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Abstract

In this paper, we prove the existence of multiple solutions in the Bessel Potential space for a new class of nonlinear
fractional Schrödinger-Poisson systems involving the distributional Riesz fractional derivative. To reach our goal, we
use the symmetric mountain pass theorem under some suitable assumptions on nonlinearity f(x, u) and potential
V (x).
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1 Introduction

In the last few years, nonlinear systems involving fractional and nonlocal differential operators of elliptic type, have
been studied extensively by many scholars, due to numerous applications in many fields of science, such as electrical
circuits, optimization, phase transitions, finance, and quantum mechanics. For previous related results, we refer the
readers to [4, 6, 9, 16, 22, 23].

Recently, due to the real physical meaning, the fractional Schrödinger-Poisson system has been extensively inves-
tigated by many authors. Benci and Fortunato in [3] proposed the following classical Schrödinger-Poisson system{

−∆u+ V (x)u+ ϕu = f(x, u) in R3,

−∆ϕ = u2 in R3.
(1.1)

to describe quantum particles for nonlinear Schrödinger equations interacting with an unknown electrostatic field. It
also appears in plasma physics, semiconductor theory, and so on. The nonlinearity f denotes the particles interacting
with each other, and the nonlocal term ϕu concerns the interaction with the electric field. We refer the interesting
reader to [17, 18] and their references to get more physical background to the system (1.1).
In the last decade, there are many interesting works about the existence of positive solutions, ground states solutions,
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infinitely many solutions, concentration of solutions, and multiplicity of solutions via variational tools and critical
point theory, see [2, 8, 14, 26, 28] and the references therein. Che and Chen in [7] studied the following system{

(−∆)αu+ Vλ(x)u+ tϕu = f(x, u) + g(x)|u|r−2
u in R3,

(−∆)βϕ = u2 in R3,
(1.2)

where α, β ∈ (0; 1], t > 0, 2β + 2α > 3, Vλ(x) is allowed to be sign-changing potential, and (−∆)α is the fractional
Laplacian operator, under some assumption on f(x, u) and Vλ(x), multiplicity and concentration of solutions are
obtained. In [8], a similar system to the (1.2) was studied by Chen, he showed the existence of multiple solutions for
the following system {

(−∆)αu+ V (x)u+ ϕu = f(x, u) + tg(x)|u|r−2
u in R3,

(−∆)βϕ = u2 in R3,
(1.3)

where α, β ∈ (0; 1], t > 0, 1 < r < 2, 2β + 4α > 3. When t = 0, system (1.3) reduces to the the following system{
(−∆)αu+ V (x)u+ ϕu = f(x, u) in R3,

(−∆)βϕ = u2 in R3.
(1.4)

In recent years, system like (1.4) has been widely studied by many scholars, for example, Gao et al [13] for ground
state solutions when f(x, u) = f(u), Li [15] for non-trivial solution when V (x) = 1, and Zhang [27] for the existence
and multiplicity results.

After the pioneering work of Shieh and Spector [22] concerning the study of a new class of fractional PDEs related
to the distributional Riesz fractional gradient, an increasing number of authors have been interested in studying its
theoretical structure see e.g [5, 16, 22, 23], and in understanding the applications in the theory of electromagnetic
fields, multidimensional processes, and in fractal media see e.g [1, 12, 19] and their works. The latter operator is an
intrinsic object of interest for the study of fractional PDEs as stated by Shieh and Spector in [22, 23], they introduced
an appropriate functional space to study fractional problems in which the distributional Riesz fractional gradient is
present, it also satisfies three basic physical requirements as proved in [24] on fractional gradient analysis.

In the present paper, we build upon all the works just described, by using the distributional Riesz fractional
derivative instead of the usual fractional Laplacian, we study the following new class of fractional Schrödinger-Poisson
system {

−divα(∇αu) + V (x)u+ ϕu = f(x, u) + tg(x)|u|r−2
u in R3,

−divβ(∇βϕ) = u2 in R3,
(1.5)

where α, β ∈ (0; 1], t > 0 is a parameter, r ∈ (1, 2), 2β + 4α > 3, and −divα(∇α) is the distributional Riesz fractional
derivative, and we give its consistency with the usual fractional Laplacian in this work. The starting point of research
pursued in [22] for the development of a general theory for fractional PDEs involving this operator, is the distributional
Riesz fractional gradient ∇α of order α ∈ (0, 1) (fractional gradient for short). For 1 < p < ∞, if u ∈ Lp

(
RN
)
such

that I1−α ∗ u is well defined, ∇α can be characterized as (see [16, 22])

(∇αu)j =
∂αu

∂xαj
=

∂

∂xj
I1−α ∗ u, 0 < α < 1, j = 1, ..., N,

where
∂

∂xj
, is defined for every w ∈ C∞

0 (RN ) in the following sense

⟨∂
αu

∂xαj
, w⟩ = −⟨I1−α ∗ u, ∂w

∂xj
⟩ = −

∫
RN

(I1−α ∗ u) ∂w
∂xj

dx,

where Iα denotes the Riesz potential of order α, 0 < α < 1:

(Iα ∗ u) (x) = γ (N,α)

∫
RN

u (y)

|x− y|N−α
dy, with γ(N,α) := π−N

2
Γ(N−α

2 )

2αΓ(α2 )
.
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Thus, the fractional gradient ∇α and the fractional divergence (divα) can be written in finite integral form for
smooth function u and vector w ([10, 16, 23], respectively by

∇αu(x) := γ(N,α) lim
ϵ→0

∫
RN

zu(x+ z)

|z|N+α+1
χϵ(0, z)dz

= γ(N,α)

∫
RN

[u(x)− u(y)]
1

|x− y|N+α

x− y

|x− y|
dy,

divαw(x) := γ(N,α) lim
ϵ→0

∫
RN

z.w(x+ z)

|z|N+α+1
χϵ(0, z)dz

= γ(N,α)

∫
RN

[w(x)− w(y)].
1

|x− y|N+α

x− y

|x− y|
dy,

where χϵ(0, z), is the characteristic function of the set {(0, z) : |z| > ϵ} for ϵ > 0. It was observed in [22] that for
u ∈ C∞

0 (RN ), the composition of fractional divergence divα and fractional gradient ∇α it coincides with the fractional
Laplacian as follows:

(−∆)αu = −
N∑
j=1

∂α

∂xαj

∂α

∂xαj
u

= −divα(∇αu), (1.6)

where the well known fractional Laplacian can be given ([11]), for α ∈ (0, 1) by

(−∆)αu(x) =
1

2
γ2(N,α)

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2α
dy.

Furthermore, for u,w ∈ C∞
0 (RN ) equation (1.6) means, that the following holds∫

RN

∇αu.∇αwdx =

∫
RN

(−∆)αu.wdx =

∫
RN

(−∆)
α
2 u.(−∆)

α
2 wdx,

which is a key result for the weak formulation of PDEs involving fractional operator. We refer to [10, 16, 22, 23, 24]
for more information about this fractional operator.

In this works, we assume that the functions f , g and V satisfy the following conditions:
(H1) : f ∈ C(R3 × R;R) for every x ∈ R3 and u ∈ R, there exists constant K1 > 0, and p ∈ (4; 2∗α) such that

|f(x, u)| ≤ K1(|u|+ |u|p−1
),

where 2∗α = 6
3−2α the fractional critical Sobolev exponent,

(H2) : f(x,−u) = −f(x, u), x ∈ R3, u ∈ R,
(H3) : There exist µ > 4 and λ > 0 such that

0 < µF (x, u) ≤ uf(x, u)

holds for |u| ≥ λ and infx∈R3,|u|=λF (x, u) > 0, where F (x, u) =

u∫
0

f(x, s)ds,

(H4) : g : R3 → R+ and g(x) ∈ L
2

2−r (R3),
(V ) : V ∈ C(R3,R), V0 := infx∈R3 V (x) > 0, where V0 is a constant and

lim|x|→+∞V (x) = +∞.

We next fix the following notations. For any p ∈ [1,∞), Lp
(
RN
)
denotes the Lesbesgue space with the norm

∥u∥Lp = (

∫
RN

|u|pdx)
1
p

. Lr
(
RN
)
the weighted Lesbesgue space for 1 < r < 2 with the norm ∥u∥Lr = (

∫
RN

g(x) |u|rdx)
1
r

.

Under the above hypothesis, our main result can be stated as follows.
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Theorem 1.1. Assume f satisfies (H1)-(H4) and (V ). Then, we can find t0 > 0, such that problem (1.5) has multiple
solutions for every t < t0.

To our knowledge, this paper is the seconde contribution to studying this class of fractional Schrödinger-Poisson
systems in the Bessel potential space. The rest of this paper is organized as follows, in the next section, we introduce
some work space and key results that will be used in this paper. In section 3, we use the symmetric mountain pass
theorem to prove Theorem 1.1. In section 4, we give a discussion about our research results.

2 Preliminaries and variational settings

In this section, we first recall some necessary variational settings for system (1.5), and the complete introduction
on fractional Sobolev space Wα,2(RN ) and Bessel potential spaceLα,2(RN ) can be found respectively, in [11, 22].

For α ∈ (0, 1) and u ∈ C∞
0 (RN ), the vector space of fractional differentiable functions Sα,2(RN ) is defined as the

closure of C∞
0 (RN ) with the norm

∥u∥2Sα,2 = ∥u∥2L2 + ∥∇αu∥2L2 . (2.1)

By Theorem 1.7 in [22], it is exactly the Bessel potential space Lα,2(RN ) defined for α ∈ R+, by

Lα,2(RN ) = {u : u = Gα ∗ f for some f ∈ L2(RN )},

where the Bessel potential Gα is defined by (see [21, 22])

Gα(x) :=
1

(4π)
α
2 Γ(α2 )

∫ +∞

0

e
−π|x|2

t e
−t
4π t

α−N
2 −1dt.

The norm of this Bessel potential Space is ∥u∥Lα,2 = ∥f∥L2 if Gα ∗ f . Now, we summarize the key properties of
this Bessel potential space (see p.7 in [22]).

Theorem 2.1. 1. If α ∈ (0, 1), then Hα(RN ) = Wα,2(RN ) = Lα,2(RN ) = Sα,2(RN ), with the norm given by
(2.1).

2. If α ≥ 0 and 2 ≤ q ≤ 2∗α, then Lα,2(RN ) is continuously embedded in Lq(RN ), and the embedding is locally
compact if 2 ≤ q < 2∗α,

Remark 2.2. (i) Though the work space in this paper involves ∥∇αu∥L2 , we will not separate the Bessel potential
space Lα,2(RN ) from the fractional Sobolev space Hα(RN ) despite the fact that Lα,2(RN ) is topologically compatible
with Hα(RN ).

(ii) As stated in [22], the most appropriate functional framework to deal with the system (1.5) is the Bessel potential
space Lα,2(RN ).

The homogeneous Sobolev space Dα,2(RN ) for α ∈ (0, 1), is defined by

Dα,2(RN ) =
{
u ∈ L2∗α(RN ) : ∇αu ∈ L2(RN

}
,

which is the completion of C∞
0 (RN ) under the norm and the inner product, respectively

∥u∥Dα,2 = (

∫
RN

|∇αu|2dx)
1
2

.

⟨u,w⟩Dα,2 =

∫
RN

(∇αu.∇αw)dx.

This definition coincides with any standard definition of the homogeneous fractional Sobolev space Dα,2(RN ). The
solvability of the linear fractional PDEs with variable coefficients is established by the following theorem.
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Theorem 2.3. ([22]) Let Ω ⊂ RN is an arbitrary bounded open set. Assume that v ∈ Lα,2(RN ) and h ∈ L2(Ω), such
that I1−α ∗ v is well defined and A : RN −→ RN×N with coefficients bounded and measurable such that

λ|y|2 ≤ A(x)y.y and A(x)y.y ≤ Λ|y|2

For all x, y ∈ RN and some λ,Λ > 0. Then, there exists a unique u ∈ Lα,2(RN ) such that∫
RN

A(x)∇αu.∇αwdx =

∫
RN

hwdx

for every w ∈ Lα,2(RN ) and u = v in RN\Ω. In this work A is the identity.

From now on, we restrict the work space in dimension N = 3.

Lemma 2.4. ([11]) For any α ∈ (0, 1), Dα,2(R3) is continuously embedded in L2∗α(R3), i.e there exists Kα > 0 such
that : ∫

R3

|u|2
∗
αdx

 2
2∗α

≤ Kα

∫
R3

|∇αu|2dx, u ∈Dα,2
(
R3
)
.

Next, let us consider the variational setting of (1.5). For convenience, we use the letters Ki, i = 1, 2... repeatedly to
denote various constant which may change from line to line. If 2β + 4α ≥ 3, then Lα,2(R3) is continuously embedded

in L
12

3+2β (R3). For u ∈ Lα,2(R3), the linear operator Lu : Dβ,2(R3) → R is defined as:

Lu(w) =

∫
R3

u2wdx.

By Hölder inequality and Lemma 2.4, we obtain

|Lu(w)| ≤ ∥u∥2
L

12
3+2β

∥w∥
L

2∗
β

(2.2)

≤ K ∥u∥2Lα,2 ∥w∥Dβ,2 . (2.3)

Hence, according to the Lax-Milgram theorem, there exists a unique ϕβu ∈ Dβ,2
(
R3
)
such that∫

R3

∇βϕβu.∇βwdx =

∫
R3

u2wdx ∀w ∈ Dβ,2
(
R3
)
. (2.4)

i.e. ϕβu is a weak solution of −divβ
(
∇βϕβu

)
= u2. Moreover,∥∥ϕβu∥∥Dβ,2 ≤ K ∥u∥2Lα,2 . (2.5)

Since 2β + 4α ≥ 3 and β ∈ (0, 1], then 12
3+2β ∈ (2, 2∗α). From Lemma 2.4, (2.2) and (2.4) we derive

∥∥ϕβu∥∥2Dβ,2 =

∫
R3

∣∣∇βϕβu
∣∣2dx =

∫
R3

u2ϕβudx,

and ∥∥ϕβu∥∥2Dβ,2 ≤ ∥u∥2
L

12
3+2β

∥∥ϕβu∥∥L2∗
β
≤ K ∥u∥2

L
12

3+2β

∥∥ϕβu∥∥Dβ,2 . (2.6)

Then, ∥∥ϕβu∥∥Dβ,2 ≤ K ∥u∥2
L

12
3+2β

. (2.7)

For x ∈ R3, we have

ϕβu(x) = cβ

∫
R3

u2(y)

|x− y|3−2β
dy, (2.8)
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which is called β-Riesz potential (see [21]), where

cβ = π− 3
2 2−2β

Γ
(

3−2β
2

)
Γ (β)

.

Substituting ϕβu in (1.5), it leads to the following fractional Schrödinger equation

−divα(∇αu) + V (x)u+ ϕβuu = f(x, u) + tg(x)|u|r−2
u, x ∈ R3 . (2.9)

Now, we introduce our working space

E =

(u ∈ Lα,2
(
R3
)
:

∫
R3

|∇αu|2 + V (x)u2)dx <∞

 ,

which is a Hilbert space equipped with the norm and the inner product respectively,

∥u∥2E =

∫
R3

(|∇αu|2 + V (x) |u|2)dx,

⟨u,w⟩E =

∫
R3

(∇αu.∇αw + V (x)uw)dx.

Assume that (V ) hold, by Lemma 2.3 in [25], E is compactly embedded in Lp
(
R3
)
for p ∈ [2, 2∗α), and continuously

embedded in Lp
(
R3
)
for p ∈ [2, 2∗α]. We define the energy functional J : E → R associated to (1.5) by

J (u) =
1

2

∫
R3

(
|∇αu|2 + V (x)u2

)
dx+

1

4

∫
R3

ϕβuu
2dx−

∫
R3

F (x, u) dx− t

r

∫
R3

g(x)|u|rdx.

Hence, J is well defined in E and J ∈ C1(E,R). Moreover its derivative is

< J ′ (u) , w >=

∫
R3

(∇αu.∇αw + V (x)uw + ϕβuuw − f (x, u)w − tg(x)|u|r−2
uw)dx, w ∈ E. (2.10)

Definition 2.5. 1. If u ∈ E is a weak solution of (2.9), then the pair (u, ϕ) ∈ E ×Dβ,2
(
R3
)
is a weak solution of

(1.5).
2. u ∈ E is a weak solution of (2.9) if∫

R3

(
∇αu.∇αw + V (x)uw + ϕβuuw − f (x, u)w − tg(x)|u|r−2

uw
)
dx = 0.

Definition 2.6. The functional J satisfies the Palais-Smale condition at level c ∈ R, denoted by (PS)c, if any
sequence {un} ⊂ E satisfying

J(un) → c and J ′(un) → 0 as n→ ∞.

has a strongly convergent subsequence.

We choose {e}i an orthonormal basis of E and define Xi = Rei,

Yk = ⊕k
i=1Xi Zk = ⊕∞

i=kXi k ∈ Z.

Evidently, we have E = Yk ⊕ Zk. To prove our result, we need the following symmetric mountain-pass theorem.

Theorem 2.7. (Symmetric mountain-pass theorem, see [20]) Assume that E = Yk ⊕ Zk be a Banach space where Y
is finite dimensional, let J ∈ C1(E,R) be even, satisfies the (PS)c condition and J(0) = 0, if
(i) there exist constants ρ, δ > 0 satisfying J

∣∣
∂Bρ

⋂
Z = inf

u∈Z,∥u∥=ρ
J(u) ≥ δ,

(ii) for every finite dimensional subspace Ẽ ⊂ E, there is a constant K = K(Ẽ) > 0 such that max
u∈Ẽ,∥u∥≥K

J(u) < 0,

then, J has an unbounded sequence of critical points.
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3 Proof of main result

Lemma 3.1. J satisfies (PS)c condition for every c ∈ R on E, If (H1)-(H4) and (V ) hold.

Proof . Let {un} be a (PS)c sequence in E, we will prove that {un} bounded in E using arguing by contradiction.
By (H3) and (H4) for sufficiently large n ∈ N, we have

c+ ∥un∥E ≥J (un)−
1

µ
⟨J ′ (un) , (un)⟩

=

(
1

2
− 1

µ

)
∥un∥2E +

(
1

4
− 1

µ

)∫
R3

ϕβun
u2ndx+

∫
R3

(
unf (x, un)

µ
− F (x, un)

)
dx+ (

1

µ
− 1

r
)t

∫
R3

g(x)|un|rdx

≥
(
1

2
− 1

µ

)
∥un∥2E + (

1

µ
− 1

r
)t∥g∥

L
2

2−r
Cr ∥un∥rE , (3.1)

which implies that {un} is bounded in E. Up to a subsequence, we suppose that un ⇀ u in E. Since E is compactly
embedded in Lp

(
R3
)
for 2 ≤ p < 2∗α, then un → u in Lp

(
R3
)
, 2 ≤ p < 2∗α . Obviously, we can show that the following

holds
⟨J ′ (un)− J ′ (u) , un − u⟩ → 0 and ∥un − u∥2L2 → 0 as n→ ∞. (3.2)

Combining the generalization of Hölder inequality, Lemma 2.4 and (2.7), we obtain∣∣∣∣∣∣
∫
R3

ϕβun
un (un − u) dx

∣∣∣∣∣∣ ≤ ∥∥ϕβun

∥∥
L

2∗
β
∥un∥

L
12

3+2β
∥un − u∥

L
12

3+2β

≤ K
∥∥ϕβun

∥∥
Dβ,2∥un∥

L
12

3+2β
∥un − u∥

L
12

3+2β

≤ K ∥un∥ 3

L
12

3+2β
∥un − u∥

L
12

3+2β

≤ K ∥un∥3E ∥un − u∥
L

12
3+2β

.

Similarly, we prove that ∣∣∣∣∣∣
∫
R3

ϕβuu (un − u) dx

∣∣∣∣∣∣ ≤ K ∥u∥3E ∥un − u∥
L

12
3+2β

.

We have,∣∣∣∣∣∣
∫
R3

(
ϕβun

un − ϕβuu
)
(un − u) dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
R3

ϕβun
un (un − u) dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
R3

ϕβuu (un − u) dx

∣∣∣∣∣∣→ 0 as n→ ∞. (3.3)

From (H1) and Hölder inequality, we obtain∣∣∣∣∣∣
∫
R3

(f (x, un)− f (x, u)) (un − u) dx

∣∣∣∣∣∣ ≤ K1

∫
R3

(|un|+ |u|) |un − u| dx+K1

∫
R3

(
|un|p−1

+ |u|p−1
)
|un − u| dx

≤ K1 (∥un∥L2 + ∥u∥L2) ∥un − u∥L2 +K1

(
∥un∥p−1

Lp + ∥u∥p−1
Lp

)
∥un − u∥Lp

≤ K (∥un∥E + ∥u∥E) ∥un − u∥L2 +K
(
∥un∥p−1

E + ∥u∥p−1
E

)
∥un − u∥Lp

→ 0 as n→ ∞. By (H4), we obtain

lim
n→∞

∫
R3

(g(x)|un|r−2
un − g(x)|u|r−2

u)(un − u)dx = 0.
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Thus, we conclude that

∥un − u∥2E = ⟨J ′ (un)− J ′ (u) , un − u⟩ −
∫
R3

(V (x)un(un − u)− V (x)u(un − u)) dx

−
∫
R3

(
ϕβun

un − ϕβuu
)
(un − u) dx+

∫
R3

(f (x, un)− f (x, u)) (un − u)dx

+t

∫
R3

(
g(x)(|un|r−2

un − |u|r−2
u)(un − u)dx

)
dx→ 0 as n→ ∞.

It follows that {un} converges strongly in E. □

Corollary 3.2. Under assumptions (H1) and (H3), for every finite dimensional subspace Ẽ ⊂ E, there is a constant
K = K(Ẽ) > 0 such that

J(u) ≤ 0 for all u ∈ Ẽ with ∥u∥E ≥ K.

Proof . By (H1) and (H3), there exist K2,K3 > 0 such that

F (x, u) ≥ K2|u|µ −K3|u|2 (x, u) ∈ R3 × R.

For all u ∈ Ẽ, we have

J (u) =
1

2

∫
R3

(
|∇αu|2 + V (x)u2

)
dx+

1

4

∫
R3

ϕβuu
2dx−

∫
R3

F (x, u) dx− t

r

∫
R3

g(x)|u|rdx

≤ 1

2
∥u∥2E +K ∥u∥4E −K2 ∥u∥µLµ +K3 ∥u∥2L2 −

t

r
∥u∥rLr .

Then, we assert that J(u) → −∞ as ∥u∥E → ∞ for r < 2 < 4 < µ. The conclusion follows. □

Lemma 3.3. For 2 ≤ p < 2∗α, we have that

Γk := sup
u∈Zk,∥u∥=1

∥u∥Lp → 0 as k → ∞.

By Lemma 3.3, we can choose an integer m ≥ 1 such that

∥u∥2L2 ≤ 1
2K1

∥u∥2E , ∥u∥pLp ≤ p
4K1

∥u∥pE ∀u ∈ Zm.

Lemma 3.4. Suppose (H1) and (V ) are satisfied, there exist constants ρ, δ > 0 satisfying J
∣∣
∂Bρ

⋂
Zm

≥ δ > 0.

Proof . By (H1), we have

|F (x, u)| ≤ K1

2
|u|2 + K1

p
|u|p ∀(x, u) ∈ R3 × R.

From (H1) and Lemma 3.3, we derive

J (u) =
1

2

∫
R3

(
|∇αu|2 + V (x)u2

)
dx+

1

4

∫
R3

ϕβuu
2dx−

∫
R3

F (x, u) dx− t

r

∫
R3

g(x)|u|rdx

≥ 1

2
∥u∥2E − K1

2
∥u∥2L2 −

K1

p
∥u∥pLp − t∥g∥

L
2

2−r
Cr ∥u∥rE

≥ 1

4
(∥u∥2E − ∥u∥pE)− t∥g∥

L
2

2−r
Cr ∥u∥rE

≥ ∥u∥2E (
1

4
− 1

4
∥u∥p−2

E − t∥g∥
L

2
2−r

Cr ∥u∥r−2
E ).
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Set ψ(s) = 1
4 − 1

4s
p−2 − t∥g∥

L
2

2−r
Crsr−2, s > 0. Since 1 < r < 2 < p, there exists ρt > 0 such that

ρt =

(
4t(2− r)Cr∥g∥

L
2

2−r

(p− 2)

) 1
p−r

,

where max
s∈R+

ψ(s) = ψ(ρt). Therefore for any t < t0 :=
(

2−r
p−r

) p−r
p−2

.

(
p−2

4Cr(2−r)∥g∥
L

2
2−r

)
,

J (u) ≥ ∥ρt∥2E ψ(ρt) > 0.

Hence, for any t < t0 we can choose ρ = ρt > 0 and δ = ψ(ρt) > 0, then J
∣∣
∂Bρ

⋂
Zm

≥ δ > 0. □

Proof of Theorem 1.1 Let Y = Ym and Z = Zm. Obviously, J(u) is even due to (H2). Based on Lemma 3.1,
Lemma 3.3 and Corollary 3.2, the functional J(u) satisfies all conditions of Theorem 2.7. Thus, the result follows.

4 Conclusion

In this paper, we study a new class of fractional Schrödinger-Poisson system. System (1.5) comes from the
interaction of a charged particle with an electromagnetic field in R3. By applying the symmetric mountain pass
theorem, multiple non-trivial solutions were obtained. From our perspective, this paper seems to enrich the related
results of this new class of system involving this kind of fractional operator.
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