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Abstract

In this paper, we study the uniqueness of meromorphic functions with q−shift difference-differential polynomials
F = [P (f)L(z, f)s](k) and G = [P (g)L(z, g)s](k), where P (z) is a non-constant polynomial with degree n sharing a
finite value. The results of this paper are an extension of the previous theorems given by Harina P. Waghamore and
Rajeshwari S [19].
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1 Introduction

In this article, by meromorphic functions, we will always mean meromorphic functions in the complex plane. We
adopt the standard notations in the Nevanlinna theory of meromorphic functions as explained in [8, 26, 23, 10]. Let
E denote any set of positive real numbers of finite linear measure not necessarily the same at each occurrence. For
a non-constant meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic of f and by S(r, f) any
quantity satisfying S(r, f) = o{T (r, f)} (r → ∞, r ̸∈ E). We denote by T (r) the maximum of T (r, f) and T (r, g) and
by S(r) any quantity satisfying S(r) = o{T (r)} (r → ∞, r ̸∈ E).

We denote and define order of f(z)

ρ(f) = lim
r→∞

sup
log T (r, f)

log r
.

If a non-constant meromorphic function f(z) is of zero order, then ρ(f) = 0. Let f and g be two non-constant
meromorphic functions. We say that f and g share the value a CM (counting multiplicities) if f − a and g − a have
the same zeros with the same multiplicities. Similarly, we say that f and g share the value a IM provided that f − a
and g − a have the same zeros ignoring multiplicities.

Definition 1. [4] For a meromorphic function f and c, q( ̸=) ∈ C, let us now denote its q-shift Eqf and q-difference
operators ∆qf respectively by Eqf(z) = f(qz + c) and ∆qf(z) = f(qz + c)− f(z).
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For further generalization of ∆qf(z), we now define the q-difference operator of an meromorphic function f as as
L(z, f) = b1f(qz + c) + b0f(z), where b1( ̸= 0) and b0 are complex constants. For s ∈ N, let us define

λb0 =

{
1, if b0 ̸= 0,

0, if b0 = 0,

In recent times, many mathematicians are working on difference equations, the difference product and the q-
difference analogues the value distribution theory of entire and meromorphic functions in the complex plane (see
[2, 3, 9, 15, 16, 17, 18]).

In 1959, Hayman [7] proved that fnf
′
takes every non-zero complex value infinitely often if n ≥ 3. Yang and Hua

[24] obtained some results about the uniqueness problems for entire functions. Since then the difference has become
a subject of great interest (see [11, 12, 27, 28]).

Recently, the difference variant of the Nevanlinna theory has been established independently in [5],[6]. With the
development of difference analogue of Nevanlinna theory, many authors gave attention to the uniqueness of difference
and difference operator analogs of Nevanlinna theory. Halburd and Korhonen [5] established a difference analogue of
the Logarithmic Derivative Lemma, and then applied it to prove a number of results on meromorphic solutions of
complex difference equations.

In 2012, K. Liu, X. Liu and T. B. Cao [13] proved the following.

Theorem 1. Let f be a transcendental entire function of ρ2(f) < 1. For n ≥ t(k+1)+1, then [P (f)f(z+c)](k)−α(z)
has infinitely many zeros.

Theorem 2. Let f be a transcendental entire function of ρ2(f) < 1, not a periodic function with period c. If
n ≥ (t+ 1)(k + 1) + 1, then [P (f)(∆cf)

s](k) − α(z) has infinitely many zeros.

Theorem 3. Let f be a transcendental meromorphic function of ρ2(f) < 1. For n ≥ t(k + 1) + 5, then [P (f)f(z +
c)](k) − α(z) has infinitely many zeros.

Theorem 4. Let f be a transcendental meromorphic function of ρ2(f) < 1. For n ≥ (t + 2)(k + 1) + 3 + s, then
[P (f)(∆cf)

s](k) − α(z) has infinitely many zeros.

Theorem 5. Let f(z) and g(z) be transcendental entire functions of ρ2(f) < 1, n ≥ 2k+m+6. If [fn(fm−1)f(z+c)](k)

and [gn(gm − 1)g(z + c)](k) share the value 1 CM, then f = tg, where tn+1 = tm = 1.

Theorem 6. The conclusion of Theorem 1.5 is also valid, if n ≥ 5k + 4m + 12. If [fn(fm − 1)f(z + c)](k) and
[gn(gm − 1)g(z + c)](k) share the value 1 IM.

In 2013, Harina P. Waghamore and Tanuja A [20] extend Theorem 5 and Theorem 6 to meromorphic functions.

Theorem 7. Let f and g be a transcendental meromorphic function with zero order. If n ≥ 4k +m + 8, [fn(fm −
1)f(qz + c)](k) and [gn(gm − 1)g(qz + c)](k) share the 1 CM, then f = tg, where tn+1 = tm = 1.

Theorem 8. Let f and g be a transcendental meromorphic function with zero order. If n ≥ 5k+4m+17, [fn(fm −
1)f(qz + c)](k) and [gn(gm − 1)g(qz + c)](k) share the 1 IM, then f = tg, where tn+1 = tm = 1.

In 2016, Harina P. Waghamore and Rajeshwari S [19] we extend Theorem 7 and Theorem 8 to difference polynomials
and obtain the following results.

Theorem 9. Let f and g be a transcendental meromorphic functions with zero order. If n ≥ 4k+8, [P (f)f(qz+c)](k)

and [P (g)g(qz + c)](k) share the 1 CM, then:

(i) f ≡ tg for a constant t such that td = 1.

(ii) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(w1, w2) = P (w1)w1(qz + c)− P (w2)w2(qz + c).
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Theorem 10. Let f and g be a transcendental meromorphic functions with zero order. If n ≥ 10k+14, [P (f)f(qz+
c)](k) and [P (g)g(qz + c)](k) share the 1 IM, then the conclusion of theorem 1.9 still holds.

In this paper, we replace the term f(qz+ c) and g(qz+ c) in Theorem 9 and Theorem10 and obtained the following
results.

Theorem 11. Let f(z) and g(z) be two transcendental meromorphic functions of zero order, qj and cj are complex
constants, qj ̸= 0 (j = 1 to d) and let k, n be positive integers. Let P (z) = anz

n + an−1z
n−1... + a1z + a0 be a

non-constant polynomial with degree n. If n ≥ 4k + 2λb0 + s(2k + 1) + 4, [P (f)L(z, f)s)](k) and [P (g)L(z, g)s)](k)
share the 1 CM, then:

(i) f(z) = tg(z) for a constant t such that such that td = 1, where d = GCD(λ0 + λ1+, . . . ,+λn),

(ii) f(z) and g(z) satisfy the algebraic equation R(f, g) ≡ 0, where

R(w1, w2) = P (w1)L(z, w1)
s − P (w2)L(z, w2)

s.

Theorem 12. Let f(z) and g(z) be two transcendental meromorphic functions of zero order, qj and cj are complex
constants, qj ̸= 0 (j = 1 to d) and let k, n be positive integers. Let P (z) = anz

n + an−1z
n−1... + a1z + a0 be a

non-constant polynomial with degree n. If n ≥ 10k + 8λb0 + s(2k + 1) + 4, [P (f)L(z, f)s)](k) and [P (g)L(z, g)s](k)
share the 1 IM, then the conclusion of Theorem 1.11 still holds.

Example 1. Let f(z) = sin(z) and g(z) = cos(z), q = 1, k = 0, c = 2π. Hence we have n ≥ 8λb0 + s + 4 and
[P (f)L(z, f)s)](k)=[P (g)L(z, g)s)](k). Therefore [P (f)L(z, f)s)](k) and [P (g)L(z, g)s)](k) share 1 CM. Clearly, we get
f = tg for a constant t such that such that td = 1, where d = GCD(λ0 + λ1+, . . . ,+λn).

Example 2. Let P (z) = (z − 1)6(z + 1)6z11, f(z) = sin(z), g(z) = cos(z). Take s = 1 = q, c = 2π, k = 0 then it is
easy to verify that, [P (f)L(z, f)s)](k) and [P (g)L(z, g)s)](k) share 1 CM. Here f and g satisfy the algebraic equation
R(f, g) = 0, i.e.,

P (f)L(z, f)s − P (g)L(z, g)s = 0.

2 Lemmas

In this section, we summarize some lemmas, which will be used to prove our main results.

Lemma 1. [14] Let f(z) be a non-constant zero order meromorphic function and let q, c be a nonzero complex
number. Then on a set of logarithmic density 1, we have

m

(
r,
f(qz + c)

f(z)

)
= S(r, f).

Lemma 2. [22] Let f(z) be a non-constant meromorphic function of zero order and let q, c be two nonzero complex
constants. Then on a set of logarithmic density 1, we have

N(r, f(qz + c)) = N(r, f) + S(r, f).

N

(
r,

1

f(qz + c)

)
= N

(
r,

1

f

)
+ S(r, f).

Lemma 3. [22] Let f(z) be a non-constant meromorphic function of zero order and let q, c be two nonzero complex
constants. Then on a set of logarithmic density 1, we have

T (r, f(qz + c)) = T (r, f) + S(r, f).

Lemma 4. [25] Let f(z) be a non-constant meromorphic function, then

T (r, Pn(f)) = T (r, f) + S(r, f).
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Lemma 5. [11] Let f(z) be a non-constant meromorphic function, and let p, k be a positive integers. Then

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f),

Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f),

Np

(
r,

1

f (k)

)
≤ kN(r, f) +Np+k

(
r,

1

f

)
+ S(r, f).

Lemma 6. [24] Let F and G be non-constant meromorphic functions. If F and G share 1 CM, then one of the
following three cases holds:

(i) max{T (r, F ), T (r,G)} ≤ N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G) + S(r, F ) + S(r,G).

(ii) F ≡ G.
(iii) F.G ≡ 1.

Lemma 7. [21] Let F and G be non-constant meromorphic function sharing the value 1 IM. Let

H =
F

′′

F ′ − 2
F

′

F − 1
− G

′′

G′ + 2
G

′

G− 1
.

If H ̸≡ 0, then

T (r, F ) + T (r,G) ≤2

(
N2

(
r,

1

F

)
+N2(r, f) +N2

(
r,

1

G

)
+N2(r,G)

)
+ 3

(
N(r, F ) +N

(
r,

1

F

)
+N(r,G) +N(r,

1

G

))
+ S(r, F ) + S(r,G).

Lemma 8. Let f(z) be a transcendental meromorphic function of zero order and F = P (f)L(z, f)s, qj (̸= 0) are
complex constants, n, d be a positive integers. Then

(n− s)T (r, f) + S(r, f) ≤ T (r, F ).

Proof . From first fundamental theorem, Lemma 4 and Lemma 1, we obtain

(n+ 1)T (r, f) =T (r, P (f(z))) + S(r, f) ≤ T

(
r,

f(z)F

L(z, f)s

)
+ S(r, f),

≤T (r, F ) + T

(
r,
L(z, f)s

f(z)

)
+ S(r, f),

≤T (r, F ) +m

(
r,
L(z, f)s

f(z)

)
+N

(
r,
L(z, f)s

f(z)

)
+ S(r, f),

≤T (r, F ) + (s+ 1)T (r, f) + S(r, f),

Therefore, (n− s)T (r, f) + S(r, f) ≤ T (r, F ) on a set of logarithmic density 1. □

Lemma 9. Let f(z) and g(z) be a transcendental meromorphic function of zero order. If n ≥ 2k + 2λ+ (k + 1)(1 +
d) + d+ 2 and

[P (f)L(z, f)s)](k) = [P (g)L(z, g)s)](k). (2.1)

Then

(i) f(z) = tg(z) for a constant t such that such that td = 1, where d = GCD(λ0 + λ1+, . . . ,+λn),

(ii) f(z) and g(z) satisfy the algebraic equation R(f, g) ≡ 0, where

R(w1, w2) = P (w1)L(z, w1)
s − P (w2)L(z, w2)

s.
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Proof . From (2.1), we have
P (f)L(z, f)s = P (g)L(z, g)s + α(z),

where α(z) is a polynomial of degree at most k − 1. Suppose α(z) ≡ 0, then we get

P (f)L(z, f)s

α(z)
=

P (g)L(z, g)s

α(z)
+ 1

Therefore from Lemma 8, and the second fundamental Theorem, we have

(n− s)T (r, f) ≤T

(
r,
P (f)L(z, f)s

α(z)

)
+ S(r, f)

≤N

(
r,
P (f)L(z, f)s

α(z)

)
+N

(
r,

α(z)

P (f)L(z, f)s

)
+N

(
r,

α(z)

P (g)L(z, g)s

)
+ S(r, f)

≤N(r, P (f)L(z, f)s) +N

(
r,

1

P (f)L(z, f)s

)
+N

(
r,

1

P (g)L(z, g)s

)
+ S(r, f),

≤N(r, f) + sT (r, f) + T (r, f) + λb0T (r, f) + T (r, g) + λT (r, g) + S(r, f),

≤[λb0 + s+ 2]T (r, f) + [1 + λb0 ]T (r, g) + S(r, f).

(2.2)

Similarly,
(n− s)T (r, g) ≤ [λb0 + s+ 2]T (r, g) + [1 + λ]T (r, f) + S(r, g). (2.3)

From (2.2) and (2.3), we obtain

[n− 2λb0 − 2s− 3]{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

This is a contradiction to n > 2k + 2λb0 + (k + 1)(1 + s) + s+ 2. Therefore α(z) ≡ 0, which implies that

P (f)L(z, f)s = P (g)L(z, g)s. (2.4)

That is

(anf
n + an−1f

n−1 + · · ·+ a1f + a0)(L(z, f)s) = (ang
n + an−1g

n−1 + · · ·+ a1g + a0)(L(z, g)s)vj ).

Letting h(z) =
f(z)

g(z)
, we consider the following cases

Case 1. If h(z) is a constant then substituting f(z) = h(z)g(z) in (2.4), we have

(an(gh)
n + an−1(gh)

n−1 + · · ·+ a1(gh) + a0)(L(z, g)sL(z, g)) = (ang
n + an−1g

n−1 + · · ·+ a1g + a0)(L(z, g)s).

This implies that

L(z, g)s[angn(hn+λ − 1) + an−1g
n−1(hn+λ−1 − 1) + · · ·+ a0(h

λ − 1)] = 0 (2.5)

where an is non-zero complex constant and L(z, g)s ̸≡ 0, since g(z) is non-constant meromorphic function, then from
(2.5)

ang
n(hn+λ − 1) + an−1g

n−1(hn+λ−1 − 1) + · · ·+ a0(h
λ − 1) = 0. (2.6)

If an( ̸≡ 0) and an−1 = an−2 = · · · = a1 = a0 = 0 then from (2.6) and g is non-constant meromorphic function, we
get hn+λ − 1 = 0 implies hn+λ = 1. If an(̸≡ 0) and there exist ai ̸= 0 [i ∈ {0, 1, 2, ..., n}]. Suppose that hn+λ ̸= 1,
from (2.6), we have T (r, g) = S(r, g). Which is contradiction with transcendental function g. Then hn+λ = 1, similar
to this discussion we can see that hn+λ = 1, where aj ̸≡ 0, for some j = 0, 1, 2, ..., n. Thus we have f(z) = tg(z), for a
constant t such that td = 1, where d = GCD(λ0 + λ1 + · · ·+ λn).

Case 2. Suppose h(z) is not cnstant, then f(z) and g(z) satisfy the algebraic equation R(f(z), g(z)) ≡ 0, where

R(w1, w2) = P (w1)L(z, w1)
s − P (w2)L(z, w2)

s.

□
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3 Proof of the Theorems

Theorem 1.11

Proof . Let F = [P (f)L(z, f)s](k) and G = [P (g)L(z, g)s](k). Thus F and G share the value 1 CM. From Lemma 5
and f is a transcendental meromorphic function, then

T (r, F ) ≤ T (r, P (f)L(z, f)s) + kN(r, f) + S(r, P (f)L(z, f)s). (3.1)

combining (3.1) with Lemma 8, we have S(r, F ) = S(r, f). We also have S(r,G) = S(r, g), from the same reason as
above, from Lemma 5 we obtain

N2

(
r,

1

F

)
= N2

(
r,

1

[P (f)L(z, f)s](k)

)
≤ T (r, F )− T (r, P (f)L(z, f)s) +Nk+2

(
r,

1

P (f)L(z, f)s

)
+ S(r, f).

(3.2)

Thus, from Lemma 8 and (3.2) we get

(n− s)T (r, f) ≤ T (r, F )−N2

(
r,

1

F

)
+Nk+2

(
r,

1

P (f)L(z, f)s

)
+ S(r, f). (3.3)

We have
N(r, F ) ≤ (1 + s)T (r, f) + S(r, f), (3.4)

Nk+2

(
r,

1

F

)
≤ (k + 2 + λb0)T (r, f) + S(r, f), (3.5)

Nk+1

(
r,

1

F

)
≤ (k + 1 + λb0)T (r, f) + S(r, f). (3.6)

Similarly,
N(r,G) ≤ (1 + s)T (r, g) + S(r, g), (3.7)

Nk+2

(
r,

1

G

)
≤ (k + 2 + λb0)T (r, g) + S(r, g), (3.8)

Nk+1

(
r,

1

G

)
≤ (k + 1 + λb0)T (r, g) + S(r, g). (3.9)

From Lemma 5, we obtain

N2

(
r,

1

F

)
≤Nk+2

(
r,

1

F

)
+ kN(r, F ) + S(r, F ),

≤Nk+2

(
r,

1

P (f)L(z, f)s

)
+ kN(r, f) + S(r, f),

≤(k + 2)N

(
r,

1

f

)
+N

(
r,

1

L(z, f)s

)
+ kN(r, f) + S(r, f),

≤(k + 2 + λb0 + k(1 + s))T (r, f) + S(r, f).

(3.10)

Similarly,

N2

(
r,

1

G

)
≤ (k + 2 + λb0 + k(1 + s))T (r, g) + S(r, g). (3.11)

If Lemma 6 is satisfied, which implies that

max{T (r, F ), T (r,G)} ≤ N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G) + S(r, F ) + S(r,G).
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Thus, combining (3.10) and (3.11), we obtain

(n− s){T (r, f) + T (r, g)} ≤2[N(r.f) +N(r, g)] + 2Nk+2

(
r,

1

P (f)L(z, f)s

)
+ 2Nk+2

(
r,

1

P (g)L(z, g)s

)
+ S(r, f) + S(r, g),

≤2(k + 2 + λb0 + k(1 + s)){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Which is contradiction with n ≥ 4k + 2λb0 + s(2k + 1) + 4. Hence F = G or FG = 1. From Lemma 9, we get
f(z) = tg(z), for a constant t such that td = 1, where d = GCD(λ0 + λ1+, . . . ,+λn), and f(z) and g(z) satisfy the
algebraic equation R(f(z), g(z) ≡ 0, where

R(w1, w2) = P (w1)L(z, w1)
s − P (w2)L(z, w2)

s.

□

Theorem 1.12

Proof . Let F = [P (f)L(z, f)s](k) and G = [P (g)L(z, g)s](k). Let H be defined as in Lemma 7. Assume that H ̸≡ 0,
from Lemma 5, we get

T (r, F ) + T (r,G) ≤2

[
N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2(r, F ) +N2(r,G)

]
≤
[
N(r, F ) +N(r,G) +N

(
r,

1

F

)
+N

(
r,

1

G

)]
+ S(r, F ) + S(r,G).

(3.12)

Combining (3.10)-(3.11) and Lemma 5, we get

(n− d)[T (r, f) + T (r, g)] ≤T (r, F ) + T (r,G)−N2

(
r,

1

F

)
−N2

(
r,

1

G

)
+ 2Nk+2

(
r,

1

P (f)L(z, f)s

)
+ 2Nk+2

(
r,

1

P (g)L(z, g)s

)
+ S(r, f) + S(r, g),

≤2[N(r.f) +N(r, g)] + 2Nk+2

(
r,

1

P (f)L(z, f)s

)
+ 2Nk+2

(
r,

1

P (g)L(z, g)s

)
3

[
N

(
r,

1

F

)
+N

(
r,

1

G

)]
+ S(r, f) + S(r, g),

≤2(k + 2 + λb0 + k(1 + s)){T (r, f) + T (r, g)}+ 3(2k + 2λb0){T (r, f) + T (r, g)}
+ S(r, f) + S(r, g)

≤(10k + 8λb0 + 2ks+ 4){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Which is contradiction with n ≥ 10k + 8λb0 + s(2k + 1) + 4. Thus we get H ≡ 0. Therefore, we get F = G or
FG = 1. From Lemma 9, we get f(z) = tg(z), for a constant t such that td = 1, where d = GCD(λ0+λ1+, . . . ,+λn),
and f(z) and g(z) satisfy the algebraic equation R(f(z), g(z) ≡ 0, where

R(w1, w2) = P (w1)L(z, w1)
s − P (w2)L(z, w2)

s.

□
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