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Abstract

In this present study, we reduce the fractional reaction–diffusion equation to a traditional differential equation using
the fractional complex transformation and consider the Landau Lifshitz (LLG) equation. Moreover, by using the
generalized exponential rational function method and Kudryashov’s method respectively we extract new exact and
solitary wave solutions for these equations. Some plots of some presented new solutions are represented to exhibit
wave characteristics. All results in this paper are essential to understand the physical meaning and behavior of
the investigated equation that sheds light on the importance of investigating various nonlinear wave phenomena in
mathematical physics.
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1 Introduction

Recently, fractional calculus has played an important role in many fields of science, and there are many ways
to define the fractional derivative. For example, the Riemann–Liouville derivative, Jumarie’s modified Riemann–
Liouville derivative [9], conformal fractional derivative [10] and so on. However, Liu has already proved that the
formulae proposed by Jumarie about the modified Riemann–Liouville derivative are wrong [14, 15]. On the other
hand, since the usual derivative rules hold for conformal fractional derivatives, the corresponding fractional differential
equations can be reduced to usual differential equations. In this paper, we consider the (1+1)-dimensional general
fractional nonlinear reaction-diffusion equation by using the definition of the conformal fractional derivative, namely

∂αu

∂tα
= a

(
un+1

)
x
+ b

(
um+1

)
xx

+ λu
(
1− uk

)
, (1.1)

where ∂α

∂tα represents the conformal fractional derivative, n,m and kare nature numbers, λ is an arbitrary constant
and uis the function to be determined and Landau-Lifshitz (LLG) equation can be written down as

∂

∂t
S = SΛ∆S− βSΛ (SΛ∆S) . (1.2)
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Here, S = (S1 (t, x⃗) , S2 (t, x⃗) , S3 (t, x⃗)) ∈ S2 → R3 , α ≥ 0, α 2+β2= 1, Λ denotes the cross product. The term
multiplying with α represents the exchange interaction, while β-term denotes to the Gilbert damping term. The
conformal fractional derivative is defined by

Dα
t (u (t)) = lim

h→0

u
(
t+ htα−1

)
− u (t)

h
.

From Ref. [10], if the limitation (1.2) exists, then we have the following basic properties

1) Dα
t (u (t)± v (t)) = Dα

t (u (t))±Dα
t (v (t)) ,

2) Dα
t (u (t) v (t)) = Dα

t (u (t)) v (t)±Dα
t (v (t))u (t) ,

3) Dα
t (u (t) /v (t)) =

Dα
t (u(t))v(t)−Dα

t (v(t))u(t)
v2(t) ,

4) Dα
t (u (t)) = t1−αDα

t (u (t)) .

The detailed proofs can be found in [10]. For example for proof (1.3), let h = εt1−α in definition (3-1) and then
ε = htα−1. Therefore (Dα

t = Tα)

Tα(f)(t) = limε→0
f(t+εt1−α)−f(t)

ε

= limh→0
f(t+h)−f(t)

ht1−α

= t1−α limh→0
f(t+h)−f(t)

h

= t1−α dfdt (t)

Other results about fractional calculus and conformable derivatives can be found in [1, 3, 4, 5, 6, 7, 8, 13, 19, 21].

Eq. (1.1) contains many famous equations, for example, if a = λ = m = 0 and α = 1, then it becomes the
well-known linear diffusion equation

∂u

∂t
= uxx. (1.3)

Alternatively, if n = m = 0 and a = λ = 1, then Eq. (1.1) reduces to a Fisher-type equation. If we also set
k = 1then we get the fractional Fisher equation

∂αu

∂tα
= uxx + u(1− u). (1.4)

Moreover, if we take λ = 0 and a = b = 1, Eq. (1.1) just becomes the fractional Fokker–Planck (FP) equation

∂αu

∂tα
= ux

n+1 + uxx
m+1 (1.5)

The reaction-diffusion equation has been studied for many years and in a large number of studies. For example, E.
V. Krishnan used the hyperbolic function method to obtain exact travelling wave solutions to the reaction-diffusion
equation [12]. Deng [11] used the finite-element method to solve the space and time fractional FP equation. He
proved that the convergence order is O(k2−α + hµ), where k is the time step size and h is the space step size. Lie
symmetry analysis of the fractional FP equation was conducted by M. S. Hashemi, and he found exact analytical
solutions using the reduction method [4]. Mao used the canonical-like transformation method and the trail equation
method to investigate the Chaffee-infante equation [2], which is another famous reaction-diffusion equation. Some
new solutions in the form of the elliptic functions were shown in that study, which is very difficult to obtain by other
methods [16, 18, 20]. In this paper, we focus on constructing exact solutions to Eq. (1.1). Of course, there is no
exact solution to the general equation, so we present several situations where an exact solution exists and show how to
obtain it by various methods. Discussions about anomalous diffusion are presented and in order to better understand
the dynamical properties of the solutions, specific examples are given and plotted.

2 Basic structure for generalized exponential rational function method

Let us consider a typical non-linear PDE forq = q (x, t), giving by

N (q, qx, qt , qxx, . . .) = 0. (2.1)
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Under the wave transformations of q (x, t) = Q(ξ)andξ = σx− lt, equation (1.2) becomes an ordinary differential
equation given by:

N(Q, σQ′,−lQ′, σ2Q′′, . . .) = 0. (2.2)

Now, we assume that Equation (2.2) admits the exact solution giving by

Q(ξ) = A0 +

N∑
k=1

AkΦ(ξ)
k +

N∑
k=1

BkΦ(ξ)
−k, (2.3)

where

Φ(ξ) =
m1e

n1ξ + m2e
n2ξ

m3en3ξ + m4en4ξ
(2.4)

and mi, ni and A0, Ak, and Bk’s are disposal parameters. Finally, N is a constant, which is evaluated by applying the
homogeneous balance to equation (2.4).

Inserting Equation (2.3) into (2.2) with equation (2.4), and then gathering all possible powers of ξi = eniξ for
i = 1, . . . , 4, forms a polynomial equation as P (ε1, ε2, ε3, ε4) = 0. Equating coefficients of P to zero, one derives
a simultaneous system of equations regarding mi, ni(1 ≤ i ≤ 4), and σ, l, A0, Ak and Bk (1 ≤ k ≤ N).

Finally, solving the non-linear system and substituting the obtained solutions in Equations (1.3) and (1.4), the
explicit form of the solutions of (1.2) will be extracted.

3 Application to the fractional reaction–diffusion equation

In this case we consider the fractional transformation is given by:

τ =

(
1

α

)
tα. (3.1)

Using this, Eq. (1.1) is reduced to the following traditional partial differential equation:

∂u

∂τ
= a

(
un+1

)
x
+ b

(
um+1

)
xx

+ λu
(
1− uk

)
, (3.2)

Now we will use the traveling wave transformation:

u (x, τ) = U (ξ) , ξ = rτ + lx
then Eq. (3.2)

rU ′ = al
(
Un+1

)′
+ bl2

(
Um+1

)′′
+ λU

(
1− Uk

)
. (3.3)

In this section, we consider n = m = 0 and λ = k = 1 so we have

rU ′ = alU ′ + bl2U ′′ + U (1− U) . (3.4)

So
U − U2 + (al − r)U ′ + bl2U ′′ = 0. (3.5)

The homogeneous balance in equation (3.5) suggests N = 2. Setting N = 2 along with equation (2.3), one gets

U(ξ) = A0 +A1Φ(ξ) +A2Φ(ξ)
2 +

B1

Φ(ξ)
+

B2

Φ(ξ)2
. (3.6)

Inserting (3.6) into (3.5) and pursuing the steps outlined for the method, the analytical solutions for the equation
(1.1) will be determined consequently.

Family 1: In order we consider r = [−1, 0, 1, 1] and s = [1, 0, 1, 0], then we have equation (3.3) as follows

Ψ (ξ) = − 1

1 + eξ
. (3.7)
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By substituting (3.7) in (3.5) along with (3.6)

A0= 0,A1 =
1

2
, A2 = −1

2
, B1 = 1, B2 = 0, r =

1

2
, l =

1

8
.

So

u1 (x, t) =
1

2

(
− 1

1 + e
1
2 (

1
α )tα+ 1

8x

)
− 1

2

(
− 1

1 + e
1
2 ( 1

α )tα+1
8
x

)2

−
(
1 + e

1
2 ( 1

α )tα+1
8
x
)2

.

Family 2: in this set we consider r = [3, 1, 1, 1] and s = [1, 1, 1, 1], then we have equation (3.9) as follows

Ψ (ξ) = −2 cosh (ξ) + sinh (ξ)

cosh (ξ)
. (3.8)

By substituting (3.8) in (3.5) along with (3.6)

A0=
1

2
, A1 = −1

2
, A2 = 0, B1 = 0, B2 = 0, r = −1

2
, l = −1

8
.

So

u2 (x, t) =
1

2
− 1

2

(
−
2 cosh

(
− 1

2

(
1
α

)
tα − 1

8x
)
+ sinh

(
− 1

2

(
1
α

)
tα − 1

8x
)

cosh
(
− 1

2

(
1
α

)
tα − 1

8x
) )

.

Image 1: Plot3d of u2 (x, t) for α = 0.3 and α = 0.9 respectively for x = 0.π, t = 0.π.

Family 3: in this set we consider r = [1; 1; 1; 1] and s = [1, 1, 1, 1], then we have equation (3.3) as follows

Ψ (ξ) = −cosh (ξ)

sinh (ξ)
. (3.9)

By substituting (3.9) in (3.5) along with (3.6)

A0=
1

2
, A1 =

1

2
, A2 = 0, B1 = −1, B2 = 1, r = 1, l = −1.

So

u3 (x, t) =
1

2
+

1

2

(
−
cosh

( (
1
α

)
tα − x

)
sinh

( (
1
α

)
tα − x

))+
sinh

( (
1
α

)
tα − x

)
cosh

( (
1
α

)
tα − x

) +( sinh
( (

1
α

)
tα − x

)
cosh

( (
1
α

)
tα − x

))2

.

Image 2: Plot3d of u2 (x, t) for α = 0.3 and α = 0.9 respectively for x = 0.π, t = 0.π.
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Family 4: in this set we consider r = [3; 2; 1; 1] and s = [1; 0; 1; 0], then we have equation (3.3) as follows

Ψ (ξ) =
3eξ + 2

1 + eξ
. (3.10)

By substituting (3.10) in (3.5) along with (3.6)

A0= 0, A1 = 0, A2 = −1

2
, B1 = 0, B2 = 1, r = −1

2
, l =

3

8
.

So

u4 (x, t) = − 1

2

(
3e−

1
2 (

1
α )t

α+ 3
8x + 2

1 + e−
1
2 (

1
α )tα+ 3

8x

)2

+

(
1 + e−

1
2 (

1
α )t

α+ 3
8x

3e−
1
2 (

1
α )tα+ 3

8x + 2

)2

.

4 Travelling wave solution of the LLG equation via Kudryashov method

Landau-Lifshitz (LLG) equation (see [12]) can be written down as.

∂

∂t
S = SΛ∆S− βSΛ (SΛ∆S) . (4.1)

Here, S = (S1 (t, x⃗) , S2 (t, x⃗) , S3 (t, x⃗)) ∈ S2 → R3 , α ≥ 0, α 2+β2= 1,Λ denotes the cross product. The term
multiplying with α represents the exchange interaction, while β-term denotes to the Gilbert damping term. According
to the setting of (4.1), S lies on S2 which allow us to use the conversion as follows

(S1, S2, S3,)=

(
2R (W)

1 +WW̄
,

2I (W)

1 +WW̄
,
1−WW̄

1 +WW̄

)
, and W =

S1+iS2
1 + S3

(4.2)

where denotes the conjugate complex numbers of W ; the real part and the imaginary part of the complex number W
are R (W ) and I (W ) respectively.

According to (4.1) and (4.2), we can obtain the complex equation of W as follows

− (α+βi) iWt= ∆W− 2W̄

1+ |W|2
<∇W >, (4.3)

where <A>= A. A denotes the inner product of the vectors. Under the arbitrary integer n, we set Ki i = (1,2, . . . , n)

are constants satisfying Σni=0K
2
i = 1; K⃗ = (K1,K2,K3, . . . ,Kn) and r=

−→
K . −→x . In this situation, (4.3) transform into

− (α+ βi) iWt =Wrr −
2W̄ ⟨Wr⟩
1 + |W |2

. (4.4)

In this section, we construct a travelling wave solution without the Gilbert term. Assuming α = 1 and β = 0, we
suppose that the solution of (4.4) under the condition of Kudryashov method is as follows

Wc,w (t,̄r)= e−iwtϕ (r̄−ct) eiψ(r̄−ct) (4.5)

where c and w are constants undetermined. Here we assume −c2 + 4w > 0. Substitute (4.5) into (4.4), the separate
and the real part and the virtual part respectively as

ϕ (ξ)
(
w − 2 (ξ)

2
+ cψ′ (ξ)− ψ′ (ξ)

2
)
+ ϕ (ξ)

3
(
w + cψ′ (ξ) + ψ′ (ξ)

2
)
+ ϕ (ξ)

2
ϕ′′ (ξ) = 0 (4.6)

and
ϕ′ (ξ) (−c+ 2ψ′ (ξ))− ϕ (ξ)

2
ϕ′ (ξ) (c+ 2ψ′ (ξ)) + ϕ (ξ)ψ′′ (ξ) + ϕ (ξ)

3
ψ′′ (ξ) = 0 (4.7)

where ξ = r − ct. (4.6)-(4.7) are the nonlinear constant coefficients ordinary differential equation system with the
variable ξ. According to (4.7), we can obtain a relationship between ψ and ϕ

ψ′ (ξ) =

(
1 + ϕ (ξ)

2
)(

−c+ 2C1 + 2C1 (ξ)
2
)

2ϕ (ξ)
2 , (4.8)
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where C1 is arbitrary constant. If we set C1=0, we have

ψ′ (ξ) = −
c
(
1 + ϕ (ξ)

2
)

2ϕ (ξ)
2 . (4.9)

Substituting (4.9) into (4.6) to get

c2 + 3c2 ϕ (ξ)
2
+
(
c2 − 4w

)
ϕ (ξ)

6
+ ϕ (ξ)

4
(
3c2 − 4w + 8ϕ′ (ξ)

2
ϕ (ξ)

6
)
−

ϕ (ξ)
3
(
1 + ϕ (ξ)

2
)
ϕ′′ (ξ) = 0,

(4.10)

to solve (4.10), we assume that the solution ϕ (ξ) of the nonlinear Eq. (4.10) can be presented as

ϕ (ξ) =

M∑
i=0

AiΥ
i (ξ) , (4.11)

and Υ satisfied in following Riccati equation

Υ′(ξ) = Υ2(ξ)−Υ(ξ). (4.12)

Eq. (1.5) gives the solution, as follows:

Υ(ξ) =
1

1 + eξ
. (4.13)

Substituting Eqs (4.12)-(4.11) into Eq. (4.10) and collecting all terms with the same order of Υj together, we
convert the left-hand side of Eq. (4.10) into a polynomial in Υj . Setting each coefficient of each polynomial to zero,
we derive a set of algebraic equations forA0, A1, A2 and h. By solving these algebraic equations, we obtain several
case of variables solutions [11, 12].

Remark: This Riccati equation (4.12) also admits the following exact solutions:

ϕ1(ξ) =
1

2

(
1− tanh

[
ξ

2
− ε ln ξ0

2

])
, ξ0 > 0, (4.14)

ϕ2(ξ) =
1

2

(
1− coth

[
ξ

2
− ε ln ξ0

2

])
, ξ0 < 0. (4.15)

Stage 3 : By substituting the obtained solutions in stage 2 into Eq. (4.10) along with general solutions of Eq.
(4.12), finally generates new exact solutions for the nonlinear PDE (1.2).

5 Results

By Kudryashov’s method, the solution of (4.10) is assumed as

ϕ (ξ) = A1Υ(ξ) +A0,

where A1 and A0are constants. Substituting (3.5) into (3.3) and comparing the coefficients of alike powers of Υ (ξ)
provides algebraic system of equations. After solving the system, the Ai, i = 0, 1 are obtained and produces following
new sets of solution for (4.10).

Case-1

A1 =
12

5
, A0 =

3

4
, c = −1, w =

1

2
.

From (2.3) we have

ψ (ξ) = −1

2
c
(
ϕ−1 (ξ) + ϕ (ξ) + 2

)
.

So

ψ (ξ) = −1

2
c

((
A1

1

1 + er̄−ct
+A0

)−1

+

(
A1

1

1 + er̄−ct
+A0

)
+ 2

)
.
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So, the exact solution for (1.2) is constructed as

wc,m (t, r̄) = e−
1
2 it

(
12

5

1

1 + er̄+t
+

3

4

)
e

1
2 i

((
12
5

1

1+er̄+t +
3
4

)−1
+
(

12
5

1

1+er̄+t +
3
4

)
+2

)
.

Image 3: Real part of wc,m (t, r̄) Image 4: Imaginarily part of wc,m (t, r̄)

Case-2:

A1 = −12

5
, A0 = −3

4
, c = −1

2
, w = 1.

The exact solution for (1.2) is obtained as

wc,m (t, r̄) = e−it
(
−12

5

1

1 + er̄+
1
2 t

− 3

4

)
e
− 1

4 i

((
− 12

5
1

1+e
r̄+1

2
t
− 3

4

)−1

+

(
− 12

5
1

1+e
r̄+1

2
t
− 3

4

)
+2

)
.

Case-3 A1 = − 1
2 , A0 = −1, c = 3

2 , w = −1 A1 = − 1
2 , A0 = −1, c = 3

2 , w = −1.

The exact solution of (1.2) is attained as

wc,m (t, r̄) = eit
(
−1

2

1

1 + er̄−
3
2 t

− 1

)
e
− 3

4 i

((
− 1

2
1

1+e
r̄− 3

2
t
−1

)−1

+

(
− 1

2
1

1+e
r̄− 3

2
t
−1

)
+2

)
.

Case-4

A1 =
1

2
, A0 = 1, c = −3

2
, w = 1.

The exact solution for (1.2) is given by

wc,m (t, r̄) = e−it
(
1

2

1

1 + er̄+
3
2 t

+ 1

)
e

3
4 i

((
1
2

1

1+e
r̄+3

2
t
+1

)−1

+

(
1
2

1

1+e
r̄+3

2
t
+1

)
+2

)
.

6 Concluding remarks

In this paper, some new solitary soliton solutions of the fractional reaction-diffusion equation and Landau-Lifshitz
(LLG) equation are obtained with the aid of efficient analytic methods. The structure considered for the equation
consists of a series of arbitrary parameters that lead to many well-known models by considering certain options for
them. One of the main advantages of this method is the determination of different categories of solutions for the
equation in a single framework.
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