Int. J. Nonlinear Anal. Appl. 15 (2024) 10, 175–179 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.30963.4528

A note on mj-clean rings

Mehrdad Esfandiar^a, Hamid Haj Seyyed javadi^{b,*}, Ahmad Moussavi^c

^aDepartment of Mathematics, Shahed University, Tehran, Iran

^bDepartment of Computer Engineering, Shahed University, Tehran, Iran

^cDepartment of Pure Mathematics, Tarbiat Modares, Tehran,Iran

(Communicated by Abasalt Bodaghi)

Abstract

In this paper, we examine the notions of mj-clean ring and strongly mj-clean ring. And we will provide some of its basic properties. We examine the relationship of mj-clean ring with m-clean ring and j-clean ring. We prove that R is strongly mj-clean ring if and only if $M_n(R)$ is strongly mj-clean ring. We prove that mj-clean ring is Dedekind-finite; i.e., ab = 1 implies that ba = 1.

Keywords: *mj*-clean ring, strongly *mj*-clean ring, Dedekind finite 2020 MSC: 16S50, 16N99

1 Introduction

The notion of clean ring was first titled by W.K. Nicolson in his study of "Lifting idempotents and exchange rings" in [10]. A ring is clean if each element can be written as a sum of a unit and an idempotent element. A ring is strongly clean if each of its elements can be written as a sum of an idempotent and a unit which are commutative. After the introduction of clean rings by Nicholson, many authors introduced new constructions of clean rings, includings *j*-clean rings and *m*-clean rings [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13]. In this paper, we examine the notions of *mj*-clean ring and strongly *mj*-clean ring. Throughout this paper all rings are associative with unity. We denote the Jacobson radical of the ring *R* by *radR*. The right and left annihilators of a set $X \subseteq R$ are denoted by r(X) and l(X) respectively.We denote the group of units of the ring *R* by U(R). An element *x* of a ring *R* is *j*-clean if x = e + w where $e^2 = e \in R$ and $w \in radR$; if further ew = we, the element *x* is called strongly *j*-clean. The ring *R* is called *j*-clean (strongly *j*-clean) if each of its element is *j*-clean (strongly *j*-clean). Let $m \ge 2$ be a positive integer. An element *x* of a ring *R* is *m*-clean if x = e + w, where *w* is a unit and *e* is *m*-potent (that is $e^m = e$) element of *R*; if further ew = we, the element *x* is called strongly *m*-clean. The ring *R* is called *m*-clean (strongly *m*-clean) if each of its element is *m*-clean.

2 mj-clean ring

Definition 2.1. Let $m \ge 2$ be a positive integer. An element x of a ring R is said to be mj-clean if x can be written as x = e + w, where $w \in radR$ and e is m-potent element of R; if ew = we, in this case x is called strongly mj-clean.

*Corresponding author

Email addresses: mehrdad.esfandiar@shahed.ac.ir (Mehrdad Esfandiar), h.s.javadi@shahed.ac.ir (Hamid Haj Seyyed javadi), moussavi.a@modares.ac.ir (Ahmad Moussavi)

A ring R is called mj-clean (strongly mj-clean) if every elements of R is mj-clean (strongly mj-clean).

2.1 Example

- 1. It is clear from definition of mj-clean ring, that j-clean ring is an mj-clean ring.
- 2. Let R be a ring in which every element is m-potent, in this case R is mj-clean ring.
- 3. Any quotient of a strongly mj-clean ring is strongly mj-clean.
- 4. Any direct product of strongly mj-clean ring is strongly mj-clean.

Lemma 2.2. Homomorphic image of strongly *mj*-clean rings is strongly *mj*-clean.

Proof. Let $\phi: R \to S$ be a ring epimorphism, where R is a strongly mj-clean ring. For any $s \in R$, there exist $r \in R$ such that $\phi(r) = s$. since R is strongly mj-clean, we can write r = e + w, where $w \in radR$, e is an m-potent element of R and ew = we. Now $\phi(r) = \phi(e + w) = \phi(e) + \phi(w)$ and $\phi(e) = \phi(e^m) = \phi(e)^m$, and for any $s' \in S$, there exist $r' \in R$ such that $\phi(r') = s'$, then $1 - s'\phi(w) = \phi(1) - \phi(r')\phi(w) = \phi(1 - r'w) \in U(S)$, so $\phi(w) \in radS$. \Box

Proposition 2.3. Let R be a ring. The following are equivalent:

- 1. R is m-potent.
- 2. R is strongly mj-clean and radR = 0

Proof. (1) \Longrightarrow (2) Clearly, R is strongly mj-clean. For any $x \in radR$, $x^m = x$, $x - x^m = 0 \Longrightarrow x(1 - x^{m-1}) = 0$ that $(1 - x^{m-1}) \in U(R)$ and so x = 0. This implies that radR = 0. (2) \Longrightarrow (1) is trivial. \Box

Proposition 2.4. Let R be a ring. The following are equivalent:

- 1. R is mj-clean.
- 2. $\frac{R}{radR}$ is *m*-potent.

Proof . The proof is clear. \Box

Corollary 2.5. Let R be a local ring. The following are equivalent:

1. R is strongly mj-clean. 2. $\frac{R}{radR} \cong \mathbb{Z}_p$

Proof. The proof is clear. \Box

Theorem 2.6. Let R be a ring. And $x \in R$ be a mj-clean, then 1 + x is m-clean.

Proof. Let $x \in R$ be *mj*-clean. There exist an *m*-potent $e \in R$ and $w \in radR$ such that x = e + w. Hence, 1 + x = e + 1 + w. We see $1 + w \in U(R)$. Thus, $1 + x \in R$ is *m*-clean. \Box

Theorem 2.7. Let R be a mj-clean ring. Then R is m-clean ring.

Proof. For every $x \in R$, x - 1 is *mj*-clean. Then there exist an *m*-potent $e \in R$ and a $w \in radR$ such that x - 1 = e + w. Hence x = 1 + x - 1 = e + 1 + w. We see $1 + w \in U(R)$. Thus, R is *m*-clean ring. \Box

Note: The upper theorem reverse is not true. For example, suppose \mathbb{Q} is the ring of rational numbers. Then \mathbb{Q} is *m*-clean ring, but \mathbb{Q} is not *mj*-clean ring.

Lemma 2.8. Let R be a ring, and let x = e + w be a strongly mj-clean decomposition of x in R. Then $l(x) \subseteq l(e)$ and $r(x) \subseteq r(e)$.

Proof. Let $r \in l(x)$, then rx = 0. Write x = e + w that $e^m = e$, $w \in radR$, and ew = we. Then re = -rw; hence $re = -rwe^{m-1}$. It follows that $re(1 + e^{m-2}w) = 0$, where $1 + e^{m-2}w \in U(R)$, and so re = 0. that is $r \in l(e)$. Therefor, $l(x) \subseteq l(e)$. A similar argument shows that $r(x) \subseteq r(e)$. \Box

Theorem 2.9. Let R be a ring, and let $e \in R$ be an m-potent. Then $x \in e^{m-1}Re^{m-1}$ is strongly mj-clean in R if and only if x is strongly mj-clean in $e^{m-1}Re^{m-1}$.

Proof. At first we note that e^{m-1} is an idempotent element of R because e is an m-potent of R. If $r \in rad(e^{m-1}Re^{m-1})$. Then $r \in rad(R)$. suppose that x = f + w, that $f^m = f \in e^{m-1}Re^{m-1}$, $w \in rad(e^{m-1}Re^{m-1})$ and fw = wf. Obviously, $w \in rad(e^{m-1}Re^{m-1}) \subseteq radR$. Hence, $x \in e^{m-1}Re^{m-1}$ is strongly mj-clean in R.

Conversely, suppose $x \in R$, x = f + w, $f^m = f$, $w \in radR$, fw = wf. As $x \in e^{m-1}Re^{m-1}$, we see that:

$$-e^{m-1} \in l(x) \cap r(x)$$

$$\subseteq l(f) \cap r(f)$$

$$= R(1 - f^{m-1}) \cap (1 - f^{m-1})R$$

$$= (1 - f^{m-1})R(1 - f^{m-1}).$$

Hence, $f^{m-1}(1 - e^{m-1}) = 0 = (1 - e^{m-1})f^{m-1}$ and $f^{m-1} = f^{m-1}e^{m-1} = e^{m-1}f^{m-1}$ and $f = fe^{m-1} = e^{m-1}f$. We observe that $x = e^{m-1}fe^{m-1} + e^{m-1}we^{m-1}$ that $(e^{m-1}fe^{m-1})^m = e^{m-1}fe^{m-1}$ and so $e^{m-1}we^{m-1} \in rad(e^{m-1}Re^{m-1})$. Clearly, $e^{m-1}fe^{m-1}$ and $e^{m-1}we^{m-1}$ commute together. \Box

Theorem 2.10. Let $\{e_1, e_2, \dots, e_n\}$ be set of *m*-potent elements of a ring *R* such that e_i^{m-1} and e_j^{m-1} are mutually orthogonal for all $i \neq j$, where $1 \leq i, j \geq n$. Suppose that $1 = e_1 + \dots + e_n$ and each $e_i^{m-1}Re_i^{m-1}$ is strongly *mj*-clean for every $i = 1, \dots, n$. Then *R* is strongly *mj*-clean.

Proof. By using upper theorem, the proof is clear. \Box

Theorem 2.11. If a ring R is strongly m_j -clean then $M_n(R)$ is strongly m_j -clean.

1

Proof. We observe that $I_n = E_{11} + \dots + E_{nn}$, where I_n is the $n \times n$ identity matrix and E_{ii} is the $n \times n$ elementary matrix whose (ii)''th is 1 and all other entries are 0. We see that each E_{ii} is *m*-potent and E_{ii}^{m-1} are mutually orthogonal for all $i = 1, \dots, n$. We also have $R \cong E_{ii}^{m-1} M_n(R) E_{ii}^{m-1}$. It is given that R is strongly mj-clean which implies that each $E_{ii}^{m-1} M_n(R) E_{ii}^{m-1}$ is strongly mj-clean. Consequently, by upper theorem, it follow that $M_n(R)$ is strongly mj-clean. \Box

Note: The upper theorem reverse is true. Let $M_n(R)$ be a strongly mj-clean. In this case, put $e = diag(1, 0, 0, ..., 0) \in M_n(R)$. We will have $R \cong e^{m-1}M_n(R)e^{m-1}$. Therefor, R is strongly mj-clean.

Let R, S be two rings, and let M be an (R, S)-bimodule. In this case $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ will form a ring. We already

know, $radT = \begin{pmatrix} radR & M \\ 0 & radS \end{pmatrix}$, $\frac{T}{radT} \cong \frac{R}{radR} \times \frac{S}{radS}$. Note here that, T is mj-clean ring if and only if R and S are mj-clean rings if and only if $\frac{R}{radR}$ and $\frac{S}{radS}$ are m-potent.

A Morita context is a 4-tuple $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$, where A, B are rings, ${}_{A}M_{B}$ and ${}_{B}N_{A}$ are bimodules, and there exist context products $M \times N \to A$ and $N \times M \to B$ written multiplicatively as $(w, z) \mapsto wz$ and $(z, w) \mapsto zw$, such that $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is an associative ring with the obvious matrix operation. The following lemmas have already been proved [12].

Lemma 2.12. Let $R := \begin{pmatrix} A & M \\ N & B \end{pmatrix}$ be a Morita context. Then $radR = \begin{pmatrix} radA & M_0 \\ N_0 & radB \end{pmatrix}$, where $M_0 = \{x \in M : xN \subseteq radA\}$ and $N_0 = \{y \in N : yM \subseteq radB\}$.

Canonically, M/M_0 is an (A/radA, B/radB)-bimodule and N/N_0 is an (B/radB, A/radA)-bimodule, and this include a Morita context $\begin{pmatrix} A/radA & M/M_0 \\ N/N_0 & B/radB \end{pmatrix}$ where the context products are given by $(x+M_0)(y+N_0) = xy+radA$, $(y+N_0)(x+M_0) = yx + radB$ for all $x \in M$ and $y \in N$.

Lemma 2.13. Let $R := \begin{pmatrix} A & M \\ N & B \end{pmatrix}$ be a Morita context, and let $\begin{pmatrix} A/radA & M/M_0 \\ N/N_0 & B/radB \end{pmatrix}$ be defined above. Then $R/radR \cong \begin{pmatrix} A/radA & M/M_0 \\ N/N_0 & B/radB \end{pmatrix}$.

Theorem 2.14. Let $R := \begin{pmatrix} A & M \\ N & B \end{pmatrix}$ be a Morita context. Let A and B are mj-clean rings, $MN \subseteq radA$ and $NM \subseteq radB$. In This case R is mj-clean ring.

Proof. Because A and B are mj-clean rings, then A/radA and B/radB are m-potent. $MN \subseteq radA$ and $NM \subseteq radB$ gives $M = M_0$ and $N = N_0$. So, it follow that $R/radR \cong \begin{pmatrix} A/radA & M/M_0 \\ N/N_0 & B/radB \end{pmatrix}$. Thus, A/radA and B/radB being m-potent implies R/radR is m-potent, and R is mj-clean ring. \Box

A ring R is said to be Dedekind-finite (or von Neumann-finite) if $ab = 1 \Longrightarrow ba = 1$.

Theorem 2.15. Let R be a mj-clean ring. Then R is Dedekind-finite.

Proof. Let $a, b \in R$, where ab = 1. Since R is mj-clean ring, we can write a = e + w, b = f + u, where $e^m = e$, $f^m = f$, $u, w \in radR$. Now ab = (e+w)(f+u) = 1, ef + eu + wf + wu = 1, therefore $ef = 1 - eu - wf - wu \in U(R)$. There exist $v \in U(R)$ such that ef = v. We see that $(1 - e^{m-1})ef = (1 - e^{m-1})v = 0$, $v = e^{m-1}v$, $e^{m-1} = 1$, $e \in U(R)$. Therefore $a = e + w \in U(R)$, then ba = 1 and R is Dedekind finite. \Box

Note: Let R be a mj-clean ring. And let a = e + w be a mj-clean element in R, where $e^m = e$, $w \in radR$. Then $a \in U(R)$ if and only if $e \in U(R)$.

3 strongly g(x)-mj-clean ring

Definition 3.1. Let R be a ring, and C(R) denote the center of a ring R. Let $g(x) \in C(R)[x]$ be a fixed polynomial. An element $r \in R$ is strongly g(x)-mj-clean if r = e + w where g(e) = 0 and $w \in radR$ and ew = we. R is strongly g(x)-mj-clean ring if every element of R is strongly g(x)-mj-clean.

Also an element $r \in R$ is strongly g(x)-m-clean if r = e + w where g(e) = 0, $w \in U(R)$ and ew = we. R is strongly g(x)-m-clean ring if every element of R is strongly g(x)-m-clean. Clearly, every strongly g(x)-mj-clean ring is strongly g(x)-m-clean ring.

For a ring R, R is strongly mj-clean if and only if R is strongly $(x^m - x)$ -mj-clean.

Theorem 3.2. Let R be a ring and $a \in C(R)$. Then R is strongly mj-clean ring and $a \in U(R)$ if and only if R is strongly $x(x^{m-1} - a^{m-1})$ -mj-clean ring.

Proof. Let $r \in R$. Since R is strongly mj-clean and $a \in U(R)$, $\frac{r}{a} = e+w$ where $e^m = e, w \in radR$ and ew = we. Then r = ea + wa where $wa \in radR$, ea is a root of $x(x^{m-1} - a^{m-1})$, because $ea((ea)^{m-1} - a^{m-1}) = ea((e^{m-1} - 1)a^{m-1}) = 0$. We also have eawa = waea.

Conversely, let R is strongly $x(x^{m-1}-a^{m-1})$ -mj-clean ring. Since 1 is strongly $x(x^{m-1}-a^{m-1})$ -mj-clean, 1 = s + w where $s(s^{m-1}-a^{m-1}) = 0$ and $w \in radR$ and ws = sw. Since $s = 1 - w \in U(R)$ and $s(s^{m-1}-a^{m-1}) = 0$ so $s^{m-1} = a^{m-1} \in U(R)$ therefore $a \in U(R)$. Let $r \in R$. Since R is strongly $x(x^{m-1}-a^{m-1})$ -mj-clean ring, ra = e + w where $e(e^{m-1}-a^{m-1}) = 0$, $w \in radR$ and ew = we. Thus, $r = \frac{e}{a} + \frac{w}{a}$ where $\frac{w}{a} \in radR$ and $(\frac{e}{a})^m = \frac{e^m}{a^m} = \frac{e(e^{m-1}-a^{m-1}+a^{m-1})}{a^m} = \frac{e}{a}$. So R is strongly mj-clean ring. \Box

Theorem 3.3. Let R be strongly g(x)-mj-clean ring and strongly h(x)-mj-clean ring where $g(x), h(x) \in C(R)[x]$. Then R is g(x)h(x)-mj-clean ring.

Proof . The proof is clear. \Box

Theorem 3.4. Let R be a strongly $x(x^{m-1} - a^{m-1})$ -mj-clean ring with $a \in C(R)$. Then for any $e = e^m \in R$, $e^{m-1}Re^{m-1}$ is strongly $x(x^{m-1} - e^{m-1}a^{m-1})$ -mj-clean ring.

Proof. *R* is strongly $x(x^{m-1} - a^{m-1})$ -*mj*-clean ring if and only if *R* is strongly *mj*-clean ring and $a \in U(R)$. If *R* is strongly *mj*-clean ring, then $e^{m-1}Re^{m-1}$ is strongly mj-clean. Again $e^{m-1}Re^{m-1}$ is strongly $x(x^{m-1} - e^{m-1}a^{m-1})$ -*mj*-clean ring, because $e^{m-1}a^{m-1} \in U(e^{m-1}Re^{m-1})$. \Box

References

- [1] H. Chen, On strongly J-clean rings, Commun. Algebra 38 (2010), no. 10, 3790–3804.
- [2] J. Chen, X. Yang, and Y. Zhou, On strongly clean matrix and triangular matrix rings, Commun. Algebra 34 (2006), no. 10, 3659–3674.
- [3] W. Chen, A question on strongly clean rings, Commun. Algebra **34** (2006), no. 7, 2347–2350.
- [4] L. Fan and Y. Xiande, A note on strongly clean matrix rings, Commun. Algebra 38 (2010), no. 3, 799–806.
- [5] L. Fan and X. Yang, On strongly g(x)-clean rings, arXiv preprint arXiv:0803.3353 (2008).
- [6] J. Han and W.K. Nicholson, Extensions of clean rings, Commun. Algebra 29 (2001), no. 6, 2589–2595.
- [7] T. Koşan, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra 220 (2016), no. 2, 633–646.
- [8] T.Y. Lam, A First Course in Noncommutative Rings, Vol. 131, New York, Springer-Verlag, 1991.
- [9] W.K. Nicholson, Strongly clean rings and fitting's lemma, Commun. Algebra 27 (1999), no. 8, 3583–3592.
- [10] W.K. Nicholson, On exchange rings, Commun. Algebra 25 (1997), no. 6, 1917–1918.
- [11] S. Purkait, T.K. Dutta, and S. Kar, On m-clean and strongly m-clean rings, Commun. Algebra 48 (2020), no. 1, 218–227.
- [12] A.D. Sands, Radicals and Morita context, Commun. Algebra 24 (1973), no. 2, 335–345.
- [13] G. Tang, C. Li, and Y. Zhou, Study of Morita contexts, Commun. Algebra 24 (2014), no. 4, 1668–1681.
- [14] G. Ulucak and A. Kör, On mj-clean ring and strongly mj-clean ring, Turk. J. Math. 46 (2022), no. 5, 2015–2022.