A new extension of the Darbo theorem for the Schauder type selections with an application

Ehsan Lotfali Ghasab, Hamid Majani*
Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran

(Communicated by Reza Saadati)

Abstract

In the present article, we provide a new nonlinear contraction for the Schauder type selections of multi-valued mappings in metric spaces which is a new spread of the Darbo theorem. Meanwhile, we apply the main results in coupled fixedpoint theory and functional integral equation.

Keywords: Measure of noncompactness, Schauder type selections, Darbo theorem, multi-valued mapping, complete metric spaces
2020 MSC: 34A12, 47H09, 47H10

1 Introduction and preliminaries

In 1930 , the study of the measure of noncompactness (briefly, MoNC) was started by several researchers (see [1, 2, 3, 4, 6, 15] and references therein). At the same time, Schauder [16] recommended his fixed-point principle. In 1955, Darbo [9] applied the concept of MoNC to prove the existence of fixed-points of the condensing mappings. Note that him result generalized both the classical Banach principle and the Schauder fixed-point theorem. Also, his theorem has many applications to prove the existence of solutions for a big category of differential and integral equations (see [5, 10]). On the other hand, Nadler [14] expressed the contraction principle for multi-valued mappings. These mappings and related selection theorems are useful tools in many sections of applied sciences.

In the present article, we establish the existence selections for generalized multi-valued and single-valued mappings on complete metric spaces using some new generalizations of Darbo theorem. Meanwhile, we obtain a relationship between coupled fixed-point and fixed-point. Finally, we apply our main theorem in a functional integral equation. For these, we need some notations and definitions which are expressed below.

Notation.

- \mathcal{F} is a Banach space with the norm $\|$.$\| ;$
- $B(a, r)$ is the closed ball in \mathcal{F} with center a and radius r;
- for $A \subset \mathcal{F}, \bar{A}$ and $\operatorname{Conv} A$ are the closure and the closed convex hull of A;

[^0]- $A+B$ and λA with $\lambda \in \mathbb{R}$ are algebraic operations on the sets A and B;
- $N(A)$ is the collection of all nonempty subsets of A;
- $M_{\mathcal{F}}$ is the collection of all nonempty and bounded subsets of \mathcal{F} and $N_{\mathcal{F}}$ is its sub-collection including all relatively compact set.

Definition 1.1. [6] Consider a mapping $\nu: M_{\mathcal{F}} \rightarrow \mathbb{R}_{+}=[0, \infty)$ provided that the following cases are held:
i) The family $\operatorname{ker} \nu=\left\{A \in M_{\mathcal{F}}: \nu(A)=0\right\}$ is nonempty and $k e r \nu \subset N_{\mathcal{F}}$, where ker ν is the kernel of the MoNC ν;
ii) $A \subset B \Rightarrow \nu(A) \leq \nu(B)$;
iii) $\nu(\bar{A})=\nu(A)$;
iv) $\nu(\operatorname{Conv} A)=\nu(A)$;
v) $\nu(\lambda A+(1-\lambda) B) \leq \lambda \nu(A)+(1-\lambda) \nu(B)$ for $\lambda \in[0,1]$;
vi) If $\left(A_{n}\right)$ is a nested sequence of closed sets from $M_{\mathcal{F}}$ so that $\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=0$, then $A_{\infty}=\bigcap_{n=1}^{\infty} A_{n}$ is nonempty.

Then ν is called a MoNC in \mathcal{F}.

Note that A_{∞} in axiom $(v i)$ is a member of the ker ν.
Definition 1.2. 8 Consider a multi-valued mapping G from \mathcal{F} to $N(\mathcal{F})$.

- A selection from G is a function $f: \mathcal{F} \rightarrow \mathcal{F}$ with $f(a) \in G(a)$ for any $a \in \mathcal{F}$.
- $G^{-1}(b)$ is the set of all a belonging to \mathcal{F} such that b is belongs to $G(a)$ for each $b \in \mathcal{F}$.

Theorem 1.3. (Browder-Ky Fan Theorem) [8 Assume that $G: \mathcal{F} \rightarrow B C(\mathcal{F})$ is a multi-valued mapping having convex values and $G^{-1}(b)$ is open for all b. Then there exists a continuous function $f: \mathcal{F} \rightarrow \mathcal{F}$ such that $f(a) \in G(a)$ for all a.

2 Results

In this section, $A \neq \emptyset$ is a bounded, closed and convex subset of \mathcal{F}. Moreover, suppose that Φ is the class of all nondecreasing, subadditive, bounded from below and upper semi-continuous functions $\phi:[0,+\infty) \rightarrow[0,+\infty)$ such that $\lim _{n \rightarrow \infty} \phi^{n}(i)=0$ for every $i \geq 0$. Also, we consider $\beta:[0,+\infty) \rightarrow[0,+\infty)$ is a subadditive, continuous and nondecreasing function with $\beta^{-1}(0)=(0)$.

Theorem 2.1. Suppose that $W: A \rightarrow N(A)$ is a multi-valued mapping having convex values so that $W^{-1}(b)$ is open for all $b, \phi \in \Phi$ and

$$
\begin{equation*}
\beta(\nu(W A)) \leq \phi(\beta(\nu(A)))-\phi(\beta((\nu(W A)))) \tag{2.1}
\end{equation*}
$$

Then W has a fixed-point.

Proof . Using Lemma 1.3, there exists selection of $f: A \rightarrow A$ such that $f a \in W a$ for all $a \in A$. Suppose $E_{n}=\operatorname{Convf} E_{n-1}$ for $n=1,2, \ldots$, where $E_{0}=A$. Then, we have $E_{n}=\operatorname{Convf}\left(E_{n-1}\right) \subset W\left(E_{n-1}\right)$. Now, from (2.1), we get

$$
\beta\left(\nu\left(E_{1}\right)\right) \leq \phi\left(\beta\left(\nu\left(E_{0}\right)\right)\right)-\phi\left(\beta\left(\left(\nu\left(E_{1}\right)\right)\right)\right) .
$$

Also, for $E_{1} \subset A$, there exists $E_{2} \subset W E_{1}$ with $E_{1} \neq E_{2}$ and

$$
\beta\left(\nu\left(E_{2}\right)\right) \leq \phi\left(\beta\left(\nu\left(E_{1}\right)\right)\right)-\phi\left(\beta\left(\left(\nu\left(E_{2}\right)\right)\right)\right) .
$$

Continue this process, we obtain a sequence $\left\{E_{n}\right\}$, where $E_{n} \subset W E_{n-1}$ and

$$
\begin{equation*}
\beta\left(\nu\left(E_{n}\right)\right) \leq \phi\left(\beta\left(\nu\left(E_{n-1}\right)\right)\right)-\phi\left(\beta\left(\left(\nu\left(E_{n}\right)\right)\right)\right) . \tag{2.2}
\end{equation*}
$$

If there exists $n_{0} \in \mathbb{N}$ provided that $\nu\left(E_{n_{0}}\right)=0$, then $E_{n_{0}}$ will be compact. In this manner, Schauder theorem induces that f has a fixed-point. Now, from (2.2), we have $\phi\left(\beta\left(\nu\left(E_{n-1}\right)\right)\right) \geq \phi\left(\beta\left(\nu\left(E_{n}\right)\right)\right)$ for all n. Hence, $\left\{\phi\left(\beta\left(\nu\left(E_{n}\right)\right)\right)\right\}$ is a decreasing sequence. Since ϕ is bounded from below, this sequence is convergence. On the other, from Remark 3 of [12] and Remark 2 of [13], we get

$$
\lim _{i \rightarrow 0^{+}} \frac{\beta(i)}{i}=\sup \left\{\frac{\beta(i)}{i}: i>0\right\}
$$

so

$$
\begin{equation*}
\lim \inf _{i \rightarrow 0^{+}} \frac{\beta(i)}{i}>0 \tag{2.3}
\end{equation*}
$$

By (2.3), there exists $\delta>0$ and $c>0$ such that

$$
\begin{equation*}
\beta(i) \geq c i \tag{2.4}
\end{equation*}
$$

for all $i \in[0, \delta]$. Since β is nondecreasing, then $\beta(i) \geq \beta(\delta)$ for all $i \in[\delta,+\infty)$. Let $0<\epsilon<\beta(\delta)$. Then $\beta(i)>\epsilon$ for any $i \in[\delta,+\infty)$, i.e. if $\beta(i) \leq \epsilon$, then $i \in[0, \delta]$. Therefore, we have

$$
\{i \geq 0: \beta(i) \leq \epsilon\} \subset[0, \delta],
$$

which together with 2.4 implies that

$$
\begin{equation*}
\beta(i) \geq c i \tag{2.5}
\end{equation*}
$$

for all $i \in\{i \geq 0: \beta(i) \leq \epsilon\}$. Now, notice that $\left\{\phi\left(\beta\left(\nu\left(E_{n}\right)\right)\right)\right\}$ is convergent. Thus, there exists some $N \in \mathbb{N}$ so that

$$
\beta\left(\nu\left(E_{n}\right)\right) \leq \phi\left(\beta\left(\nu\left(E_{n-1}\right)\right)\right)-\phi\left(\beta\left(\nu\left(E_{n}\right)\right)\right)<\epsilon
$$

for each $n \geq N$, which induces that $\beta\left(\nu\left(E_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. Moreover, by (2.5), we get

$$
c \nu\left(E_{n}\right) \leq \beta\left(\nu\left(E_{n}\right)\right) \leq \phi\left(\beta\left(\nu\left(E_{n-1}\right)\right)\right)-\phi\left(\beta\left(\nu\left(E_{n}\right)\right)\right)
$$

for every $n \geq N$, which induces that $\nu\left(E_{n}\right) \rightarrow 0$. Now, by axiom (vi) of Definition 1.1, we conclude that $E_{\infty} \subset A$ is a nonempty, closed, convex set, where $E_{\infty}=\bigcap_{n=1}^{\infty} E_{n}$. Furthermore, E_{∞} is invariant under function f and $E_{\infty} \in \operatorname{ker} \nu$. Now, by applying the Schauder theorem, the proof ends (because f has a fixed-point and since $f a \in W a, W$ has a fixed-point).

Theorem 2.2. Suppose $W: A \rightarrow A$ is a mapping provided that

$$
\beta(\nu(W A)) \leq \phi(\beta(\nu(A)))-\phi(\beta(\nu(W A)))
$$

where $\phi \in \Phi$. Then W has a fixed-point.

Proof . The proof is analogous on the argument of Theorem 2.1 and left to the reader.

Corollary 2.3. Assume that $W: A \rightarrow A$ is a mapping so that

$$
\beta(\|W a-W b\|) \leq \phi(\beta(\|a-b\|))-\phi(\beta(\|W a-W b\|)),
$$

where $\|\cdot\|$ is the same usual norm and $\phi \in \Phi$. Then W has a fixed-point.

Proof . Let $\nu: M_{\mathcal{F}} \rightarrow \mathbb{R}_{+}$defined by $\nu(A)=\operatorname{diam} A$, where $\operatorname{diam} A=\sup \{\|a-b\|: a, b \in A\}$ stands for the diameter of A. Note that ν is a MoNC in \mathcal{F}. So, we have

$$
\sup _{a, b \in A} \beta(\|W a-W b\|) \leq \sup _{a, b \in A} \phi(\beta(\|a-b\|))-\sup _{a, b \in A} \phi(\beta(\|W a-W b\|)) .
$$

By the continuity of the function β, we derive that

$$
\beta\left(\sup _{a, b \in A}\|W a-W b\|\right) \leq \phi\left(\beta\left(\sup _{a, b \in A}\|a-b\|\right)\right)-\phi\left(\beta\left(\sup _{a, b \in A}\|W a-W b\|\right)\right) .
$$

This yields that $\beta(\nu(W A)) \leq \phi(\beta(\nu(A)))-\phi(\beta(\nu(W A)))$. Now, using Theorem 2.2, W has a fixed-point.
As you know, the theory of coupled fixed-points was started by Bhaskar and Lakshmikantham's article [7]. After that, many researchers generalized this concept. For more details on n-tuple fixed-point theorems, we refer to [11, 17 , and significantly some references therein.

Theorem 2.4. [4] Let $\nu_{1}, \nu_{2}, \ldots, \nu_{n}$ be $\mathrm{M}(\mathrm{s}) \mathrm{oNC}$ in Banach spaces $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$, respectively. Also, suppose that $\mathcal{W}:[0, \infty)^{n} \rightarrow[0, \infty)$ is a convex function so that $\mathcal{W}\left(l_{1}, \ldots, l_{n}\right)=0$ iff $l_{i}=0$ for $i=1,2, \ldots, n$. Then $\tilde{\nu}(A)=$ $\mathcal{W}\left(\nu_{1}\left(A_{1}\right), \nu_{2}\left(A_{2}\right), \ldots, \nu_{n}\left(A_{n}\right)\right)$ defines a MoNC in $\mathcal{F}_{1} \times \mathcal{F}_{2} \times \cdots \times \mathcal{F}_{n}$, where A_{i} are the natural projection of A into \mathcal{F}_{i} for $i=1,2, \ldots, n$.

Notice that $\tilde{\nu}(A)=\nu\left(A_{1}\right)+\nu\left(A_{2}\right)$ is a MoNC, where A_{1} and A_{2} denote the natural projections of A into \mathcal{F} (see [6]).

Theorem 2.5. Assume that $W: A \times A \rightarrow A$ is a mapping so that for any subset A_{1}, A_{2} of A, we have

$$
\beta\left(\nu\left(W\left(A_{1} \times A_{2}\right)\right)\right) \leq \frac{1}{2}\left[\phi\left(\beta\left(\nu\left(A_{1}\right)+\nu\left(A_{2}\right)\right)\right)\right]-\phi\left(\beta\left(\nu\left(W\left(A_{1} \times A_{2}\right)\right)\right)\right),
$$

where $\phi \in \Phi$. Then W has a coupled fixed-point.
Proof . Define the mapping $\mathcal{W}: A^{2} \rightarrow A^{2}$ by $\mathcal{W}(a, b)=(W(a, b), W(b, a))$. Now, we have

$$
\begin{aligned}
\beta(\tilde{\nu}(\mathcal{W}(A))) & =\beta\left(\tilde{\nu}\left(\left(W\left(A_{1} \times A_{2}\right), W\left(A_{2} \times A_{1}\right)\right)\right)\right) \\
& \leq \beta\left(\nu\left(W\left(A_{1} \times A_{2}\right)\right)\right)+\beta\left(\nu\left(W\left(A_{2} \times A_{1}\right)\right)\right) \\
& \leq \frac{1}{2}\left[\phi\left(\beta\left(\nu\left(A_{1}\right)+\nu\left(A_{2}\right)\right)\right)\right]-\phi\left(\beta\left(\nu\left(W\left(A_{1} \times A_{2}\right)\right)\right)\right)+\frac{1}{2}\left[\phi\left(\beta\left(\nu\left(A_{2}\right)+\nu\left(A_{1}\right)\right)\right)\right]-\phi\left(\beta\left(\nu\left(W\left(A_{2} \times A_{1}\right)\right)\right)\right) \\
& =\frac{1}{2}[\phi(\beta(\tilde{\nu}(A)))]-\phi\left(\beta\left(\nu\left(W\left(A_{1} \times A_{2}\right)\right)\right)\right)+\frac{1}{2}[\phi(\beta(\tilde{\nu}(A)))]-\phi\left(\beta\left(\nu\left(W\left(A_{2} \times A_{1}\right)\right)\right)\right) \\
& =\phi(\beta(\tilde{\nu}(A)))-\left[\phi\left(\beta\left(\nu\left(W\left(A_{1} \times A_{2}\right)\right)\right)\right)+\phi\left(\beta\left(\nu\left(W\left(A_{2} \times A_{1}\right)\right)\right)\right)\right] \\
& \leq \phi(\beta(\tilde{\nu}(A)))-\left[\phi\left(\beta\left(\nu\left(W\left(A_{1} \times A_{2}\right)\right)+\nu\left(W\left(A_{2} \times A_{1}\right)\right)\right)\right)\right] \\
& =\phi(\beta(\tilde{\nu}(A)))-\phi\left(\beta\left(\tilde{\nu}\left(W\left(A_{1} \times A_{2}\right), W\left(A_{2} \times A_{1}\right)\right)\right)\right) \\
& =\phi(\beta(\tilde{\nu}(A)))-\phi(\beta(\tilde{\nu}(\mathcal{W}(A)))) .
\end{aligned}
$$

Continue the same argument as in the proof of Theorem 2.2 Thus, \mathcal{W} has a fixed-point, which induces that W has a coupled fixed-point.

3 Application

In this section we provide applications of the generalization of Darbo fixed-point theorem contained in Theorem 2.1 to prove the existence of solutions of a functional integral equation. For this, assume that $B C\left(\mathbb{R}_{+}\right)$is the Banach space of all real, continuous and bounded functions on the positive real number with $\|y\|=\sup \{|y(i)|: i \geq 0\}$. Now, let A be a nonempty and bounded subset of $B C\left(\mathbb{R}_{+}\right)$and $L>0$. For $y \in A$ and $\varrho>0$, we consider the following notations:

$$
\begin{aligned}
\mathcal{M}^{L}(y, \varrho) & =\sup \{|y(i)-y(j)|: i, j \in[0, L],|i-j| \leq \varrho\} \\
\mathcal{M}^{L}(A, \varrho) & =\sup \left\{\mathcal{M}^{L}(y, \varrho): y \in A\right\} \\
\mathcal{M}_{0}^{L}(A) & =\lim _{\varrho \rightarrow 0} \mathcal{M}^{L}(A, \varrho) \\
\mathcal{M}_{0}(A) & =\lim _{L \rightarrow \infty} \mathcal{M}_{0}^{L}(A)
\end{aligned}
$$

Further, for $i \in \mathbb{R}_{+}$, put $A(i)=\{y(i): y \in A\}$. Finally, define the mapping ν on the family $M_{B C\left(\mathbb{R}_{+}\right)}$by

$$
\nu(A)=\mathcal{M}_{0}(A)+\limsup _{i \rightarrow \infty} \operatorname{diam} A(i)
$$

where $\operatorname{diam} A(i)$ is understood as

$$
\operatorname{diam} A(i)=\sup \{|y(i)-z(i)|: y, z \in A\} .
$$

The mapping ν is a MoNC in $B C\left(\mathbb{R}_{+}\right)$(see [6]). Also, ker ν includes nonempty and bounded sets A so that functions in A are locally equicontinuous on \mathbb{R}_{+}and the thickness of the bundle organized by the graphs of functions in A arrives to 0 at infinity.

Theorem 3.1. Consider the following conditions:
(i) $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous mapping and the mapping $i \rightarrow f(i, 0)$ located in $B C\left(\mathbb{R}_{+}\right)$;
(ii) There is $\phi \in \Phi$ provided that for every $i \in \mathbb{R}_{+}$and any $a, b \in \mathbb{R}$, we have

$$
|f(i, a)-f(i, b)| \leq \phi(|a-b|)-\phi\left(\left|f(i, a)+\int_{0}^{i} g(i, j, a) d s-f(i, b)-\int_{0}^{i} g(i, j, b) d j\right|\right) .
$$

Further, suppose that ϕ is superadditive;
(iii) There are continuous mappings $g: \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ and $o, h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$provided that $\lim _{i \rightarrow \infty} o(i) \int_{0}^{i} h(j) d j=0$ and $|g(i, j, a)| \leq o(i) h(j)$ for $i, j \in[0, \infty)$ with $j \leq i$ and for any $a \in \mathbb{R}$;
(iv) There is a positive solution r_{0} of the relation $\phi(r)+q \leq r$, with $q=\sup \left\{|f(i, 0)|+o(i) \int_{0}^{i} h(j) d j: i \geq 0\right\}$.

Then the functional integral equation

$$
\begin{equation*}
y(i)=f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j \tag{3.1}
\end{equation*}
$$

has a solution in $B C\left(\mathbb{R}_{+}\right)$.
Proof . Consider $T: B C\left(\mathbb{R}_{+}\right) \rightarrow B C\left(\mathbb{R}_{+}\right)$by

$$
(T y)(i)=f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j
$$

for $i \in \mathbb{R}_{+}$and $W: B C\left(\mathbb{R}_{+}\right) \rightarrow N\left(B C\left(\mathbb{R}_{+}\right)\right)$by $W(y)=\{(T y)(i)\}$. By assumptions, the function $T y$ is continuous on \mathbb{R}_{+}. Moreover, for an optional $y \in B C\left(\mathbb{R}_{+}\right)$, we get

$$
\begin{aligned}
|(T y)(i)| & \leq|f(i, y(i))-f(i, 0)|+|f(i, 0)|+\int_{0}^{i}|g(i, j, y(j))| d j \\
& \leq \phi(|y(i)|)-\phi\left(\left|f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j-f(i, 0)-\int_{0}^{i} g(i, j, 0) d j\right|\right)+|f(i, 0)|+c(i) \\
& \leq \phi(|y(i)|)+|f(i, 0)|+c(i)
\end{aligned}
$$

which $c(i)=o(i) \int_{0}^{i} h(j) d j$. Since the function ϕ is nondecreasing, $\|T y\| \leq \phi(\|y\|)+q$, where q is defined in (iv). Further, we deduce that T is a self-mapping on $B_{r_{0}}$, where r_{0} is a constant extant in (iv). Here, we present T is continuous on $B_{r_{0}}$. For this, select an optional number $\varrho>0$. Then, by a normal calculation, we gain

$$
\begin{equation*}
|(T y)(i)-(T z)(i)| \leq \phi(\varrho)-\phi\left(\left|f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j-f(i, z(i))-\int_{0}^{i} g(i, j, z(j)) d j\right|\right)+2 c(i) \tag{3.2}
\end{equation*}
$$

for $y, z \in B_{r_{0}}$ so that $\|y-z\| \leq \varrho$ and for any $i \in \mathbb{R}_{+}$. Moreover, by hypothesis (iii), there exists a number $L>0$ so that

$$
\begin{equation*}
2 o(i) \int_{0}^{i} h(j) d j \leq \varrho \tag{3.3}
\end{equation*}
$$

for each $i \geq L$. Thus, by 3.2 and (3.3), we obtain

$$
\begin{equation*}
|(T y)(i)-(T z)(i)| \leq 2 \varrho-\phi\left(\left|f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j-f(i, z(i))-\int_{0}^{i} g(i, j, z(j)) d j\right|\right)<2 \varrho \tag{3.4}
\end{equation*}
$$

for an arbitrary $i \geq L$. Now, let us define the quantity $\mathcal{M}^{L}(g, \varrho)$ and $\mathcal{M}^{L}(f, \varrho)$ by putting

$$
\begin{aligned}
& \mathcal{M}^{L}(g, \varrho)=\sup \left\{|g(i, j, a)-g(i, j, b)|: i, j \in[0, L], a, b \in\left[-r_{0}, r_{0}\right],|a-b| \leq \varrho\right\} \\
& \mathcal{M}^{L}(f, \varrho)=\sup \left\{\left|f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j-f(i, z(i))-\int_{0}^{i} g(i, j, z(j)) d j\right|: i, j \in[0, L], y, z \in B_{r_{0}},\|y-z\| \leq \varrho\right\}
\end{aligned}
$$

Because of the uniformly continuity of $g(i, j, a)$ on $[0, L] \times[0, L] \times\left[-r_{0}, r_{0}\right], \mathcal{M}^{L}(g, \varrho) \rightarrow 0$ as $\varrho \rightarrow 0$. Now, using (3.2), we obtain

$$
\begin{equation*}
|(T y)(i)-(T z)(i)| \leq \phi(\varrho)-\phi\left(\mathcal{M}^{L}(f, \varrho)\right)+\int_{0}^{L} \mathcal{M}^{L}(g, \varrho) d j<\phi(\varrho)+L \mathcal{M}^{L}(g, \varrho) \tag{3.5}
\end{equation*}
$$

for an optional fixed $i \in[0, L]$. Finally, combining (3.4) and (3.5), the operator T will be continuous on the ball $B_{r_{0}}$. Now, select an arbitrary nonempty subset A of $B_{r_{0}}$ also, choose arbitrarily $i, j \in[0, L]$ with $j<i$ so that $|i-j| \leq \varrho$. Then, for $y \in A$, we get

$$
\begin{align*}
|(T y)(i)-(T y)(j)|= & \left|f(i, y(i))+\int_{0}^{i} g(i, \tau, y(\tau)) d \tau-f(j, y(j))-\int_{0}^{j} g(j, \tau, y(\tau)) d \tau\right| \\
\leq & |f(i, y(i))-f(j, y(i))|+|f(j, y(i))-f(j, y(j))| \\
& +\left|\int_{0}^{i} g(i, \tau, y(\tau)) d \tau-\int_{0}^{i} g(j, \tau, y(\tau)) d \tau\right|+\left|\int_{0}^{i} g(j, \tau, y(\tau)) d \tau-\int_{0}^{j} g(j, \tau, y(\tau)) d \tau\right| \\
\leq & \mathcal{M}_{1}^{L}(f, \varrho)+\phi(|y(i)-y(j)|)-\phi\left(\mid f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j-f(i, y(j))\right. \\
& \left.-\int_{0}^{i} g(i, j, y(j)) d j \mid\right)+\int_{0}^{i}|g(i, \tau, y(\tau))-g(j, \tau, y(\tau))| d \tau+\int_{j}^{i}|g(j, \tau, y(\tau))| d \tau \\
\leq & \mathcal{M}_{1}^{L}(f, \varrho)+\phi\left(\mathcal{M}^{L}(y, \varrho)\right)-\phi\left(\mathcal{M}^{L}(f, \varrho)\right)+\int_{0}^{i} \mathcal{M}_{1}^{L}(g, \varrho) d \tau+o(j) \int_{j}^{i} h(\tau) d \tau \\
\leq & \mathcal{M}_{1}^{L}(f, \varrho)+\phi\left(\mathcal{M}^{L}(y, \varrho)\right)-\phi\left(\mathcal{M}^{L}(f, \varrho)\right)+L \mathcal{M}_{1}^{L}(g, \varrho)+\varrho \sup \{o(j) h(i): i, j \in[0, L]\}, \tag{3.6}
\end{align*}
$$

in which

$$
\begin{aligned}
& \mathcal{M}_{1}^{L}(f, \varrho)=\sup \left\{|f(i, y)-f(j, y)|: i, j \in[0, L], y \in\left[-r_{0}, r_{0}\right],|i-j| \leq \varrho\right\} \\
& \mathcal{M}_{1}^{L}(g, \varrho)=\sup \left\{|g(i, \tau, y)-g(j, \tau, y)|: i, j, \tau \in[0, L], y \in\left[-r_{0}, r_{0}\right],|i-j| \leq \varrho\right\}
\end{aligned}
$$

Note that f and g are uniform continuous on $[0, L] \times\left[-r_{0}, r_{0}\right]$ and $[0, L] \times[0, L] \times\left[-r_{0}, r_{0}\right]$, respectively. Thus, $\mathcal{M}_{1}^{L}(f, \varrho), \mathcal{M}_{1}^{L}(g, \varrho) \rightarrow 0$ as $\varrho \rightarrow 0$. Further, by the continuity of the mappings $o=o(i)$ and $h=h(i)$ on \mathbb{R}_{+}, we find that $\sup \{o(j) h(i): i, j \in[0, L]\}$ is a finite value. Hence, by (3.6), we arrive

$$
\mathcal{M}_{0}^{L}(T A) \leq \lim _{\varrho \rightarrow 0} \phi\left(\mathcal{M}^{L}(A, \varrho)\right)-\lim _{\varrho \rightarrow 0} \phi\left(\mathcal{M}^{L}(T A, \varrho)\right) .
$$

Now, since ϕ is upper semicontinuous, we get

$$
\mathcal{M}_{0}^{L}(T A) \leq \phi\left(\mathcal{M}_{0}^{L}(A)\right)-\phi\left(\mathcal{M}_{0}^{L}(T A)\right)
$$

and consequently,

$$
\begin{equation*}
\mathcal{M}_{0}(T A) \leq \phi\left(\mathcal{M}_{0}(A)\right)-\phi\left(\mathcal{M}_{0}(T A)\right) \tag{3.7}
\end{equation*}
$$

Now, select two optional functions $y, z \in A$. By simple calculation, we gain

$$
|(T y)(i)-(T z)(i)| \leq \phi(|y(i)-z(i)|)-\phi\left(\left|f(i, y(i))+\int_{0}^{i} g(i, j, y(j)) d j-f(i, z(i))-\int_{0}^{i} g(i, j, z(j)) d j\right|\right)+2 c(i)
$$

for $i \in \mathbb{R}$. It follows for this estimate that

$$
\operatorname{diam}(T A)(i) \leq \phi(\operatorname{diam} A(i))-\phi(\operatorname{diam} T A(i))+2 c(i) .
$$

Now, because of the upper semicontinuity of ϕ we obtain

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} \operatorname{diam}(T A)(i) \leq \phi\left(\limsup _{i \rightarrow \infty} \operatorname{diam} A(i)\right)-\phi\left(\limsup _{i \rightarrow \infty} \operatorname{diam} T A(i)\right) . \tag{3.8}
\end{equation*}
$$

Now, combining (3.7) and (3.8), applying the superadditivity of ϕ and using (iii), we gain

$$
\mathcal{M}_{0}(T A)+\limsup _{i \rightarrow \infty} \operatorname{diam}(T A)(i) \leq \phi\left(\mathcal{M}_{0}(A)+\limsup _{i \rightarrow \infty} \operatorname{diam} A(i)\right)-\phi\left(\mathcal{M}_{0}(T A)-\limsup _{i \rightarrow \infty} \operatorname{diamT} A(i)\right),
$$

that results

$$
\begin{equation*}
\nu(T A) \leq \phi(\nu(A))-\phi(\nu(T A)), \tag{3.9}
\end{equation*}
$$

in which ν is the MoNC introduced in $B C\left(\mathbb{R}_{+}\right)$. Finally, applying (3.9) and Theorem 2.1, and putting $\beta(i)=i$, the proof ends.

4 Conclusions

In this paper, established the existence selections for generalized multi-valued and single-valued mappings on complete metric spaces using some new generalizations of Darbo theorem. Also, obtained a relationship between coupled fixed-point and fixed-point. Finally, the main theorem was applied to a functional integral equation.

Acknowledgment

We are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (Grant number: SCU.MM1401.25894). Also, the authors wish to thank the Editorial Board and referees for their helpful suggestions to improve this manuscript.

References

[1] S. Abbas, A. Deep, B. Singh, M.R. Alharthi, and K.S. Nisar, Solvability of functional stochastic integral equations via Darbo's fixed point theorem, Alexandria Engin. J. 60 (2021), 5631-5636.
[2] R. Arab, H.K. Nashine, and R.W. Ibrahim, Tripled fixed point results via a measure of noncompactness with applications, Asian-Eur. J. Math. 14 (2021), no. 2, 2150008.
[3] T.D. Benavides and P.L. Ramirez, Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings, J. Fixed Point Theory Appl. 2021 (2021), 21:40.
[4] J. Banas, M. Jleli, M. Mursaleen, and B. Samet, Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, Springer, Singapore, 2017.
[5] J. Banas and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (2008), 1945-1952.
[6] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math. New York, Vol. 60, 1980.
[7] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393
[8] K.C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, 1985.
[9] G. Darbo, Punti uniti in transformazioni a condomino non compatto, Rend. Sem. Mat. Univ. Padova. 24 (1955), 84-92.
[10] B.C. Dhage and S.S. Bellale, Local asymptotic stability for nonlinear quadratic functional integral equations, Electr. J. Qual. Theo. Differ. Equ. 10 (2008), 1-13.
[11] E.L. Ghasab, H. Majani, E. Karapinar, and G. Soleimani Rad, New fixed point results in \mathfrak{F}-quasi-metric spaces and an application, Adv. Math. Phys. 2020 (2020), 9452350.
[12] M.A. Khamsi, Remarks on Caristis fixed point theorem, Nonlinear Anal. 71 (2009), 227-231.
[13] Z. Li, Remarks on Caristis fixed point theorem and Kirk's problem, Nonlinear Anal. 73 (2010), 3751-3755.
[14] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[15] V. Parvaneh, M. Khorshidi, and M. De La Sen, Measure of noncompactness and a generalized Darbo fixed point theorem and its applications to a system of integral equations, Adv. Differ. Equ. 2020 (2020), 243.
[16] J. Schauder, Der fixponktestatz in funktionalarumen, Studia Math. 2 (1930), 171-180.
[17] G. Soleimani Rad, S. Shukla, and H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM. 109 (2015), 471-481.

[^0]: *Corresponding author
 Email addresses: e-lotfali@stu.scu.ac.ir; e.l.ghasab@gmail.com (Ehsan Lotfali Ghasab), h.majani@scu.ac.ir; majani.hamid@gmail.com (Hamid Majani)

