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Abstract

In this work, we study the existence of an initial boundary problem of a quasilinear parabolic problem with variable
exponent and L1-data of the type (b(u))t − div(|∇u|p(x)−2 ∇u) + λ |u|p(x)−2

u = f(x, t, u) in Q = Ω×]0, T [,
u = 0 on Σ = ∂Ω×]0, T [,
b(u)(t = 0) = b(u0) in Ω,

where λ > 0 and T is positive constant. The main contribution of our work is to prove the existence of a renormalized
solution. The functional setting involves Lebesgue– Sobolev spaces with variable exponents.
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1 Introduction

Variable-exponent Lebesgue and Sobolev spaces are the natural extensions of the classical constant exponent
Lp-spaces. This kind of theory finds many applications, for example in nonlinear elastic mechanics (see [32]), elec-
trorheological fluids (see [29]), or image restoration (see [22]). In recent years, there are a lot of interest in the study
of various mathematical problems with variable exponent (see for example [12, 27, 24, 31] and references therein),
the problems with variable exponent are interesting in applications and raise many difficult mathematical problems,
some of the models leading to these problems of this type are the models of motion of electrorheological fluids, the
mathematical models of stationary thermo-rheological viscous fows of non-Newtonian fluids and in the mathematical
description of the processes filtration of an ideal barotropic gas through a porousmedium we refer the reader for
example to [13].

In the classical case (p(.) = 2 or p(.) = p (a constant)), we recall that the notion of renormalized solutions was
introduced by Di Perna and Lions [14] in their study of the Boltzmann equation. This notion was then adapted to
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the study of some nonlinear elliptic problems with Dirichlet boundary conditions by Boccardo, Giachetti, Diaz, and
Murat [10] and Lions and Murat (see Lions book on the Navier-Stokes equations [21]). For the corresponding parabolic
equations with L 1 data, existence and uniqueness of renormalized solutions is established in Blanchard and Murat
[7], see also Lions [21] for some time dependent problems motivated by the Navier-Stokes equations. For more recent
results, see the papers [9, 23]. We also refer to the papers cited so far for a more complete account on the history
of renormalized solutions and a long list of relevant references. Finally, let us mention that an equivalent notion of
solutions, called entropy solutions, was introduced independently by Bénilan and al. [6].

In two papers (see [28, 5]) they have already studied the ellipsis problem corresponding to the p(x)−Laplacian
equations and also the more general elliptic equations with variable exponents that include Order terms. In particular,
we have generated an existential and uniqueness result for renormalization problem solutions with L1 and measure
data.

It has been studied by many authors under various conditions on the data the existence and uniqueness of the
renormalized solution for parabolic equations with L1-data in the classical Sobolev spaces (see [3, 7, 25] ). In Sobolev
space with variable exponents, the authors [27] have proved the existence of renormalized solutions for a class of
nonlinear parabolic systems with variable exponents and, for the corresponding parabolic equations with L1 data.
The main contribution of this work is evidence of the existence of renormalized solutions without the coercivity
condition on nonlinearity that allows them to use Gagliardo-Nirenberg Theorem in proof, the authors in [12] have
proved the existence and uniqueness of renormalized solution to nonlinear parabolic equations with variable exponents
and, in [31] have proved an existence and uniqueness results renormalized solutions and entropy solutions for nonlinear
parabolic equations with variable exponents and L1 data. And moreover, we obtain the equivalence of renormalized
solutions and entropy solutions. On the other hand in [24] S.Ouaro and all obtains existence and uniqueness of
entropy solutions to nonlinear parabolic equation with variable exponent and L1-data. The functional setting involves
Lebesgue and Sobolev spaces with variable exponents.

Recently A. Aberqi and all in [1] studied the existence and the uniqueness of renormalized solution in the framework
of Musielak Orlicz spaces. In 2021, Mohamed Badr Benboubker and all [5] provides the existence of renormalized
solutions for our strongly nonlinear elliptic Neumann problem, the authors in [27] have proved the existence result
of a renormalized solution to a class of nonlinear parabolic systems, which has a variable exponent Laplacian term
and a Leary lions operator with data belong to L1. And in 2020, F. Souilah, and all [28] provides the existence of a
renormalized solution for quasilinear parabolic problem with variable exponents and measure data.

In the present paper, we establish the existence of a renormalized solution for a class of a quasilinear parabolic
problem of type 

(b(u))t − divA(x, t,∇u) + γ(u) = f(x, t, u) in Q = Ω×]0, T [,
u = 0 on Σ = ∂Ω×]0, T [,
b(u)(t = 0) = b(u0) in Ω.

(1.1)

In the problem (1.1), Ω be a bounded domain of RN (N ≥ 2) with lipshitz boundedary ∂Ω and Q = Ω × ]0, T [
for any fixed T is a positive real number. Let p : Ω −→ [1,+∞) be a continuous real-valued function and let

p− = minx∈Ω p(x) and p+ = maxx∈Ω p(x) with 1 < p− ≤ p+ < N. Let −divA(x, t,∇u) = −div(|∇u|p(x)−2 ∇u)

is a Leary-Lions operator (see assumption (2.7)-(2.9)), respectively, γ : R → R with γ(u) = λ |u|p(x)−2
u is a con-

tinuous increasing function for λ > 0 and γ(0) = 0 such that γ(u) is assumed to belong to L1(Q) . The func-
tion f : Q × R → R be a Carathéodory function (see assumptions (2.11)-(2.12)). Finally the function b : R →
R is a strictly increasing C1−function lipchizienne with b(0) = 0 (see (2.10) ), the data f(x, t, u) and b(u0) is in L1(Q).

This paper is concerned with giving an accurate account of the existence of renormalized solutions for a large class
of quasilinear parabolic problem of the type (1.1). We want to stress that, while the existence result follows a rather
standard approximation argument, the proof of existence is not a direct extension of the result in classical sobolev
space [17] due to the presence of the nonlinearity (it is non homogenous).

The paper is organized as follows: In section 2, we give some preliminaries and basic assumptions. In section 3,
we give the definition of a renormalized solution of (1.1), and we establish (Theorem (3.3) ) the existence of such a
solution.
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2 Assumptions on data and Preliminaries

2.1 Functional spaces

In this section, we first state some elementary results for the generalized Lebesgue spaces Lp(.)(Ω),W 1,p(.)(Ω) and

the generalized Lebesgue-Sobolev spaces W
1,p(.)
0 (Ω) where Ω is an open subset of RN . We refer to Fan and Zhao [18]

for further properties of Lebesgue Sobolev spaces with variable exponents. Let p : Ω −→ [1,+∞) be a continuous
rel-valued function and let p− = minx∈Ω p(x), p+ = maxx∈Ω p(x) with 1 < p(.) < N. We denote the Lebesgue space

with variable exponent Lp(.)(Ω) as the set of all measurable function u : Ω −→ R for which the convex modular

ρp(.)(u) =

∫
Ω

|u|p(x) dx; (2.1)

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression

∥u∥Lp(.)(Ω) = inf

µ > 0;

∫
Ω

∣∣∣∣u(x)µ

∣∣∣∣p(x) dx ≤ 1

 , (2.2)

defines a norm in Lp(.) (Ω) called the Luxembourg norm. The space (Lp(.)(Ω); ∥.∥p(.)) is a separable Banach space.

Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly convex, hence reflexive and its dual space is isomorphic
to Lp′(.)(Ω), where 1

p(x)+
1

p′(x) = 1, for x ∈ Ω. The following inequality will be used later:

min
{
∥u∥p

−

Lp(.)(Ω)
, ∥u∥p

+

Lp(.)(Ω)

}
≤

∫
Ω

|u(x)|p(x) dx ≤ max
{
∥u∥p

−

Lp(.)(Ω)
, ∥u∥p

+

Lp(.)(Ω)

}
. (2.3)

Finally, we have the Holder type inequality∣∣∣∣∣∣
∫
Ω

uvdx

∣∣∣∣∣∣ ≤
(

1

p−
+

1

p+

)
∥u∥

p(.)
∥v∥

p′(.)
, (2.4)

for all u∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω). Let

W 1,p(.)(Ω) =
{
u ∈ Lp(.)(Ω), |∇u| ∈ Lp(.)(Ω)

}
, (2.5)

which is Banach space equiped with the following norm

∥u∥
1,p(.)

= ∥u∥
p(.)

+ ∥∇u∥
p(.)

. (2.6)

The space (W 1,p(.)(Ω); ∥.∥1,p(.)) is a separable and reflexive Banach space. An important role in manipulating the

generalized Lebesgue and Sobolev spaces is played by the modular ρp(.) of the space Lp(.)(Ω). We have the following
result:

Proposition 2.1. [18] If un, u ∈ Lp(.)(Ω) and p+ < +∞, the following properties hold true.

(i) ∥u∥
p(.)

> 1 =⇒ ∥u∥p+
p(.)

< ρp(.)(u) < ∥u∥p−
p(.)

,

(ii) ∥u∥
p(.)

< 1 =⇒ ∥u∥p−
p(.)

< ρp(.)(u) < ∥u∥p+
p(.)

,

(iii) ∥u∥
p(.)

< 1 ( respectively = 1, > 1)⇐⇒ ρp(.)(u) < 1 ( respectively = 1, > 1),

(iv) ∥un∥
p(.)

−→ 0 ( respectively −→ +∞)⇐⇒ ρp(.)(un) < 1( respectively −→ +∞),

(v) ρp(.)

(
u

∥u∥
p(.)

)
= 1.

For a measurable function u : Ω −→ R, we introduce the following notation

ρ1,p(.) =

∫
Ω

|u|p(x) dx+

∫
Ω

|∇u|p(x) dx.
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Proposition 2.2. [18] If u ∈ W 1,p(.)(Ω) and p+ < +∞, the following properties hold true.

(i)∥u∥
1,p(.)

> 1 =⇒ ∥u∥p+
1,p(.)

< ρ1,p(.)(u) < ∥u∥p−
1,p(.)

,

(ii)∥u∥
1,p(.)

< 1 =⇒ ∥u∥p−
1,p(.)

< ρ1,p(.)(u) < ∥u∥p+
1,p(.)

,

(iii)∥u∥
1,p(.)

< 1 (respectively = 1, > 1)⇐⇒ ρ1,p(.)(u) < 1(respectively = 1, > 1).

Extending a variable exponent p : Ω −→ [1,+∞) to Q = [0, T ]× Ω by setting p(x, t) = p(x) for all (x, t) ∈ Q.

We may also consider the generalized Lebesgue space

Lp(.)(Q) =

u : Q −→ Rmeasurable such that

∫
Q

|u(x, t)|p(x) d(x, t) < ∞

 ;

endowed with the norm

∥u∥Lp(.)(Q) = inf

µ > 0;

∫
Q

∣∣∣∣u(x, t)µ

∣∣∣∣p(x) d(x, t) ≤ 1

 ;

which share the same properties as Lp(.)(Ω).

2.2 Assumptions

Let Ω be a bounded open set of RN (N ≥ 2), T > 0 is given and we set Q = Ω× ]0, T [, and A : Q×RN → RN be
a Carathéodory function such that for all ξ, η ∈ RN , ξ ̸= η

A(x, t, ξ).ξ ⩾ α |ξ|p(x) , (2.7)

|A(x, t, ξ)| ⩽ β
[
L(x, t) + |ξ|p(x)−1

]
, (2.8)

(A(x, t, , ξ)−A(x, t, η)).(ξ − η) > 0, (2.9)

where 1 < p− ≤ p+ < +∞, α, β are positives constants and L is a nonnegative function in Lp′(.)(Q) and γ : R → R
is a continuous increasing function with γ(0) = 0. Let b : R → R is a strictly increasing C1−function Lipschizienne
with b(0) = 0 and for any ρ, τ are positives constants such that

ρ ≤ b′(s) ≤ τ, ∀s ∈ R, (2.10)

f : Q× R → R be a Carathéodory function such that for any σ > 0, there exists c ∈ Lp′(.)(Q) such that

|f(x, t, s)| ≤ c(x, t) + σ|s|p(x)−1, (2.11)

for almost every (x, t) ∈ (Q), s ∈ R,
f(x, t, s)s ≥ 0, (2.12)

b(u0) ∈ L1(Ω). (2.13)

3 Main Results

In this section, we study the existence of renormalized solutions to problem (1.1).

Definition 3.1. Let 2 − 1

N + 1
< p− ≤ p+ < N and b(u0) ∈ L1 (Ω). A measurable function u defined on Q is a

renormalized solution of problem (1.1) if ,

Tk(u) ∈ Lp−
(]0, T [;W

1,p(.)
0 (Ω)) for any k > 0 , γ(u), f(x, t, u) ∈ L1 (Q) , (3.1)

and b(u) ∈ L∞ (
]0, T [;L1 (Ω)

)
∩ Lq−(]0, T [;W

1,q(.)
0 (Ω)), (3.2)
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for all continuous functions q(x)on Ω satisfying q(x) ∈
[
1, p(x)− N

N+1

)
for all x ∈ Ω,

lim
n→∞

∫
{n≤|u|≤n+1}

A(x, t,∇u)∇udxdt = 0, (3.3)

and for any non negative real number k we denote by Tk(r) = min(k,max(r,−k)) the truncation function at height k
and if, for every function S ∈ W 2,∞(R) which is piecewise C1 and such that S′ has compact support on R, we have,

(BS(u))t − div(A(x, t,∇u)S′(u)) + S′′(u)A(x, t,∇u)∇u+ γ(u)S′(u) = f(x, t;u)S′(u) in D′(Q), (3.4)

BS(u)(t = 0) = S(b(u0)) in Ω, (3.5)

where BS(z) =
∫ t

0
b′(r)S′(r)dr.

The following remarks are concerned with a few comments on definition (3.1).

Remark 3.2. Note that, all terms in (3.4) are well defined. Indeed, let k > 0 such that supp(S′) ⊂ [K,K], we have
BS(u) belongs to L∞(Q) because

|BS(u)| ≤
∫ u

0

|b′(r)S′(r)|dr ≤ τ∥S′∥L∞(R);

and S(u) = S(Tk(u)) ∈ Lp−(]0, T [;W
1;p(.)
0 (Ω)) and ∂BS(u)

∂t ∈ D′(Q). The term S′(u)A(x, t,∇Tk(u)) identifes with
S′(Tk(u))A(x, t,∇(Tk(u))) a.e. in Q, where u = Tk(u) in {|u| ≤ k}, assumptions (2.8) imply that

|S′(Tk(u))A(x, t,∇Tk(u))| ≤ β ∥S′∥L∞(R)

[
L(x, t) + |∇(Tk(u))|p(x)−1

]
a.e in Q. (3.6)

Using (2.8) and (3.1), it follows that S′(u)A(x, t,∇u) ∈ (Lp′(.)(Q))N . The term S′′(u)A(x, t,∇u)∇(u) identifies
with S′′(u)A(t, x,∇(Tk(u)))∇Tk(u) and in view of (2.8), (3.1) and (3.6). We obtain S′′(u)A(x, t,∇u)∇(u) ∈ L1(Q)
and S′(u)γ(u) ∈ L1(Q).

Finally f(x, t, u) S′(u) = f(x, t, Tk(u))S
′(u) a.e in Q. Since |Tk(u)| ≤ k and S′(u) ∈ L∞(Q), c(x, t) ∈ Lp′(.)(Q), we

obtain from (2.11) that f(x, t, Tk(u))S
′(u) ∈ L1(Q). We also have ∂BS(u)

∂t ∈ L(p−)′(]0, T [;W−1,p′(.)(Ω)) + L1(Q) and

BS(u) ∈ Lp−
(]0, T [;W

1,p(.)
0 (Ω)) ∩ L∞(Q), which implies that BS(u) ∈ C(]0, T [;L1(Ω)).

Theorem 3.3. Let b(u0) ∈ L1(Ω), assume that (2.7)-(2.13) hold true, then there exists at least one renormalized
solution u of problem (1.1) ( in the sens of Definition (3.1) ).

Proof .[Proof of Theorem (3.3)] The above theorem is to be proved in five steps.

� Step 1: Approximate problem and a priori estimates.

Let us define the following approximation of b and f for ε > 0 fixed

bε(r) = T 1
ε
(b(r)) a.e in Ω for ε > 0, ∀r ∈ R, (3.7)

bε(u
ε
0) are a sequence of C∞

c (Ω) functions such that (3.8)

bε(u
ε
0) → b(u0) in L1(Ω) as ε tends to 0.

fε(x, t, r) = f(x, t, T 1
ε
(r)), (3.9)

in view of (2.11) and (2.12), there exist cε ∈ Lp′(.)(Q) and σε > 0 such that

|fε(x, t, s)| ≤ cε(x, t) + σε|s|p(x)−1, (3.10)

for almost every (x, t) ∈ (Q), s ∈ R,
fε(x, t, s)s ≥ 0, (3.11)
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Let us now consider the approximate problem

(bε(u
ε))t − divA(x, t,∇uε) + γ (uε) = fε(x, t, uε) in Q, (3.12)

uε = 0 on ]0, T [× ∂Ω, (3.13)

bε(u
ε) (t = 0) = bε(u

ε
0) in Ω. (3.14)

As a consequence, proving existence of a weak solution uε ∈ Lp−
(]0, T [;W

1,p(.)
0 (Ω)) of (3.12)-(3.14) is an easy task

(see [20]). We choose Tk(u
ε)χ(0,t) as a test function in (3.12), we have

∫
Ω

Bε
k(u

ε)(t)dx+

t∫
0

∫
Ω

A(x, t,∇uε)∇Tk(u
ε) +

t∫
0

∫
Ω

γ (uε)Tk(u
ε)dxds = =

t∫
0

∫
Ω

fε(x, t, uε)Tk(u
ε)dxds+

∫
Ω

Bε
k(u

ε
0)dx,

(3.15)

for almost every t in (0, T ), and where

Bε
k(r) =

∫ r

0

Tk(s)
∂bε(s)

∂s
ds.

Under the definition of Bε
k(r) the inequality

0 ≤
∫
Ω

Bε
k(u

ε
0)(t)dx ≤ k|bε(uε

0)|dx, k > 0.

Using (2.7), fε(x, t, uε)Tk(u
ε) ≥ 0, and we have γ(uε) = λ|uε|p(x)−1uε ≥ 0 because 1 < p− ≤ p(x) ≤ +∞ and the

definition of Bε
k(r) in (3.15), we obtain∫

Ω

Bε
k(u

ε)(t)dx+ α

∫
Ek

|∇uε|p(x) dxds ≤ k ∥bε(uε
0)∥L1(Q) , (3.16)

where Ek = {(x, t) ∈ Q : |uε| ≤ k}, using Bε
k(u

ε)(t) ≥ 0 and inequality (2.3) in (3.16) , we get

α

T∫
0

min
{
∥∇Tk(u

ε)∥p−
Lp(x)(Ω)

, ∥∇Tk(u
ε)∥p+

Lp(x)(Ω)

}
≤ α

∫
{(x,t)∈Q: |uε|≤k}

|∇uε|p(x) dxdt ≤ C, (3.17)

then is Tk(u
ε) is bounded in Lp−(]0, T [ ;W

1,p(x)
0 (Ω)). In the other hand, we obtain

k

∫
{(t,x)∈Q:|uε|>k}

|γ(uε)| dxdt ≤ k ∥bε(uε
0)∥L1(Q) , (3.18)

and

k

∫
{(x,t)∈Q:|uε|>k}

|fε(x, t, uε)| dxdt ≤ k ∥bε(uε
0)∥L1(Q) . (3.19)

Now, let T1(s − Tk(s)) = Tk,1(s) and we take Tk,1(bε(u
ε)) as test function in (3.12). Reasoning as above, using

that ∇Tk,1(s) = ∇sχ{k≤|s|≤k+1} and appling young’s inequality, we obtain

α

∫
{k≤|bε(uε)|≤k+1}

b′ε(u
ε) |∇(uε)|p(x) dxdt ≤ k

∫
|bε(uε

0)|>k

|bε(uε
0)| dx+ Ck

∫
|bε(uε)|>k

|γ(uε)| dxdt

+Ck

∫
|bε(uε)|>k

|fε(x, t, uε)| dxdt ≤ C1,
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inequality (2.3) implies that

T∫
0

αχ{k≤|bε(uε)|≤k+1} min
{
∥∇(bε(u

ε))∥p−
Lp(x)(Ω)

, ∥∇(bε(u
ε))∥p+

Lp(x)(Ω)

}
≤α

∫
{k≤|bε(uε)|≤k+1}

b′ε(u
ε) |∇(uε)|p(x) dxdt ≤ C1.

(3.20)

On know that the property of Bε
k(u

ε), (Bε
k(u

ε) ≥ 0, Bε
k(u

ε)) ≥ ρ(|s| − 1), we obtain

∫
Ω

|Bε
k(u

ε)(t)| dx ≤ k

∫
Ω

|bε(uε)(t)| dx ≤ ρ

∫
Ω

|1| dx+ k ∥bε(uε
0)∥L1(Ω)


≤ ρ

(
meas(Ω) + k ∥bε(uε

0)∥L1(Ω)

)
. (3.21)

From the estimation (3.17), (3.20), (3.21) and the properties of Bε
k and bε(u

ε
0), we deduce that

bε(u
ε) is bounded in L∞ (

]0, T [;L1 (Ω)
)
; (3.22)

and
bε(u

ε) is bounded in Lp−(]0, T [ ;W
1,p(x)
0 (Ω)); (3.23)

by Lemma 2.1 in [12] and by (3.20), (3.21) and 2− 1

N + 1
< p(.) < N , we obtain

bε(u
ε) is bounded in Lq−(]0, T [ ;W

1,q(x)
0 (Ω)), (3.24)

for all continuous variable exponents q ∈ C(Ω) satisfying 1 ≤ q(x) <
N(p(x)− 1) + p(x)

N + 1
, for all x ∈ Ω and

Tk (u
ε) is bounded in Lp−

(
]0, T [;W

1,p(.)
0 (Ω)

)
. (3.25)

By (3.18) and (3.19), we may conclude that

γ(uε) is bounded in L1
(
]0, T [;L1 (Ω)

)
, (3.26)

and
fε(x, t, uε) is bounded in L1

(
]0, T [;L1 (Ω)

)
, (3.27)

independently of ε. Proceeding as in [7, 8] that for any S ∈ W 2,∞(R) such that S′ is compact (supp S′ ⊂ [−k, k])

S (uε) is bounded in Lp−
(
]0, T [;W

1,p(.)
0 (Ω)

)
, (3.28)

and
(S (uε))t is bounded in L1 (Q) + L(p−)′

(
]0, T [;W−1,p′(.) (Ω)

)
. (3.29)

In fact, as a consequence of (3.25), by Stampacchia’s Theorem, we obtain (3.28). To show that (3.29) holds true,
we multiply the equation (3.12) by S′(uε) to obtain

(BS (uε))t = div(S′ (uε)A(x, t,∇uε))−A(x, t,∇uε)∇ (S′ (uε))− γ (uε)S′ (uε) + fε(x, t, uε)S′ (uε) in D′ (Q) . (3.30)

Since supp(S′) and supp(S′′) are both included in [−k; k];uε may be replaced by Tk(u
ε) in {|uε| ≤ k}. On the

other hand we have
|S′ (uε)A(x, t,∇uε)| ≤ β ∥S′∥L∞

[
L(x, t) + |∇Tk(u

ε)|p(x)−1
]
. (3.31)

As a consequence, each term in the right hand side of (3.30) is bounded either in L(p−)′
(
]0, T [;W−1,p′(.) (Ω)

)
or

in L1(Q), and we then obtain (3.29).



124 F. Souilah, M. Maouni and K. Slimani

Now we look for an estimate on a sort of energy at infinity of the approximating solutions. For any integer n ≥ 1,
consider the Lipschitz continuous function θn defined through

θn (s) = Tn+1 (s)− Tn (s) =

 0 if |s| ≤ n,
(|s| − n) sign(s) if n ≤ |s| ≤ n+ 1,

sign(s) if |s| ≥ n.

Remark that ||θn||L∞ ≤ 1 for any n ≥ 1 and that θn (s) → 0, for any s when n tends to infinity. Using the
admissible test function θn(u

ε) in (3.12) leads to∫
Ω

θ̃n (u
ε) (t) dx+

∫
Q

A(x, t,∇uε)∇ (θn(u
ε)) dxdt+

∫
Q

γ (uε) θn(u
ε)dxdt =

∫
Q

fε(x, t, uε)θn(u
ε)dxdt+

∫
Ω

θ̃n (u
ε
0) dx,

(3.32)

where θ̃n (r) (t) =
∫ r

0
θn(s)

∂bε(s)

∂s
ds, for almost any t in ]0, T [ and where θ̃n(r) =

r∫
0

θn(s)ds ≥ 0. Hence, dropping a

nonnegative term∫
{n≤|uε|≤n+1}

A(x, t,∇uε)∇uεdxdt ≤
∫
Q

γ (uε) θn(u
ε)dxdt+

∫
Q

fε(x, t, uε)θn(u
ε)dxdt+

∫
Ω

θ̃n (u
ε
0) dx (3.33)

≤
∫

{|uε|≥n}

|γ (uε)| dxdt+
∫

{|uε|≥n}

|fε(x, t, uε)| dxdt+
∫

{|bε(uε
0)|≥n}

|bε(uε
0)| dx.

� Step 2: The limit of the solution of the approximated problem.

Arguing again as in [[7],[8],[9]] estimates (3.28) and (3.29) imply that, for a subsequence still indexed by ε,

uε converge almost every where to u in Q, (3.34)

using (3.12) ,(3.25) and (3.31), we get

Tk(u
ε) converge weakly to Tk(u) in Lp−

(
]0, T [ ,W

1,p(.)
0 (Ω)

)
, (3.35)

χ{|uε|≤k}A(x, t,∇uε) ⇀ ηk weakly in
(
Lp′(.) (Q)

)N

, (3.36)

as ε tends to 0 for any k > 0 and any n ≥ 1 and where for any k > 0, ηk belongs to
(
Lp′(.) (Q)

)N

. Since γ(uε) is a

continuous incrassing function, from the monotone convergence theorem and (3.18) and by (3.34), we obtain that

γ(uε) converge weakly to γ(u) in L1(Q). (3.37)

We now establish that b(u) belongs to L∞ (
]0, T [ ;L1 (Ω)

)
. Indeed using (3.15) and |Bε

k (s)| ≥ |s| − 1 leads to∫
Ω

|bε(uε)| (t)dx ≤ meas(Ω) + k ∥fε(x, t, uε)∥L1(Q) + k ∥γ (uε)∥L1(Q) + k ∥bε(uε
0)∥L1(Ω) .

Using (3.18) and (3.8),(3.19) , we have u belongs to L∞ (
]0, T [ ;L1 (Ω)

)
. We are now in a position to exploit (3.33).

Since uε is bounded in L∞ (
]0, T [ ;L1 (Ω)

)
, we get

lim
n→+∞

(
sup
ε
meas {|uε| ≥ n}

)
= 0. (3.38)

The equi-integrability of the sequence fε(x, t, uε) in L1(Q). We shall now prove that fε(x, t, uε) converges to
f(x, t, u) strongly in L1(Q), by using Vitali’s theorem. Since fε(x, t, uε) → f(x, t, u) a.e in Q it suffices to prove that
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fε(x, t, uε) are equi-integrable in Q. Let δ > 0 and A be a measurable subset belonging to Ω×]0, T [, we define the
following sets

Gδ = {(x, t) ∈ Q : |un| ≤ δ}; (3.39)

Fδ = {(x, t) ∈ Q : |un| > δ}. (3.40)

Using the generalized Hölder’s inequality and Poincaré inequality, we have∫
A

|fε(x, t, uε)| dxdt =
∫

A∩Gδ

|fε(x, t, uε)| dxdt+
∫

A∩Fδ

|fε(x, t, uε)| dxdt,

therfore∫
A

|fε(x, t, uε)| dxdt ≤
∫

A∩Gδ

(
cε(x, t) + σε |un|p(x)−1

)
dxdt+

∫
A∩Fδ

|fε(x, t, uε)| dxdt

≤
∫
A

cε(x, t)dxdt+ σε

(
1

p−
+

1

p′−

)
(meas(Q) + 1)

1

p−

∫
QT

|∇Tδ(u
ε)|(p(x)−1)p′(x)

dxdt

 1

p′−

+

∫
A∩Fδ

|fε(x, t, uε)| dxdt

≤K1 + C2

(
k

α
∥bε(uε

0)∥L1(Ω)

) 1
2

+

∫
A∩Fδ

1

|uε|
|uεfε(x, t, uε)| dxdt

≤K2 +
1

δ

(
1

p−
+

1

p′−

) ∫
A∩Fδ

|uε|p(x) dxdt

 1

p−
 ∫
A∩Fδ

|fε(x, t, uε)|p
′(x)(p(x)−1)

dxdt

 1

p′−

→0 when meas(A) → 0.

Which shows that fε(x, t, uε) is equi-integrable. By using Vitali’s theorem, we get

fε(x, t, uε) → f(x, t, u) strongly in L1(Q). (3.41)

Using (3.37), (3.41) and the equi-integrability of the sequence |bε(uε
0)| in L1(Ω), we deduce that

lim
n→+∞

sup
ε

∫
{n≤|uε|≤n+1}

A(x, t,∇uε)∇uεdxdt

 = 0. (3.42)

� Step 4: Strong convergence.

The specific time regularization of Tk(u) (for fixed k ≥ 0) is defined as follows. Let (vµ0 )µ be a sequaence in

L∞ (Ω) ∩ W
1,p(.)
0 (Ω) such that∥vµ0 ∥L∞(Ω) ≤ k, ∀µ > 0, and vµ0 → Tk(u0) a.e in Ω with 1

µ ∥vµ0 ∥Lp(.)(Ω) → 0 as
µ → +∞.

For fixed k ≥ 0 and µ > 0, let us consider the unique solution Tk(u)µ ∈ L∞ (Ω) ∩ Lp−
(
]0, T [;W

1,p(.)
0 (Ω)

)
of the

monotone problem
∂Tk(u)µ

∂t
+ µ (Tk(u)µ − Tk(u)) = 0 in D′ (Q) , (3.43)

Tk(u)µ(t = 0) = vµ0 . (3.44)

The behavior of Tk(u)µ as µ → +∞ is investigated in [13] and we just recall here that (3.43)-(3.44) imply that

Tk(u)µ → Tk(u) strongly in Lp−
(
]0, T [;W

1,p(.)
0 (Ω)

)
a.e in Q as µ → +∞, (3.45)

with ∥Tk(u)µ∥L∞(Ω) ≤ k, for any µ, and
∂Tk(u)µ

∂t ∈ L(p−)′
(
]0, T [;W−1,p′(.) (Ω)

)
. The main estimate is the following
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Lemma 3.4. Let S be an increasing C∞ (R)− function such that S(r) = r for r ≤ k, and suppS′ is compact. Then

lim inf
µ→+∞

lim
ε→0

T∫
0

〈
∂uε

∂t
, S′(uε) (Tk(u

ε)µ − Tk(u))

〉
dt ≥ 0,

where here ⟨., .⟩ denotes the duality pairing between L1(Ω) +W−1,p′(.) (Ω) and L∞ (Ω) ∩W
1,p(.)
0 (Ω).

Proof . See[9], Lemma 1. □

� Step 4:

Here, we are to prove that the weak limit ηk and we prove the weak L1 convergence of the ”truncted” energy
A (x, t,∇Tk(u

ε)) as ε tends to 0. In order to show this result we recall the lemma below.

Lemma 3.5. The subsequence of uε defined in step 3 satisfies

lim sup
ε→0

∫
Q

A (x, t,∇uε)∇Tk(u
ε)dxdt ≤

∫
Q

ηk∇Tk(u)dxdt, (3.46)

lim
ε→0

∫
Q

[
A
(
x, t,∇uε

χ{|uε|≤k}

)
−A

(
x, t,∇uχ{|u|≤k}

)]

×
[
∇uε

χ{|uε|≤k}
−∇uχ{|u|≤k}

]
dxdt = 0 (3.47)

ηk = A
(
x, t,∇uχ{|u|≤k}

)
a.e in Q, for any k ≥ 0, as ε tends to 0.

A (x, t,∇uε)∇Tk(u
ε) → A (x, t,∇u)∇Tk(u) weakly in L1 (Q) . (3.48)

Proof . Let us introduce a sequence of increasing C∞(R)-functions Sn such that, for any n ≥ 1
Sn(r) = r if |r| ≤ n;

supp (S′
n) ⊂ [−(n+ 1), (n+ 1)] ,
∥S′′

n∥L∞(R) ≤ 1.
(3.49)

For fixed k ≥ 0, we consider the test function S′
n(u

ε)
(
Tk(uε)− (Tk(u))µ

)
in (3.12), we use the definition (3.49) of

S′
n and we definie W ε

µ = Tk(uε)− (Tk(u))µ , we get

T∫
0

〈
(uε)t , S

′
n(u

ε)W ε
µ

〉
dt+

∫
Q

S′
n(u

ε)A(x, t,∇uε)∇W ε
µdxdt+

∫
Q

S′′
n(u

ε)A(x, t,∇uε)∇uεW ε
µdxdt+

∫
Q

γ(uε)S′
n(v

ε)W ε
µdxdt

=

∫
Q

fε(x, t, uε)S′
n(u

ε)W ε
µdxdt. (3.50)

Now we pass to the limit in (3.50) as ε → 0, µ → +∞, n → +∞ for k real number fixed. In order to perform this
task, we prove below the following results for any k ≥ 0 :

lim inf
µ→+∞

lim
ε→0

T∫
0

〈
(uε)t , S

′
n(u

ε)W ε
µ

〉
dt ≥ 0 for any n ≥ k, (3.51)

lim
n→+∞

lim
µ→+∞

lim
ε→0

∫
Q

S′′
n(u

ε)A(x, t,∇uε)∇uεW ε
µdxdt = 0, (3.52)
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lim
µ→+∞

lim
ε→0

∫
Q

γ(uε)S′
n(u

ε)W ε
µdxdt = 0, for any n ≥ 1, (3.53)

lim
µ→+∞

lim
ε→0

∫
Q

fε(x, t, uε)S′
n(u

ε)W ε
µdxdt = 0, for any n ≥ 1, (3.54)

Proof .[Proof of (3.51)] In view of the definition W ε
µ, we apply lemma (3.4) with S = Sn for fixed n ≥ k. As a

consequence, (3.51) hold true. □

Proof .[Proof of (3.52)] For any n ≥ 1 fixed, we have supp(S′′
n) ⊂ [−(n+ 1),−n] ∪ [n, n+ 1] ,

∥∥W ε
µ

∥∥
L∞(Q)

≤ 2k and

∥S′′
n∥L∞(R) ≤ 1, we get∣∣∣∣∣∣

∫
Q

S′′
n(u

ε)A (x, t,∇uε)∇uεW ε
µdxdt

∣∣∣∣∣∣ ≤ 2k

∫
{n≤|uε|≤n+1}

A (x, t,∇uε)∇uεdxdt (3.55)

for any n ≥ 1, by (3.42) it possible to etablish (3.52) □

Proof .[Proof of (3.53)] For fixed n ≥ 1 and in view (3.37) . Lebesgue’s convergence theorem implies that for any
µ > 0 and any n ≥ 1

lim
ε→0

∫
Q

γ(uε)S′
n(u

ε)W ε
µ dxdt =

∫
Q

γ(u)S′
n(u)(Tk(u)− Tk (u)µ)dxdt. (3.56)

Appealing now to (3.45) and passing to the limit as µ → +∞ in (3.56) allows to conclude that (3.53) holds true. □

Proof .[Proof of (3.54)] By (3.9), (3.41) and Lebesgue’s convergence theorem implies that for any µ > 0 and any
n ≥ 1, it is possible to pass to the limit for ε → 0

lim
ε→0

∫
Q

fε(x, t, uε)S′
n(u

ε)W ε
µ dxdt =

∫
Q

f(x, t, u)S′
n(u)(Tk(u)− Tk (u)µ)dxdt,

using (3.45) permits to the limit as µ tends to +∞ in the above equality to obtain (3.54). □

We now turn back to the proof of Lemma (3.5), due to (3.51)-(3.54), we are in a position to pass to the limit-sup
when ε → 0, then to the limit-sup when µ → +∞ and then to the limit as n → +∞ in (3.50). Using the definition of
W ε

µ, we deduce that for any k ≥ 0,

lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫
Q

A(x, t,∇uε)S′
n(u

ε)∇ (Tk(u
ε)− Tk(u)µ) dxdt ≤ 0.

Since A(x, t,∇uε)S′
n(u

ε)∇Tk(u
ε) = A(x, t,∇uε)∇Tk(u

ε) fo k ≤ n, the above inequality implies that for k ≤ n,

lim sup
ε→0

∫
Q

A(x, t,∇uε)∇Tk(u
ε)dxdt ≤ lim

n→+∞
lim sup
µ→+∞

lim sup
ε→0

∫
Q

A(t, x,∇uε)S′
n(u

ε)∇Tk(u)µdxdt. (3.57)

Due to (3.36), we have

A(x, t,∇uε)S′
n(u

ε) → ηn+1S
′
n(u) weakly in

(
Lp′(.) (Q)

)N

as ε → 0

and the strong convergence of Tk(u)µ to Tk(u) in Lp−
(]0, T [;W 1,p

0 (Ω)) as µ → +∞, we get

lim
µ→+∞

lim
ε→0

∫
Q

A(x, t,∇uε)S′
n(u

ε)∇Tk(u)µdxdt =

∫
Q

S′
n(u)ηn+1∇Tk(u)dxdt =

∫
Q

ηn+1∇Tk(u)dxdt, (3.58)

as soon as k ≤ n, since S′
n(s) = 1 for |s| ≤ n. Now, for k ≤ n, we have

S′
n(u

ε)A(x, t,∇uε)χ{|uε|≤k} = A(x, t,∇uε)χ{|uε|≤k} a.e in Q.
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Letting ε → 0, we obtain

ηn+1χ{|u|≤k} = ηkχ{|u|≤k} a.e in Q− {|u| = k} for k ≤ n.

Recalling (3.57) and (3.58) allows to conclude that (3.46) holds true. □

Proof .[Proof of (3.47)] Let k ≥ 0 be fixed. We use the monotone character (2.9) of A(x, t, ξ) with respest to ξ, we
obtain

Iε =

∫
Q

(
A(x, t,∇uεχ{|uε|≤k})−A(x, t,∇uχ{|u|≤k})

) (
∇uεχ{|uε|≤k} −∇uχ{|u|≤k}

)
dxdt ≥ 0. (3.59)

Inequality (3.59) is split into Iε = Iε1 + Iε2 + Iε2 where

Iε1 =

∫
Q

A(x, t,∇uεχ{|uε|≤k})∇uεχ{|uε|≤k}dxdt,

Iε2 = −
∫
Q

A(x, t,∇uεχ{|uε|≤k})∇uχ{|u|≤k}dxdt,

Iε3 = −
∫
Q

A(x, t,∇uχ{|u|≤k})
(
∇uεχ{|uε|≤k} −∇uχ{|u|≤k}

)
dxdt.

We pass to the limit-sup as ε → 0 in Iε1 , I
ε
2 and Iε3 . Let us remark that we have uε = Tk(u

ε) and ∇uεχ{|uε|≤k} =
∇Tk(u

ε) a.e in Q, and we can assume that k is such that χ{|uε|≤k} almost everywhere converges to χ{|u|≤k}(in fact
this is true for almost every k, see Lemma 3.2 in [11]). Using (3.46), we obtain

lim
ε→0

Iε1 = lim
ε→0

∫
Q

A(x, t,∇uε)∇Tk(u
ε)dxdt ≤

∫
Q

ηk∇Tk(u)dxdt. (3.60)

In view of (3.35) and (3.36), we have

lim
ε→0

Iε2 = − lim
ε→0

∫
Q

A(x, t,∇uεχ{|uε|≤k}) (∇Tk(u)) dxdt = −
∫
Q

ηk (∇Tk(u)) dxdt. (3.61)

As a consequence of (3.35), we have for all k > 0

lim
ε→0

Iε3 = −
∫
Q

A(x, t,∇uχ{|u|≤k}) (∇Tk(u
ε)−∇Tk(u)) dxdt = 0. (3.62)

Taking the limit-sup as ε → 0 in (3.59) and using (3.60), (3.61) and (3.62) show that (3.47) holds true. □

Proof .[Proof of (3.48)] Using (3.47) and the usual Minty argument applies it follows that (3.48) holds true. □

� Step 5:

In this step we prove that u satisfies (3.3), (3.4) and (3.5) . For any fixed n ≤ 0 one has∫
{n≤|uε|≤n+1}

A(x, t,∇uε)∇uεdxdt =

∫
Q

A(x, t,∇uε)∇Tn+1(u
ε)dxdt−

∫
Q

A(x, t,∇uε)∇Tn(u
ε)dxdt.

According to (3.36) and (3.48) one is at liberty to pass to the limit as ε tends to 0 for fixed n ≥ 1 and to obtain

lim
ε→0

∫
{n≤|uε|≤n+1}

A(x, t,∇uε)∇uεdxdt =

∫
Q

A(x, t,∇u)∇Tn+1(u)dxdt−
∫
Q

A(x, t,∇u)∇Tn(u)dxdt

=

∫
{n≤|uε|≤n+1}

A(x, t,∇u)∇udxdt. (3.63)
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Taking that limit as n tends to +∞ in (3.63) and using the estimate (3.42), that u satisfies (3.3). Let S be a
function in W 2,∞(R) such that S′ has a compact. Let k be a positive real number such that supp(S′) ⊂ [−k, k].
Multiplying of that approximate equation (3.12) by S′(uε) leads to

(BS(u
ε))t − div(S′(uε)A(x, t,∇uε)) + S′′(uε)A(x, t,∇uε)∇(uε) + γ(uε)S′(uε) = fε(x, t, uε)S′(uε) in D′(Q). (3.64)

In what follows we pass to the limit as ε tends to 0 in each term of (3.64). Since S is bounded, and S(uε)
converges to S(u) a.e in Q and in L∞(Q) *-weak, then (S(uε))t converges to (S(uε))t in D′(Q) as ε tends to 0. Since
supp(S′) ⊂ [−k, k], we have S′(uε)A(t, x,∇uε) = S′(uε)A(x, t,∇uε)χ{|uε|≤k} a.e in Q. The pointwise convergence of
uε to u as ε tends to 0, the bounded character of S and (3.48) of Lemma(3.5) imply that S′(uε)A(x, t,∇uε) converges

to S′(u)A(x, t,∇u) weakly in
(
Lp′(.)(Q)

)N

as ε tends to 0, because S′(u) = 0 for |u| ≥ k a.e in Q. The pointwise

convergence of uε to u, the bounded character of S′, S′′ and (3.48) of Lemma (3.5) allow to conclude that

S′′(uε)A(x, t,∇uε)∇Tk(u
ε) → S′′(u)A(x, t,∇u)∇Tk(u) weakly in L1(Q)

as ε → 0. We use (3.37) we obtain that γ(uε)S′(uε) converges to γ(u)S′(u) in L1(Q), and we use (3.9), (3.35) and we
obtain that fε(x, t, uε)S′(uε) converges to f(x, t, u)S′(u) in L1(Q). As a consequence of the above convergence result,
we are in a position to pass to the limit as ε tends to 0 in equation (3.64) and to conclude that u satisfies (3.4). It
remains to show that S(u) satisfies the initial condition (3.5). To this end, firstly remark that, S being bounded, S(uε)
is bounded in L∞(Q), BS (uε) is bounded in L∞(Q). Secondly, (3.64) and the above considerations on the behavior

of the terms of this equation show that∂BS(uε)
∂t is bounded in L1(Q) + L(p−)′(]0, T [;W−1,p′(.)(Ω)). As a consequence,

an Aubin’s type lemma ([26], Corollary 4) implies that BS(u
ε) lies in a compact set of C(]0, T [;L1(Ω)). It follows

that, on the one hand, BS(u
ε)(t = 0) converges to BS(u)(t = 0) strongly in L1(Ω) Due to(3.8), we conclude that (3.5)

holds true. As a conclusion of Step 3 and Step 5, the proof of Theorem (3.3) is complete. □
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Villars, 1969.

[21] J.-L. Lions, Mathematical Topics in Fluid Mechanics, Oxford Lecture Series in Mathematics and its Applications,
Oxford University Press, New York, 1996.

[22] F. Li, Z. Li, and L. Pi, Variable exponent functionals in image restoration, Appl. Math. Comput. 216 (2010), no.
3, 870–882.

[23] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat.
Pura Appl. 177 (1999), no. 4, 143–172.
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