1-q^{-p}}{q-1}-1\right)-\frac{1-q^{-p}}{q-1}\right]\right. \\
& \left.\left.+\left[b\left(q B \frac{1-q^{-p}}{q-1}-A\right)-B \frac{1-q^{-p}}{q-1}\right] e^{i \theta}\right\}\left[f(z) * \frac{1}{z^{p}(1-z)}\right]\right\} \neq 0 \tag{3.7}
\end{align*}
$$

which is equivalent to

$$
\begin{equation*}
z\left[f(z) * \frac{1+\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q-p}{q-1}+\left(A-B q \frac{1-q-p}{q-1}\right) e^{i \theta}\right]}-\left(q+\frac{\lambda}{q^{p}}\right)\right\} z}{z^{p}(1-z)(1-q z)}\right] \neq 0 \tag{3.8}
\end{equation*}
$$

where $z \in \mathbb{U}, \quad \theta \in[0,2 \pi)$ and thus the first part of Theorem (3.1) was proved. Reversely, suppose that $f \in \Sigma_{p}$ satisfy the condition (3.1). Like it was previously shown, the assumption (3.1) is equivalent to (3.6), hence

$$
\begin{equation*}
\frac{z D_{q} f(z)}{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) f(z)-\lambda z D_{q} f(z)} \neq \frac{\left[b\left(q \frac{1-q^{-p}}{q-1}-1\right)-\frac{1-q^{-p}}{q-1}\right]}{1+B e^{i \theta}}+\frac{\left[b\left(q B \frac{1-q^{-p}}{q-1}-A\right)-B \frac{1-q^{-p}}{q-1}\right] e^{i \theta}}{1+B e^{i \theta}} \tag{3.9}
\end{equation*}
$$

for all $z \in \mathbb{U}$ and $\theta \in[0,2 \pi)$. Denoting

$$
\varphi(z)=\frac{z D_{q} f(z)}{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) f(z)-\lambda z D_{q} f(z)}
$$

and

$$
\psi(z)=\frac{\left[b\left(q \frac{1-q^{-p}}{q-1}-1\right)-\frac{1-q^{-p}}{q-1}\right]+\left[b\left(q B \frac{1-q^{-p}}{q-1}-A\right)-B \frac{1-q^{-p}}{q-1}\right] z}{1+B z}
$$

The relation (3.9) means that

$$
\varphi(\mathbb{U}) \cap \psi(L(\mathbb{U}))=\emptyset
$$

and

$$
\left(L(z)=\Psi(z)-\left[b\left(q \frac{1-q^{-p}}{q-1}-1\right)-\frac{1-q^{-p}}{q-1}\right]\right) .
$$

Thus, the simply connected domain is included in a connected component of $\mathbb{C} \backslash \psi(L(\mathbb{U}))$. Therefore, using the fact that $\varphi(0)=\psi(L(0))$ and the p-valent function ψ, it follows that $\varphi(z) \prec \psi(z)$, which implies that $f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$. Thus, the proof of Theorem (3.1) is completed.

Theorem 3.2. If $f \in \Sigma_{p}$, then $f \in \Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]$ if and only if

$$
\begin{equation*}
z^{p}\left[f(z) * \frac{1-\frac{1-q^{p+2}}{1-q^{p}} z+\left[\frac{q-q^{p}}{1-q^{p}} z+q z^{2} \frac{q^{p+1}-1}{1-q^{p}}\right]\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) M(\theta, p)-\left(q+\frac{\lambda}{q^{p}}\right)\right\}}{z^{p}(1-z)(1-q z)\left(1-q^{2} z\right)}\right] \neq 0 \tag{3.10}
\end{equation*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$, where $M(\theta, p)$ is given by (3.2).
Proof. From 2.3 it follows that $f \in \Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]$ if and only if $\Phi_{q}(z):=\frac{q-1}{1-q^{-p}} z D_{q} f(z) \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$. Then, accoding to Theorem (3.1), the function Φ_{q} belongs to $\Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$ if and only if

$$
\begin{equation*}
z\left[\Phi_{q}(z) * g(z)\right] \neq 0 \tag{3.11}
\end{equation*}
$$

for all $z \in \mathbb{U}$ and $\theta \in[0,2 \pi)$, where

$$
\begin{equation*}
g(z)=\frac{1+\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q-p}{q-1}+\left(A-B q \frac{1-q-p}{q-1}\right) e^{i \theta}\right]}-\left(q+\frac{\lambda}{q^{p}}\right)\right\} z}{z^{p}(1-z)(1-q z)} . \tag{3.12}
\end{equation*}
$$

A simple computation shows that

$$
\begin{align*}
D_{q} g(z)=\frac{g(q z)-g(z)}{(q-1) z}= & \frac{\left(1-q^{p}\right)-\left(1-q^{p+2}\right) z}{q^{p}(q-1) z^{p+1}(1-z)(1-q z)\left(1-q^{2} z\right)} \tag{3.13}\\
& +\frac{\left[\left(q-q^{p}\right) z+q z^{2}\left(q^{p+1}-1\right)\right]\left(\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{q^{p} b\left[1-q \frac{1-q-p}{q-1}+\left(A-B q \frac{1-q-p}{q-1}\right) e^{i \theta}\right]}{q^{p}(q-1) z^{p+1}(1-z)(1-q z)\left(1-q^{2} z\right)}\right.}{} \\
& -\frac{\left.\left(q+\frac{\lambda}{q^{p}}\right)\right)}{q^{p}(q-1) z^{p+1}(1-z)(1-q z)\left(1-q^{2} z\right)}
\end{align*}
$$

and therefore

$$
\begin{aligned}
\frac{1-q}{1-q^{-p}} z D_{q} g(z)= & \frac{1-\frac{1-q^{p+2}}{1-q^{p}} z+\left[\frac{q-q^{p}}{1-q^{p}} z+\frac{q^{p+1}-1}{1-q^{p}} q z^{2}\right]\left[\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q-p}{q-1}+\left(A-B q \frac{1-q-p}{q-1}\right) e^{i \theta}\right]}\right.}{(1-z)(1-q z)\left(1-q^{2} z\right)} \\
& -\frac{\left.\left.\left(q+\frac{\lambda}{q^{p}}\right)\right)\right]}{(1-z)(1-q z)\left(1-q^{2} z\right)}
\end{aligned}
$$

Using the above relation and the identity

$$
\begin{equation*}
\left[\frac{q-1}{1-q^{-p}} z D_{q} f(z)\right] * g(z)=f(z) *\left[\frac{q-1}{1-q^{-p}} z D_{q} g(z)\right] \tag{3.14}
\end{equation*}
$$

it is easy to check that 3.11 is equivalent to 3.10 .
Theorem 3.3. If $f \in \Sigma_{p}$, then $f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$ if and only if
$1+\sum_{k=1}^{\infty}\left[\frac{\left(1-\frac{\lambda}{q^{p}}[k]_{q}\right)\left[\left(1-q \frac{1-q^{-p}}{q-1}\right)+\left(A-q B \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right] b q^{p}}{q^{p} b\left[\left(1-q \frac{1-q^{-p}}{q-1}\right)+\left(A-q B \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]}+\frac{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right)\left(1+B e^{i \theta}\right)[k]_{q}}{q^{p} b\left[\left(1-q \frac{1-q^{-p}}{q-1}\right)+\left(A-q B \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]}\right] a_{k} z^{k+p} \neq 0$ for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$.

Proof . If $f \in \Sigma_{p}$, then from Theorem (3.1) we have

$$
\begin{equation*}
z^{p}\left[f(z) * \frac{1+\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q-p}{q-1}+\left(A-B q \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]}-\left(q+\frac{\lambda}{q^{p}}\right) z}{z^{p}(1-z)(1-q z)}\right] \neq 0 \tag{3.15}
\end{equation*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$, since

$$
\begin{equation*}
\frac{1}{z^{p}(1-z)(1-q z)}=\frac{1}{z^{p}}+\sum_{k=1-p}^{\infty}[k+p]_{q} z^{k} \tag{3.16}
\end{equation*}
$$

it follows that

$$
\begin{align*}
& \frac{1+\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q^{-p}}{q-1}+\left(A-B q \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]}-\left(q+\frac{\lambda}{q^{p}}\right) z}{z^{p}(1-z)(1-q z)} \\
& =\frac{1}{z^{p}}+\sum_{k=1-p}^{\infty}\left[1+\left[\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q^{-p}}{q-1}+\left(A-B q \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]}-\frac{\lambda}{q^{p}}\right][k+p]_{q}\right] z^{k} \tag{3.17}
\end{align*}
$$

and we may that easily check that (??) is equvalent to 3.15.

3.2 Duality

In this section, we by using the definitions of the duality in [5], for a set $V \subset \mathbb{A}$, The dual set V, by V^{*} is defined as

$$
V^{*}=\left\{g \in \mathbb{A} ; \frac{1}{z}(f * g)(z) \neq 0 \text { for all } f \in V \text { and } z \in \mathbb{U}\right\} .
$$

Now, for a set $W \subset \Sigma_{p}$, the dual W, denoted by W^{*}, is defined as

$$
W^{*}=\left\{g \in \Sigma_{p} ; z^{p}(f * g)(z) \neq 0 \text { for all } f \in W \text { and } z \in \mathbb{U}\right\} .
$$

The standard reference to duality for convolutions is the morograph by Rucheweyh [14, and his paper [13]. Assume that $f \in \Sigma_{p}$. By Theorem(3.1), $f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$ if and only if

$$
\begin{equation*}
z^{2}\left(f(z) * h_{\theta}(z)\right) \neq 0, \quad z \in \mathbb{U}^{*} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{\theta}(z)=\frac{1+\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q-p}{q-1}+\left(A-B q \frac{1-q-p}{q-1}\right) e^{i \theta}\right]}-\left(q+\frac{\lambda}{q^{p}}\right)\right\} z}{z^{p}(1-z)(1-q z)} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
M(\theta, p)=\frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q^{-p}}{q-1}+\left(A-B q \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]} \tag{3.20}
\end{equation*}
$$

Moreover, for $f \in \Sigma_{p}$. By Theorem 3.1), $f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$ if and only if

$$
z^{2}\left(f(z) * L_{\sigma}(z)\right) \neq 0, \quad z \in \mathbb{U}^{*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$., where $M(\theta, p)$ is given by 1 , where

$$
L_{\sigma}(z)=\frac{1-\frac{1-q^{p+2}}{1-q^{p}} z+\left[\frac{q-q^{p}}{1-q^{p}} z+q z^{2} \frac{q^{p+1}-1}{1-q^{p}}\right]\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) M(\theta, p)-\left(q+\frac{\lambda}{q^{p}}\right)\right\}}{z^{p}(1-z)(1-q z)\left(1-q^{2} z\right)} .
$$

Definition 3.4. We define W^{*} as follows:

$$
\begin{aligned}
W_{\theta}^{*} & =\left(\Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]\right)^{*} \\
& =\left\{h_{\theta}(z) \in \Sigma_{p} ; z^{p}\left(f(z) * h_{\theta}(z)\right)(z) \neq 0, f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B], \theta \in[0,2 \pi)\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
W_{\zeta}^{*} & =\left(\Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]\right)^{*} \\
& =\left\{l_{\zeta}(z) \in \Sigma_{p} ; z^{p}\left(f(z) * l_{\zeta}(z)\right)(z) \neq 0, f \in \Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]\right\} .
\end{aligned}
$$

Theorem 3.5. Let function $h_{\theta}(z)=\frac{1}{z^{p}}+\sum_{k=1-p}^{\infty} c_{k} z^{k} \in W_{\theta}^{*}$. The

$$
\begin{aligned}
\left|c_{k}\right| \leq & \left(1+q+q^{2}+\cdots+q^{k+p-1}\right)\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) \frac{1+B}{q^{p} b\left[1-q \frac{1-q^{-p}}{q-1}+\left(A-B q \frac{1-q^{-p}}{q-1}\right)\right]}\right. \\
& \left.-\left(q+\frac{\lambda}{q^{p}}\right)\right\}-\left(1+q+q^{2}+\cdots+q^{k+p-1}\right)
\end{aligned}
$$

Proof. Let $h_{\theta} \in W^{*}$. Then we have

$$
\begin{aligned}
h_{\theta}(z)= & \frac{1}{z^{p}(1-z)(1-q z)}+\frac{\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) M(\theta, p)-\left(q+\frac{\lambda}{q^{p}}\right)\right\} z}{z^{p}(1-z)(1-q z)} \\
= & \frac{1}{z^{p}}\left(1+(1+q) z+\left(1+q+q^{2}\right) z^{2}+\cdots+q^{k+p-1}\right) \\
& \left.+\frac{\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) M(\theta, p)-\left(q+\frac{\lambda}{q^{p}}\right)\right\}}{z^{p-1}}\left(1+q+q^{2}\right) z^{2}+\cdots+q^{k+p-1}\right) \\
= & \frac{1}{z^{p}}+\sum_{k=1-p}^{\infty} c_{k} z^{k}
\end{aligned}
$$

where

$$
c_{k}=\left(1+q+q^{2}+\cdots+q^{k+p-1}\right)\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) M(\theta, p)-\left(q+\frac{\lambda}{q^{p}}\right)\right\}-\left(1+q+q^{2}+\cdots+q^{k+p-1}\right)
$$

and so

$$
\left|c_{k}\right| \leq\left(1+q+q^{2}+\cdots+q^{k+p-1}\right)\left\{\left(1-\lambda \frac{1-q^{-p}}{q-1}\right) M(\theta, p)-\left(q+\frac{\lambda}{q^{p}}\right)\right\}-\left(1+q+q^{2}+\cdots+q^{k+p-1}\right)
$$

where

$$
M(\theta, p)=\frac{1+B e^{i \theta}}{q^{p} b\left[1-q \frac{1-q^{-p}}{q-1}+\left(A-B q \frac{1-q^{-p}}{q-1}\right) e^{i \theta}\right]} .
$$

Corollary 3.6. Let $f(z)=\frac{1}{z^{p}}+\sum_{k=1-p}^{\infty} a_{k} z^{k} \in \Sigma_{p}$. if

$$
\begin{array}{r}
\sum_{k=1-p}^{\infty}\left[\left(1+q+q^{2}+\cdots+q^{k+p-1}\right)\left(\left(1-\lambda \frac{1-q^{-p}}{q-1}\right)|M(\theta, p)|-\left(q+\frac{\lambda}{q^{p}}\right)\right)+\left(q+\frac{\lambda}{q^{p}}\right)\right] \\
+\left(1+q+q^{2}+\cdots+q^{k+p}\right)\left|c_{k}\right| \leq 1
\end{array}
$$

Then $f \in \Sigma_{p} \mathcal{K}_{q, \lambda}[b ; A, B]$.
Proof . Let $h_{\theta}(z)=\frac{1}{z^{p}}+\sum_{k=1-p}^{\infty} c_{k} z^{k} \in W_{\theta}^{*}$. The we have

$$
\begin{aligned}
z^{p}\left|\left(f(z) * h_{\theta}(z)\right)\right| & =\left|1+\sum_{k=1-p}^{\infty} a_{k} c_{k} z^{k}\right| \\
& \geq 1-\sum_{k=1-p}^{\infty}\left|a_{k}\right|\left|c_{k}\right||z| \\
& >1-\sum_{k=1-p}^{\infty}\left|a_{k}\right| \mid c_{k} \\
& >0 .
\end{aligned}
$$

Thus $z^{p}\left(f(z) * h_{\theta}(z)\right) \neq 0$ and now form Theorem 2.1 we have $f \in \Sigma_{p} \mathcal{S}_{q, \lambda}^{*}[b ; A, B]$.

References

[1] M.K. Aouf, A.O. Mostafa, and H.M. Zayed, Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal. 2015 (2015), Article ID 973613, 1-6.
[2] M.K. Aouf and H.M. Srivastava, A new criterion for meromorphivally p-valent convex functions of order α, Math. Sci. Res. Hot. Line 8 (1997), no. 1, 7-12.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[4] S.B. Joshi and H.M. Srivastava, A certain family of meromorphivally multivalent functions, Comput. Math. Appl. 38 (1999), no. 3/4, 201-211.
[5] R. Kargar, A. Ebadian, and J. Sokol, Some properties of analytic tunctions related with bounded positive real part, Int. J. Nonlinear Anal. Appl. 8 (2017), 235-344.
[6] J.L. Liu and S. Owa, On a class of meromorphivally p-valent functions involving certain linear operators, Int. J. Math. Math. Sci. 32 (2002), 271-180.
[7] J.L. Liu and H.M. Srivastava, A linear operator and associated families of meromorphivally multivalent functions, J. Math. Anal. Appl. 259 (2001), 566-581.
[8] J.L. Liu and H.M. Srivastava, Some convolution conditions for starlikeness and convexity of meromorphivally multivalent functions, Appl. Math. Lett. 16 (2003), 13-16.
[9] S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
[10] A.O. Mostafa, M.k. Aouf, H.M. Zayed and T. Bulboaca, Convolution conditions for subelasse of mermorphic functions of complex order associated with basic Bessel functions, J. Egypt. Math. Soc. 25 (2017), 286-290.
[11] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No. 255 Marcel Dekker, Inc., New York, 2000.
[12] V. Ravichandran, S. Sivaprasadkumar, and K.G. Subramanian, Convolution conditions for spirallikeness and convex spirallikeness of certain mermorphic p-valent functions, J. Pure. Appl. Math. 11 (2004), 1-7.
[13] S. Ruscheweyh, Duality for Hadamaed products applications to extremal proplems for functions regular in the unit disc, Trans. Amer. Math. Soc. 210 (1975), 63-74.
[14] S. Ruscheweyh, Convolutions in Geometric Functions Theory, Les Presses De Montreal, Montreal, 1982.
[15] Z.-G. Wang and M.-L. Li, Some properties of certain family of multiplier transforms, Filomat 31 (2017), no. 1, 159-173.

[^0]: * Corresponding author

 Email addresses: golmohamadi@pnu.ac.ir (Mohammad Hassan Golmohammadi), a_alishahy@pnu.ac.ir (Aboalghasem Alishahi)

