Fekete-Szegö problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial

Yunus Korkmaz, İbrahim Aktaș*
Karamanoğlu Mehmetbey University, Kamil Özdağ Science Faculty, Department of Mathematics, Karaman, Türkiye

(Communicated by Mugur Alexandru Acu)

Abstract

This investigation deals with two new subclasses of analytic and bi-univalent functions defined by Bernoulli polynomial. In this paper, coefficient estimation and Fekete-Szegö problems are solved for these newly defined function subclasses. In addition, certain remarks are indicated for the subclasses of bi-starlike and bi-convex functions.

Keywords: Bi-univalent function, coefficient estimates, Fekete-Szegö functional, Bernoulli polynomials 2020 MSC: Primary 30C45; Secondary 11B68

1 Introduction

Let \mathcal{A} denote the class of all analytic functions in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$, which are of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

It is clear that the function f of the form (1.1) satisfy normalization conditions $f(0)=0$ and $f^{\prime}(0)=1$. By \mathcal{S} we show the subclass of \mathcal{A} consisting of all functions, which are univalent in Δ. It is well-known that the familiar Koebe- $\frac{1}{4}$ theorem [9] makes sure that the image of Δ under every function $f \in \mathcal{S}$ contains a disk with radius $\frac{1}{4}$. Thus, every function $f \in \mathcal{S}$ has an inverse f^{-1} satisfying

$$
f^{-1}(f(z))=z, \quad(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

It is emphasize here that every inverse function f^{-1} need not to be univalent in Δ. If f and f^{-1} are univalent in Δ, then $f \in \mathcal{S}$ is said to be bi-univalent in Δ, and the class of all analytic and bi-univalent functions defined in the unit disk Δ is donated by Σ. By using series expression of the function f of the form (1.1) one can see that inverse function f^{-1} may be expressed as below:

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots:=g(w) \tag{1.2}
\end{equation*}
$$

[^0]It is known that the functions

$$
l_{1}(z)=\frac{z}{1-z} \text { and } l_{2}(z)=\frac{1}{2} \log \frac{1+z}{1-z}
$$

are in the function class \mathcal{S}. Moreover, the inverses of these functions are, respectively,

$$
l_{1}^{-1}(w)=\frac{w}{1+w} \text { and } l_{2}^{-1}(w)=\frac{e^{2 w}-1}{e^{2 w}+1}
$$

Also, the functions $l_{1}^{-1}(w)$ and $l_{2}^{-1}(w)$ are in the class \mathcal{S}. So, these functions are in the function class Σ and the function class Σ is a non-empty set. In addition, the familiar Koebe function $k(z)=\frac{z}{(1-z)^{2}} \notin \Sigma$, since the third coefficient of the function $k^{-1}(z)$ is -5 and it does not satisfy Bieberbach conjecture.

There are a wide literature on some properties of analytic and bi-univalent functions. In the recent years, numerious papers have been published on this topic. For the recent developments in this field the interested readers can refer to the papers [1, 8, 10, 12, 13, $17,18,20,21,[22,23,24,25,26]$ and references therein.

If the functions f and $F \in \mathcal{A}$, then f is said to be subordinate to F if there exists a Schwarz function w such that

$$
w(0)=0,|w(z)|<1 \text { and } f(z)=F(w(z)) \quad(z \in \Delta)
$$

This subordination is shown by

$$
f \prec F \quad \text { or } \quad f(z) \prec F(z) \quad(z \in \Delta) .
$$

If F is univalent function in Δ, then this subordination is equivalent to

$$
f(0)=F(0), \quad f(\Delta) \subset F(\Delta)
$$

There are comprehensive information about the subordination notion in Monographs written by Miller and Mocanu (see [15]).

In univalent function theory, one of the most attractive problems is known as the Fekete-Szegö problem 11, 14. This problem is related to coefficients of the functions in the class \mathcal{S} and it is expressed below:

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right), \text { for } 0 \leq \mu<1
$$

The fundemental inequality $\left|a_{3}-\mu a_{2}^{2}\right| \leq 1$ is obtained as $\mu \rightarrow 1$. The coefficient functional

$$
F_{\mu}(f)=a_{3}-\mu a_{2}^{2}
$$

on the normalized analytic functions f in the open unit disk Δ has a significant impact on univalent function theory. The Fekete-Szegö problem is known as the maximization problem for functional $\left|F_{\mu}(f)\right|$.

Orthogonal polynomials such as Hermite, Laguerre, Jacobi and Bernoulli polynomials are of great importance in applied sciences. In recent years, mathematicians have built a bridge between geometric function theory and orthogonal polynomials. In [2, 3, 4, 6, 7, 19] the authors defined some new subclasses of analytic and univalent functions by using some orthogonal polynomials and they investigated coefficient estimation and Fekete-Szegö problems for the functions belonging to these function classes. In this paper, we define two new subclasses of analytic and bi-univalent functions by using Bernoulli polynomial and investigate initial coefficient estimation and Fekete-Szegö problems for the functions belonging to new classes.

Bernoulli polynomials are defined the following generating functions (see [16):

$$
\begin{equation*}
F(x, z)=\frac{z e^{x z}}{e^{z}-1}=\sum_{k=0}^{\infty} \frac{B_{k}(x)}{k!} z^{k}, \quad|z|<2 \pi, \tag{1.3}
\end{equation*}
$$

where $B_{k}(x)$ is the k-th Bernoulli polynomial in variable x.

2 The Class $\mathcal{Y}_{\Sigma}^{\mu}(\lambda, \delta)$

In this section we introduce a new function class $\mathcal{Y}_{\Sigma}^{\mu}(\lambda, \delta)$ and investigate initial coefficient bounds estimations and the Fekete-Szegö inequality for this class.

Definition 2.1. Let $\lambda \geq 1, \mu \geq 0$ and $\delta \geq 0$. If the function $f(z) \in \Sigma$ of the form 1.1) satisfies the following conditions, then it is called in the class $\mathcal{Y}_{\Sigma}^{\mu}(\lambda, \delta)$:

$$
\begin{gather*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z) \prec \frac{z e^{x z}}{e^{z}-1}=F(x, z), \tag{2.1}\\
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w) \prec \frac{w e^{x w}}{e^{w}-1}=F(x, w), \tag{2.2}
\end{gather*}
$$

where $\xi=\frac{2 \lambda+\mu}{2 \lambda+1}$ and the function g is of the form 1.2 .
Remark 2.2. Taking $\lambda=1$ and $\delta=\mu=0$ in Definition 2.1 we obtain the class $\mathcal{Y}_{\Sigma}^{0}(1,0)$ of bi-starlike functions and it satisfies the following subordinations:

$$
\begin{align*}
& \frac{z f^{\prime}(z)}{f(z)} \prec \frac{z e^{x z}}{e^{z}-1} \tag{2.3}\\
&=F(x, z), \tag{2.4}\\
& \frac{w g^{\prime}(w)}{g(w)} \prec \frac{w e^{x w}}{e^{w}-1}=F(x, w) .
\end{align*}
$$

Theorem 2.3. Suppose that $\lambda \geq 1, \mu \geq 0$ and $\delta \geq 0$. If $f \in \mathcal{Y}_{\Sigma}^{\mu}(\lambda, \delta)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{\left|B_{1}(x)\right| \sqrt{2\left|B_{1}(x)\right|}}{\sqrt{\left|B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \xi \delta)^{2}\right|}}, \tag{2.5}\\
 \tag{2.6}\\
\left|a_{3}\right| \leq \frac{B_{1}^{2}(x)}{(\lambda+\mu+2 \xi \delta)^{2}}+\frac{\left|B_{1}(x)\right|}{\left|(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)\right|}
\end{gather*}
$$

and for $\eta \in \mathbb{R}$

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{\left|B_{1}(x)\right|}{(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}, & |1-\eta| \leq T(x, \lambda, \mu, \delta) \tag{2.7}\\
\left|B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 B_{1}(x)}{2 \lambda+1}\right)-\eta\right| & , B_{2}(x)(\lambda+\mu+2 \xi \delta)^{2}
\end{array},|1-\eta| \geq T(x, \lambda, \mu, \delta),\right.
$$

where $T(x, \lambda, \mu, \delta)=\frac{\left|B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \xi \delta)^{2}\right|}{2 B_{1}^{2}(x)(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}$.
Proof . Let $f(z) \in \mathcal{Y}_{\Sigma}^{\mu}(\lambda, \delta), \lambda \geq 1, \mu \geq 0$ and $\delta \geq 0$. By Definition 2.1. there are two Schwarz functions $p, r: \Delta \rightarrow \Delta$,

$$
\begin{align*}
p(z) & =p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots, \tag{2.8}\\
r(w) & =r_{1} w+r_{2} w^{2}+r_{3} w^{3}+\cdots \tag{2.9}
\end{align*}
$$

such that

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)=F(x, p(z)) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)=F(x, r(w)) \tag{2.11}
\end{equation*}
$$

where $z, w \in \Delta$. It is well-known the definition of Schwarz function that $\left|p_{i}\right| \leq 1$ and $\left|r_{i}\right| \leq 1$ for $\forall i \in \mathbb{N}$. A basic calculation yields that right hand sides of the equations 2.10 and 2.11) are, respectively,

$$
\begin{equation*}
F(x, p(z))=B_{0}(x)+\left[B_{1}(x) p_{1}\right] z+\left[B_{1}(x) p_{2}+\frac{B_{2}(x)}{2!} p_{1}^{2}\right] z^{2}+\left[B_{1}(x) p_{3}+B_{2}(x) p_{1} p_{2}+\frac{B_{3}(x)}{3!} p_{1}^{3}\right] z^{3}+\cdots \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x, r(w))=B_{0}(x)+\left[B_{1}(x) r_{1}\right] w+\left[B_{1}(x) r_{2}+\frac{B_{2}(x)}{2!} r_{1}^{2}\right] w^{2}+\left[B_{1}(x) r_{3}+B_{2}(x) r_{1} r_{2}+\frac{B_{3}(x)}{3!} r_{1}^{3}\right] w^{3}+\cdots, \tag{2.13}
\end{equation*}
$$

where $B_{0}(x)=1$. In addition, left hand sides of the equations 2.10 and 2.11 are, respectively,

$$
\begin{align*}
& (1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\xi \delta z f^{\prime \prime}(z)= \\
& 1+(\lambda+\mu+2 \delta \xi) a_{2} z+(\mu+2 \lambda)\left[\frac{\mu-1}{2} a_{2}^{2}+\left(1+\frac{6 \delta}{2 \lambda+1}\right) a_{3}\right] z^{2}+\cdots \tag{2.14}
\end{align*}
$$

and

$$
\begin{align*}
& (1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}+\xi \delta w g^{\prime \prime}(w)= \\
& 1-(\lambda+\mu+2 \delta \xi) a_{2} w+(\mu+2 \lambda)\left[\left(\frac{\mu+3}{2}+\frac{12 \delta}{2 \lambda+1}\right) a_{2}^{2}-\left(1+\frac{6 \delta}{2 \lambda+1}\right) a_{3}\right] w^{2}+\cdots \tag{2.15}
\end{align*}
$$

Here, by comparing the coefficients of the equations 2.12 and 2.14 we obtain

$$
\begin{gather*}
(\lambda+\mu+2 \delta \xi) a_{2}=B_{1}(x) p_{1} \tag{2.16}\\
(\mu+2 \lambda)\left[\frac{\mu-1}{2} a_{2}^{2}+\left(1+\frac{6 \delta}{2 \lambda+1}\right) a_{3}\right]=B_{1}(x) p_{2}+\frac{B_{2}(x)}{2!} p_{1}^{2} \tag{2.17}
\end{gather*}
$$

Also, by similar point of view from the equations 2.13 and 2.15 we have

$$
\begin{gather*}
-(\lambda+\mu+2 \delta \xi) a_{2}=B_{1}(x) r_{1} \tag{2.18}\\
(\mu+2 \lambda)\left[\frac{\mu+3}{2}+\frac{12 \delta}{2 \lambda+1} a_{2}^{2}-\left(1+\frac{6 \delta}{2 \lambda+1}\right) a_{3}\right]=B_{1}(x) r_{2}+\frac{B_{2}(x)}{2!} r_{1}^{2} \tag{2.19}
\end{gather*}
$$

Now, from the equations 2.16 and 2.18, it follows that

$$
\begin{gather*}
p_{1}=-r_{1} \tag{2.20}\\
2(\lambda+\mu+2 \delta \xi)^{2} a_{2}^{2}=B_{1}^{2}(x)\left(p_{1}^{2}+r_{1}^{2}\right) \tag{2.21}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{2}(x)\left(p_{1}^{2}+r_{1}^{2}\right)}{2(\lambda+\mu+2 \delta \xi)^{2}} \tag{2.22}
\end{equation*}
$$

Summation of the expressions 2.17 and 2.19 imply that

$$
\begin{equation*}
(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right) a_{2}^{2}=B_{1}(x)\left(p_{2}+r_{2}\right)+\frac{B_{2}(x)}{2}\left(p_{1}^{2}+r_{1}^{2}\right) \tag{2.23}
\end{equation*}
$$

Using equation 2.22 in 2.23 one can easily see that

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}(x)\left(p_{2}+r_{2}\right)}{B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \delta \xi)^{2}} . \tag{2.24}
\end{equation*}
$$

Since $\left|p_{i}\right| \leq 1,\left|r_{i}\right| \leq 1$ for $\forall i \in \mathbb{N}$, by using triangle inequality in 2.24 we can write that

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|B_{1}(x)\right| \sqrt{2\left|B_{1}(x)\right|}}{\sqrt{\left|B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \delta \xi)^{2}\right|}} \tag{2.25}
\end{equation*}
$$

On the other hand, if we subtract 2.17 from (2.19), then we get

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{B_{1}(x)\left(p_{2}-r_{2}\right)}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)} . \tag{2.26}
\end{equation*}
$$

If we replace 2.22 in 2.26 , then we can write that

$$
\begin{equation*}
a_{3}=\frac{B_{1}^{2}(x)\left(p_{1}^{2}+r_{1}^{2}\right)}{2(\lambda+\mu+2 \delta \xi)^{2}}+\frac{B_{1}(x)\left(p_{2}-r_{2}\right)}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)} . \tag{2.27}
\end{equation*}
$$

Now, using triangle inequality in the last equality we deduce

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}^{2}(x)}{(\lambda+\mu+2 \delta \xi)^{2}}+\frac{\left|B_{1}(x)\right|}{\left|(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)\right|} \tag{2.28}
\end{equation*}
$$

Finally, taking into account the equations 2.24 and 2.26 , we can write that

$$
\begin{aligned}
a_{3}-\eta a_{2}^{2}= & \frac{(1-\eta) B_{1}^{3}(x)\left(p_{2}+r_{2}\right)}{B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \delta \xi)^{2}}+\frac{B_{1}(x)\left(p_{2}-r_{2}\right)}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)} \\
= & {\left[\frac{(1-\eta) B_{1}^{3}(x)}{B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \delta \xi)^{2}}+\frac{B_{1}(x)}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}\right] p_{2} } \\
& +\left[\frac{(1-\eta) B_{1}^{3}(x)}{B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \delta \xi)^{2}}-\frac{B_{1}(x)}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}\right] r_{2} \\
= & B_{1}(x)\left\{\left[t(\eta)+\frac{1}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}\right] p_{2}+\left[t(\eta)-\frac{1}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}\right] r_{2}\right\}
\end{aligned}
$$

for $\eta \in \mathbb{R}$, where $t(\eta)=\frac{(1-\eta) B_{1}^{2}(x)}{B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{12 \delta}{2 \lambda+1}\right)-B_{2}(x)(\lambda+\mu+2 \delta \xi)^{2}}$. A straightforward calculation implies here that

$$
\begin{aligned}
\left|a_{3}-\eta a_{2}^{2}\right| & \leq\left|B_{1}(x)\right|\left\{\left|t(\eta)-\frac{1}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}\right|+\left|t(\eta)+\frac{1}{2(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}\right|\right\} \\
& = \begin{cases}\frac{\left|B_{1}(x)\right|}{(\mu+2 \lambda)\left(1+\frac{6 \delta}{12 \lambda+1}\right)}, & |1-\eta| \leq T(x, \lambda, \mu, \delta) \\
\left\lvert\, B_{1}^{2}(x)(\mu+2 \lambda)\left(\mu+1+\frac{\left.12\right|^{3}}{2 \lambda+1}|1-\eta|\right.\right.\end{cases}
\end{aligned}
$$

The proof is thus completed.
Remark 2.4. Taking $\lambda=1$ and $\delta=\mu=0$ in Theorem 2.3 we obtain some bounds for the class $\mathcal{Y}_{\Sigma}^{0}(1,0)$ of bi-starlike functions as below:

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{B_{1}(x) \sqrt{2\left|B_{1}(x)\right|}}{\sqrt{\left|2 B_{1}^{2}(x)-B_{2}(x)\right|}} \tag{2.29}\\
\left|a_{3}\right| \leq B_{1}^{2}(x)+\frac{\left|B_{1}(x)\right|}{2} \tag{2.30}
\end{gather*}
$$

and for some $\eta \in \mathbb{R}$

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{\left|B_{1}(x)\right|}{2}, & |1-\eta| \leq \frac{\left|2 B_{1}^{2}(x)-B_{2}(x)\right|}{4 B_{1}^{2}(x)} \tag{2.31}\\ \frac{2\left|B_{1}(x)\right|^{3}|1-\eta|}{\left|2 B_{1}^{2}(x)-B_{2}(x)\right|}, & |1-\eta| \geq \frac{\left|2 B_{1}^{2}(x)-B_{2}(x)\right|}{4 B_{1}^{2}(x)}\end{cases}
$$

3 The Class $\mathcal{Y}_{\Sigma}(\zeta, \gamma)$

In this section we define a new function class $\mathcal{Y}_{\Sigma}(\zeta, \gamma)$ and determine some bounds for initial coefficients and the Fekete-Szegö functional.

Definition 3.1. Let $\gamma>0$ and $\zeta>0$. If the function $f(z) \in \Sigma$ of the form 1.1 satisfies the following conditions, then it is called in the class $\mathcal{Y}_{\Sigma}(\zeta, \gamma)$:

$$
\begin{align*}
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\zeta) z+\zeta z f^{\prime}(z)}-1\right) & \prec \frac{z e^{x z}}{e^{z}-1} \tag{3.1}\\
1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\zeta) w+\zeta w g^{\prime}(w)}-1\right) & \prec \frac{w e^{x w}}{e^{w}-1} \tag{3.2}
\end{align*}
$$

where the function g is of the form 1.2 .
Remark 3.2. Taking $\zeta=\gamma=1$ in Definition 3.1 we obtain the class $\mathcal{Y}_{\Sigma}(1,1)$ of bi-convex functions and it satisfies the following subordinations:

$$
\begin{align*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & \prec \frac{z e^{x z}}{e^{z}-1}=F(x, z) \tag{3.3}\\
1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)} & \prec \frac{w e^{x w}}{e^{w}-1}=F(x, w) . \tag{3.4}
\end{align*}
$$

Theorem 3.3. Suppose that $\zeta \neq 2,0 \leq \zeta<3$, and $\gamma>0$. If $f \in \mathcal{Y}_{\Sigma}(\zeta, \gamma)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{\gamma\left|B_{1}(x)\right| \sqrt{\left|B_{1}(x)\right|}}{\sqrt{\left|\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma-B_{2}(x) 2(2-\zeta)^{2}\right|}} \tag{3.5}\\
\left|a_{3}\right| \leq \frac{B_{1}^{2}(x) \gamma^{2}}{4(2-\zeta)^{2}}+\frac{\left|B_{1}(x)\right| \gamma}{|3(3-\zeta)|} \tag{3.6}
\end{gather*}
$$

and for $\eta \in \mathbb{R}$

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{\gamma^{2}\left|B_{1}(x)\right|}{3(3-\zeta)}, & |1-\eta| \leq \frac{\left|\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma^{2}-2 B_{2}(x)(2-\zeta)^{2}\right]\right|}{3 \gamma^{2} B_{1}^{2}(x)(3-\zeta)} \tag{3.7}\\ \frac{\gamma^{2}\left|B_{1}(x)\right|^{3}|1-\eta|}{\left|\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma^{2}-2 B_{2}(x)(2-\zeta)^{2}\right]\right|}, & |1-\eta| \geq \frac{\left|\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma^{2}-2 B_{2}(x)(2-\zeta)^{2}\right]\right|}{3 \gamma^{2} B_{1}^{2}(x)(3-\zeta)}\end{cases}
$$

Proof . Let $\zeta \neq 2,0 \leq \zeta<3, \gamma>0$ and $f(z) \in \mathcal{Y}_{\Sigma}(\zeta, \gamma)$. By Definition 3.1. there are two Schwarz functions $u, v: \Delta \rightarrow \Delta$,

$$
\begin{align*}
u(z) & =u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\ldots \tag{3.8}\\
v(w) & =v_{1} w+v_{2} w^{2}+v_{3} w^{3} \ldots \tag{3.9}
\end{align*}
$$

such that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\zeta) z+\lambda z f^{\prime}(z)}-1\right)=F(x, u(z)) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\zeta) w+\zeta w g^{\prime}(w)}-1\right)=F(x, v(w)) \tag{3.11}
\end{equation*}
$$

where $z, w \in \Delta$. It is well-known the definition of Schwarz function that $\left|u_{i}\right| \leq 1$ and $\left|v_{i}\right| \leq 1$ for $\forall i \in \mathbb{N}$. A basic calculation yields that right hand sides of the equations (3.10) and (3.11) are, respectively,

$$
\begin{equation*}
F(x, u(z))=B_{0}(x)+\left[B_{1}(x) u_{1}\right] z+\left[B_{1}(x) u_{2}+\frac{B_{2}(x)}{2!} u_{1}^{2}\right] z^{2}+\left[B_{1}(x) u_{3}+B_{2}(x) u_{1} u_{2}+\frac{B_{3}(x)}{3!} u_{1}^{3}\right] z^{3}+\cdots \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x, v(w))=B_{0}(x)+\left[B_{1}(x) v_{1}\right] w+\left[B_{1}(x) v_{2}+\frac{B_{2}(x)}{2!} v_{1}^{2}\right] w^{2}+\left[B_{1}(x) v_{3}+B_{2}(x) v_{1} v_{2}+\frac{B_{3}(x)}{3!} v_{1}^{3}\right] w^{3}+\cdots, \tag{3.13}
\end{equation*}
$$

where $B_{0}(x)=1$. In addition, left hand sides of the equations 3.10 and 3.11) are, respectively,

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{(1-\zeta) z+\zeta z f^{\prime}(z)}-1\right)=1+\frac{2(2-\zeta)}{\gamma} a_{2} z+\frac{3(3-\zeta) a_{3}-4 \zeta(2-\zeta) a_{2}^{2}}{\gamma} z^{2}+\cdots \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)+w^{2} g^{\prime \prime}(w)}{(1-\zeta) w+\zeta w g^{\prime}(w)}-1\right)=1-\frac{2(2-\zeta)}{\gamma} a_{2} w+\frac{3(3-\zeta)\left(2 a_{2}^{2}-a_{3}\right)-4 \zeta(2-\zeta) a_{2}^{2}}{\gamma} w^{2}+\cdots \tag{3.15}
\end{equation*}
$$

Here, by comparing the coefficients of the equations (3.12) and (3.14) we obtain

$$
\begin{equation*}
\frac{2(2-\zeta)}{\gamma} a_{2}=B_{1}(x) u_{1} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3(3-\zeta) a_{3}-4 \zeta(2-\zeta) a_{2}^{2}}{\gamma}=B_{1}(x) u_{2}+\frac{B_{2}(x)}{2!} u_{1}^{2} \tag{3.17}
\end{equation*}
$$

Also, by similar point of view from the equations (3.13) and (3.15) we have

$$
\begin{equation*}
-\frac{2(2-\zeta)}{\gamma} a_{2}=B_{1}(x) v_{1} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3(3-\zeta)\left(2 a_{2}^{2}-a_{3}\right)-4 \zeta(2-\zeta) a_{2}^{2}}{\gamma}=B_{1}(x) v_{2}+\frac{B_{2}(x)}{2!} v_{1}^{2} \tag{3.19}
\end{equation*}
$$

Now, from the equations (3.16) and 3.18, it follows that

$$
\begin{gather*}
u_{1}=-v_{1} \tag{3.20}\\
8(2-\zeta)^{2} a_{2}^{2}=B_{1}^{2}(x)\left(u_{1}^{2}+v_{1}^{2}\right) \gamma^{2} \tag{3.21}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{2}(x)\left(u_{1}^{2}+v_{1}^{2}\right) \gamma^{2}}{8(2-\zeta)^{2}} \tag{3.22}
\end{equation*}
$$

Summation of the expressions 3.17 and 3.19 imply that

$$
\begin{equation*}
\frac{\left(8 \zeta^{2}-22 \zeta+18\right)}{\gamma} a_{2}^{2}=B_{1}(x)\left(u_{2}+v_{2}\right)+\frac{B_{2}(x) 4(2-\zeta)^{2} a_{2}^{2}}{B_{1}^{2}(x) \gamma^{2}} \tag{3.23}
\end{equation*}
$$

Using equation (3.22) in (3.23) one can easily see that

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}(x)\left(u_{2}+v_{2}\right) \gamma^{2}}{2\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma-B_{2}(x) 2(2-\zeta)^{2}\right]} \tag{3.24}
\end{equation*}
$$

Since $\left|u_{i}\right| \leq 1,\left|v_{i}\right| \leq 1$ for $\forall i \in \mathbb{N}$, by using triangle inequality in 3.24 we can write that

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\gamma\left|B_{1}(x)\right| \sqrt{2\left|B_{1}(x)\right|}}{\sqrt{2\left|\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma-B_{2}(x) 2(2-\zeta)^{2}\right|}} \tag{3.25}
\end{equation*}
$$

On the other hand, if we subtract 3.17 from (3.19), then we get

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{B_{1}(x)\left(u_{2}-v_{2}\right) \gamma}{6(3-\zeta)} \tag{3.26}
\end{equation*}
$$

If we replace 3.22 in 3.26 , then we can write that

$$
\begin{equation*}
a_{3}=\frac{B_{1}^{2}(x)\left(u_{1}^{2}+v_{1}^{2}\right) \gamma^{2}}{8(2-\zeta)^{2}}+\frac{B_{1}(x)\left(u_{2}-v_{2}\right) \gamma}{6(3-\zeta)} \tag{3.27}
\end{equation*}
$$

Now, using triangle inequality in the last equality we deduce

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}^{2}(x) \gamma^{2}}{4(2-\zeta)^{2}}+\frac{\left|B_{1}(x)\right| \gamma}{|3(3-\zeta)|} \tag{3.28}
\end{equation*}
$$

Finally, taking into acount the equations (3.24) and 3.26, we can write that

$$
\begin{aligned}
a_{3}-\eta a_{2}^{2}= & \frac{(1-\eta) B_{1}^{3}(x)\left(u_{2}+v_{2}\right) \gamma^{2}}{2\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma-B_{2}(x) 2(2-\zeta)^{2}\right]}+\frac{B_{1}(x)\left(u_{2}-v_{2}\right) \gamma}{6(3-\zeta)} \\
= & B_{1}(x) \gamma\left[\frac{(1-\eta) B_{1}^{2}(x) \gamma}{2\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma-B_{2}(x) 2(2-\zeta)^{2}\right]}+\frac{1}{6(3-\zeta)}\right] u_{2} \\
& +B_{1}(x) \gamma\left[\frac{(1-\eta) B_{1}^{2}(x) \gamma}{2\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma-B_{2}(x) 2(2-\zeta)^{2}\right]}-\frac{1}{6(3-\zeta)}\right] v_{2} \\
= & B_{1}(x) \gamma\left\{\left[\kappa(\eta)+\frac{1}{6(3-\zeta)}\right] u_{2}+\left[\kappa(\eta)-\frac{1}{6(3-\zeta)}\right] v_{2}\right\}
\end{aligned}
$$

for $\eta \in \mathbb{R}$, where $\kappa(\eta)=\frac{(1-\eta) B_{1}^{2}(x) \gamma}{2\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma-B_{2}(x) 2(2-\zeta)^{2}\right]}$. A straightforward calculation implies here that

$$
\begin{aligned}
\left|a_{3}-\eta a_{2}^{2}\right| & \leq\left|B_{1}(x)\right| \gamma\left\{\left|\kappa(\eta)+\frac{1}{6(3-\zeta)}\right|+\left|\kappa(\eta)-\frac{1}{6(3-\zeta)}\right|\right\} \\
& \leq \begin{cases}\frac{\gamma^{2}\left|B_{1}(x)\right|}{3(3-\zeta)}, & |1-\eta| \leq \frac{\left|\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma^{2}-2 B_{2}(x)(2-\zeta)^{2}\right]\right|}{3 \gamma^{2} B_{1}^{2}(x)(3-\zeta)} \\
\frac{\gamma^{2}\left|B_{1}(x)\right|^{3}|1-\eta|}{\left|\left[\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma^{2}-2 B_{2}(x)(2-\zeta)^{2}\right]\right|}, & |1-\eta| \geq \frac{\left.\mid\left(4 \zeta^{2}-11 \zeta+9\right) B_{1}^{2}(x) \gamma^{2}-2 B_{2}(x)(2-\zeta)^{2}\right] \mid}{3 \gamma^{2} B_{1}^{2}(x)(3-\zeta)} .\end{cases}
\end{aligned}
$$

Remark 3.4. Taking $\gamma=\zeta=1$ in Theorem 3.3 we obtain some bounds for the class $\mathcal{Y}_{\Sigma}(1,1)$ of bi-convex functions as below:

$$
\begin{array}{r}
\left|a_{2}\right| \leq \frac{B_{1}(x) \sqrt{\left|B_{1}(x)\right|}}{\sqrt{2\left|B_{1}^{2}(x)-B_{2}(x)\right|}} \\
\left|a_{3}\right| \leq \frac{B_{1}^{2}(x)}{4}+\frac{\left|B_{1}(x)\right|}{6} \tag{3.30}
\end{array}
$$

and

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{\left|B_{1}(x)\right|}{6}, & |1-\eta| \leq \frac{\left|B_{1}^{2}(x)-B_{2}(x)\right|}{3 B_{1}^{2}(x)} \tag{3.31}\\
\frac{\left|B_{1}(x)\right|^{3}|1-\eta|}{2\left|B_{1}^{2}(x)-B_{2}(x)\right|}, & |1-\eta| \geq \frac{\left|B_{1}^{2}(x)-B_{2}(x)\right|}{3 B_{1}^{2}(x)}
\end{array} .\right.
$$

4 Conclusion

In the present investigation two new subclasses of analytic and bi-univalent functions are introduced by using Bernoulli polynomial. Also, some coefficient bounds are estimated for certain coefficients of functions belonging to these subclasses defined. In addition, the Fekete-Szegö problem are handled for the mentioned function subclasses. Finally, a few remarks are indicated for the certain function subclasses which are related to bi-starlike and bi-convex functions.

References

[1] İ. Aktaş and N. Yılmaz, Initial coefficients estimate and Fekete-Szegö problems for two new subclasses of biunivalent functions, Konuralp J. Math. 10 (2022), no. 1, 138-148.
[2] T. Al- Hawary, A. Amourah, and B.A. Frasin, Fekete-Szegö inequality for bi-univalent functions by means of Horadam polynomials, Bol. Soc. Mat. Mex. 27 (2021), 1-12.
[3] A. Amourah, B.A. Frasin, and T. Abdeljawad, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces 2021 (2021), 5574673.
[4] A. Amourah, B.A. Frasin, M. Ahmad, and F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry 14 (2022), no 1, 147.
[5] D.A. Brannan and T.S. Taha On some classes of bi-univalent function, Stud.Univ. Babeş-Bolyai Math. 31 (1986), 70-77.
[6] M. Buyankara and M. Çağlar, On Fekete-Szegö problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials, Acta Univ. Apulensis Math. Inform. 71 (2022) 137-145.
[7] M. Buyankara, M. Çağlar and LI. Cotîrlă, New subclasses of bi-univalent functions with respect to the symmetric points defined by Bernoulli polynomials, Axioms 11 (2022), 652.
[8] L.I. Cotîrlă, New classes of analytic and bi-univalent functions, AIMS Math. 6 (2021), 10642-10651.
[9] P.L. Duren, Univalent Functions, Springer Science and Business Media, 2001.
[10] J. Dziok, A general solution of the Fekete-Szegö problem, Bound. Value Probl. 2013 (2013), no. 1, 1-13.
[11] M. Fekete and G. Szegö Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 1 (1933), no. 2, 85-89.
[12] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[13] H.Ö. Güney, G. Murugusundaramoorthy, and J. Sokoł, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae Math. 10 (2018), no. 1, 70-84.
[14] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[15] S.S. Miller and P.T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, 2000.
[16] P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 2003 (2003), no 3, 155-163.
[17] H. Orhan, İ. Aktas, and H. Arıkan, On new subclasses of bi-univalent functions associated with the (p, q)-Lucas polynomials and bi-Bazilevič type functions of order $\rho+\xi$, Turk. J. Math. 47 (2023), no. 1, 98-109.
[18] GI. Oros and LI. Cotîrlă, Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions, Mathematics 10 (2022), 129.
[19] H.M. Srivastava, S. Altınkaya, and S. Yalçın, Certain Subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 1873-1879.
[20] H.M. Srivastava, S. Gaboury, and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2017), 693-706.
[21] H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[22] H.M. Srivastava, G. Murugusundaramoorthy, and K. Vijaya, Coefficient estimates for some families of biBazilevič functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal. 2 (2013), no. 2, 167-181.
[23] A.K. Wanas and L.I. Cotîrlǎ, Initial coefficient estimates and Fekete-Szegö inequalities for new families of biunivalent functions governed by $(p-q)$ Wanas operator, Symmetry 13 (2021), no. 11, 2118.
[24] A.K. Wanas and L.I. Cotîrlă, New applications of Gegenbauer polynomials on a new family of bi-Bazilevič functions
governed by the q-Srivastava-Attiya Operator, Mathematics 10 (2022), no. 8, 1309.
[25] N. Yılmaz and İ. Aktaş, On some new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial, Afr. Mat. 33 (2022), no. 2, 59.
[26] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169-178.

[^0]: * Corresponding author

 Email addresses: yunuskorkmaz581@gmail.com (Yunus Korkmaz), aktasibrahim38@gmail.com (İbrahim Aktaş)

