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Abstract

This article is a revision and correction of the chapter book [S. Hadi Bonab, V. Parvaneh, Z. Bagheri, ηA-Admissible
Mappings for Four Maps in C∗-Algebra-Valued MP-Metric Spaces with an Application, In: P. Debnath, Delfim F.
M. Torres, Yeol Je Cho, Advanced Mathematical Analysis and its Applications, CRC Press, 2023, 97-113.]. In this
article, we first introduce the concept of η-admissible mapping in C∗-algebra valued MP-metric spaces, which is
a generalization and combination of ”modular metric spaces”, ”parametric metric spaces” and ”C∗-algebra-valued
metric spaces”. Then, for four mappings in these spaces, we prove several fixed-point theorems. We give an example
and an application regarding the solvability of operator equations and integral equations, respectively, to support the
new findings.
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1 Introduction

In this article, due to errors in the chapter book published in the CRC Press [12], we have reviewed and corrected
the required items. To correct and edit the previous version, some definitions and a Remark (Definitions 2.1-2.6 and
2.10 and Remark 2.4) that are needed to prove the main results have been added. Also, some required assumptions
in the presented theorems in the main results section have been revised in order to improve and modify the proof of
the claims.

In recent years, many researchers have generalized the Banach fixed point theorem [2] in many directions and
frameworks, for example: in cone metric spaces [9], G-metric spaces [10], vector-valued metric spaces [8, 11], b-
metric spaces [17], b-rectangular metric spaces [29], generalized parametric metric spaces [31], modular b-metric spaces
[7, 28] etc. Also, many mathematicians have presented different extensions of contraction mappings on complete
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metric spaces and developed them in different ways and turned it into a general rule. For more information, see
[3, 5, 6, 13, 15, 22, 27, 30, 32].

Nakano [25] introduced modular spaces in connection with the theory of ordered spaces, which was later generalized
in [24]. In [16], Hossein et al. introduced the concept of parametric metric spaces. Several authors investigated fixed
point theorems for multivalued contractions. Kotbi and Latif [18] studied fixed points of multivalued maps in modular
function spaces. Also, see [4, 14] for more information.

In 2014, using the set of all positive elements of a unit C∗-algebra instead of the set of real numbers, the concept of
a C∗-algebra valued metric spaces [20] was introduced. Later, many authors studied in this field and presented many
results (See [19, 23, 26, 33]).

In 2012, the concept of η-admissible mapping was presented by Samet et al [30]. In this chapter, we introduce
this concept in a C∗-algebra valued modular parametric metric space (CAVMPMS) for four mappings, which is
a generalization and combination of modular metric space, parametric metric space and C∗-algebra-valued metric
space. In the following, these concepts are used to prove some fixed point theorems through C∗-contractions and also
Kannan-Ćirić C∗-contractions.

Throughout this paper, A denotes a unital algebra with unit I, and θ is the zero element. An involution on A
corresponds to the conjugate linear map κ 7→ κ∗ on A if ȷ∗∗ = ȷ. If (ȷ+℘)∗ = ȷ∗+℘∗ and (ȷ℘)∗ = ℘∗ȷ∗ for all ȷ, ℘ ∈ A,
then the pair (A, ∗) is called an ∗-algebra. A Banach ∗-algebra is an ∗-algebra A with the complete submultiplicative
norm so that ∥ ȷ∗ ∥=∥ ȷ ∥ for all ȷ ∈ A. A C∗-algebra is a Banach ∗-algebra so that ∥ ȷ∗ȷ ∥=∥ ȷ ∥2 for all ȷ ∈ A.
Let H be a Hilbert space and B(H) be the set of bounded linear operators on H, then B(H) is a C∗-algebra with the
operator norm. Let Asa be the family of all self-adjoint elements in A. An element ȷ ∈ A is positive ( ȷ ⪰ θ) if ȷ ∈ Asa

and spectrum σ(ȷ) = {λ ∈ C | λI − ȷ is not invertible} ⊆ R+. Set A+ = {ȷ ∈ A : ȷ ⪰ θ}, then A+ = {ȷ∗ȷ : ȷ ∈ A}
[23] and (ȷ∗ȷ)

1
2 = |ȷ|. We write x ≺ y if x ⪯ y and x ̸= y. Note that a partial ordering ⪯ on Asa is as follows:

ȷ ⪯ ℘ ⇔ ℘ − ȷ ⪰ θ. If ȷ, ℘ ∈ Asa and q ∈ A, then ȷ ⪯ ℘ ⇒ q∗ȷq ⪯ q∗℘q, and if ȷ, ℘ ∈ A+ are invertible, then
ȷ ⪯ ℘ =⇒ θ ⪯ ℘−1 ⪯ ȷ−1.

Definition 1.1. [2] Consider a nonempty set Π. A mapping ℧ : Π2 −→ [0,∞) is called a metric on Π, if:

1. ℧(ζ, ℓ) = 0 iff ζ = ℓ;

2. ℧(ζ, ℓ) = ℧(ℓ, ζ) for each ζ, ℓ ∈ Π;

3. ℧(ζ, ℓ) ≤ ℧(ζ, η) + ℧(η, ℓ) for each ζ, ℓ, η ∈ Π.

Then (Π,℧) is called a metric space.

Definition 1.2. [20] Let the function ℧ : Π2 → A ( Π is a nonempty set) verifies the following for all ζ, ℓ, η ∈ Π:

(i) θ ⪯ ℧(ζ, ℓ) and ℧(ζ, ℓ) = θ iff ζ = ℓ;

(ii) ℧(ζ, ℓ) = ℧(ℓ, ζ);
(iii) ℧(ζ, ℓ) ⪯ ℧(ζ, η) + ℧(η, ℓ).

Then (Π,A,℧) is called a C∗-algebra-valued metric space.

Definition 1.3. [14] Consider the self-mappings L : Π → Π and G : Π → Π. If ℑ = Lζ = Gζ for some ζ ∈ Π, then ζ
is called a coincidence point of L and G. ℑ is said to be a point of coincidence of L and G.

Definition 1.4. [14] Consider the self-mappings L : Π → Π and G : Π → Π. If L and G commute at their coincidence
points, then they are called w-compatible.

Definition 1.5. [21] The function W : (0,+∞) × Π2 → A is said to be a C∗-algebra-valued modular metric on
nonempty set Π, if

1. Wλ(ζ, ℓ) = θ iff ζ = ℓ for all λ > 0;

2. Wλ(ζ, ℓ) = Wλ(ℓ, ζ) for all λ > 0 and for all ζ, ℓ ∈ Π;

3. Wλ+µ(ζ, ℓ) ⪯ Wλ(ζ, η) +Wµ(η, ℓ) for all ζ, ℓ, η ∈ Π and all λ, µ > 0.

Then the pair (Π,W) is called a C∗-algebra-valued modular metric space.
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Definition 1.6. [31] Let Π be a nonempty set. A function P : Π2 × (0,+∞) → [0,+∞) is said to be a parametric
metric on Π, if

1. P(ζ, ℓ, ι) = 0 iff ζ = ℓ;

2. P(ζ, ℓ, ι) = P(ℓ, ζ, ι) for all ι > 0;

3. P(ζ, ℓ, ι) ≤ P(ζ, η, ι) + P(η, ℓ, ι) for all ζ, ℓ, η ∈ Π and all ι > 0.

Then the pair (Π,P) is called a parametric metric space.

Definition 1.7. [30] Let η : Π2 → [0,∞) ( Π is a nonempty set). A mapping T : Π → Π is said to be an η-admissible
mapping, if

η(ζ, ℓ) ≥ 1 ⇒ η(Tζ, T ℓ) ≥ 1, for all ζ, ℓ ∈ Π.

Definition 1.8. [1] The max function on C∗-algebra A with the partial order relation ⪯ is defined by:

max{ζ, ℓ} = ℓ⇔ ζ ⪯ ℓ and ∥ ζ ∥≤∥ ℓ ∥, for all ζ, ℓ ∈ A+.

2 Main results

2.1 η-admissible mappings

In this section, we present the concept of η-admissible mapping in a CAVMPMS to achieve a common fixed point
for 4 maps. First, we introduce the following definitions:

Definition 2.1. Let I be a self-mapping on Π and let η : (0,∞)×Π2 × (0,∞) → A+ be a function. We say that I
is an η-admissible mapping if

ηλ(ζ, ℓ, ι) ⪰ IA ⇒ ηλ(Iζ, Iℓ, ι) ⪰ IA,

where ζ, ℓ ∈ Π and λ, ι > 0.

Definition 2.2. Let L and G be two self-mappings on a set Π and let η : (0,∞)×Π2 × (0,∞) → A+ be a function.
A pair (L,G) is said to be,

(i) weakly η-admissible if ηλ(Lζ,GLζ, ι) ⪰ IA and ηλ(Gζ,LGζ, ι) ⪰ IA for all ζ ∈ Π and for all λ, ι > 0,

(ii) partially weakly η-admissible if ηλ(Lζ,GLζ, ι) ⪰ IA for all ζ ∈ Π and for all λ, ι > 0.

Let Π be a nonempty set and L : Π → Π be a given mapping. For every ζ ∈ Π, let L−1(ζ) = {U ∈ X : LU = Lζ}.

Definition 2.3. Let Π be a set, L,G,Q : Π → Π are mappings so that LΠ ∪ GΠ ⊆ QΠ and let η : (0,∞) × Π2 ×
(0,∞) → A+ be a function. The ordered pair (L,G) is said to be:

(a) weakly η-admissible with respect to Q iff, ηλ(Lζ,Gℓ, ι) ⪰ IA for all ℓ ∈ Q−1(Lζ) and ηλ(Gζ,Lℓ, ι) ⪰ IA for all
ℓ ∈ Q−1(Gζ),

(b) partially weakly η-admissible with respect to Q if ηλ(Lζ,Gℓ, ι) ⪰ IA for all ℓ ∈ Q−1(Lζ), for all ζ ∈ Π and for
all λ, ι > 0.

Remark 2.4. In the above definition:

(i) if G = L, we say that L is weakly η-admissible (partially weakly η-admissible) with respect to Q,

(ii) if Q = IΠ (the identity mapping on Π), then the above definition reduces to the concept of weakly η-admissible
(partially weakly η-admissible) mapping.

From now on, we assume that λ, ι > 0.

Definition 2.5. Let L and G be two self-maps on a set Π and let η : (0,∞)×Π2 × (0,∞) → A+ be a function. The
weakly η-admissible (partially weakly η-admissible) pair (L,G) is said to be triangular weakly η-admissible (triangular
partially weakly η-admissible) if ηλ(ζ, ℓ, ι) ⪰ IA and ηλ(ℓ, ρ, ι) ⪰ IA imply ηλ(ζ, ρ, ι) ⪰ IA for all ζ, ℓ, ρ ∈ Π.
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Definition 2.6. Let Π be a set, L,G,Q : Π → Π are mappings such that LΠ ∪ GΠ ⊆ QΠ and let η : (0,∞)× Π2 ×
(0,∞) → A+ be a function. The ordered pair (L,G) is said to be triangular weakly η-admissible (triangular partially
weakly η-admissible) with respect to Q if it is weakly η-admissible (partially weakly η-admissible) with respect to Q
and ηλ(ζ, ℓ, ι) ⪰ IA and ηλ(ℓ, ρ, ι) ⪰ IA imply ηλ(ζ, ρ, ι) ⪰ IA for all ζ, ℓ, ρ ∈ Π.

Definition 2.7. The function MP : (0,∞) × Π2 × (0,∞) → [0,∞] is called a modular parametric metric (MP-
metric) on nonempty set Π, if

(1) MPλ(ζ, ℓ, ι) = 0 iff ζ = ℓ for all ζ, ℓ ∈ Π and for all λ, ι > 0;

(2) MPλ(ζ, ℓ, ι) = MPλ(ℓ, ζ, ι);

(3) MPλ+µ(ζ, ℓ, ι) ≤ MPλ(ζ, η, ι) +MPµ(η, ℓ, ι) for all ζ, ℓ, η ∈ Π and for all λ, ι > 0.

Then the pair (Π,MP) is called a MP-metric space.

Definition 2.8. The function P : Π2 × (0,+∞) → A+ is said to be a C∗-algebra-valued parametric metric on
nonempty set Π if,

1. P(ζ, ℓ, ι) = θ iff ζ = ℓ for all ζ, ℓ ∈ Π and for all ι > 0;

2. P(ζ, ℓ, ι) = P(ℓ, ζ, ι);

3. P(ζ, ℓ, ι) ⪯ P(ζ, η, ι) + P(η, ℓ, ι) for all ζ, ℓ, η ∈ Π and for all ι > 0.
Then the pair (Π,P) is called a C∗-algebra-valued parametric metric space.

Definition 2.9. The function C : (0,∞)×Π2× (0,∞) → A+ is called a C∗-algebra valued MP-metric on nonempty
set Π if:

(1) Cλ(ζ, ℓ, ι) = 0 iff ζ = ℓ for all ζ, ℓ ∈ Π and for all λ, ι > 0;

(2) Cλ(ζ, ℓ, ι) = Cλ(ℓ, ζ, ι);
(3) Cλ+µ(ζ, ℓ, ι) ⪯ Cλ(ζ, η, ι) + Cµ(η, ℓ, ι) for all ζ, ℓ, η ∈ Π and for all λ, ι > 0.

Then (Π,A, C) is called a CAVMPMS.

Definition 2.10. Let (Π,A, C) be a CAVMPMS and let η : (0,∞)×Π2 × (0,∞) → A+ be a function. We say that
(Π,A, C) is η-regular if ζℏ → ζ, where ηλ(ζℏ, ζℏ+1, ι) ⪰ IA for all ℏ ∈ N, then ηλ(ζℏ, ζ, ι) ⪰ IA for all ℏ ∈ N.

Theorem 2.11. Let (Π,A, C) be a complete CAVMPMS and L, G, Q, I be self-mappings on Π, so that the following
conditions are satisfies:

(i) L(Π) ⊆ I(Π), G(Π) ⊆ Q(Π) and η : (0,∞)×Π2 × (0,∞) → A+ be a function.

(ii) Suppose that for all ζ, ℓ ∈ Π with ηλ(Qζ, Iℓ, ι) ⪰ IA,

Cλ(Lζ,Gℓ, ι) ⪯ ∂∗[Cλ(Qζ, Iℓ, ι)]∂ for all λ, ι > 0, (2.1)

where ∥ ∂ ∥< 1.

Assume that (Π,A, C) is η-regular and the pairs (L,G) and (G,L) are triangular partially weakly η-admissible with
respect to I and Q, respectively.
Then

(A) If one of L(Π) ∪ G(Π) and Q(Π) ∪ I(Π) be complete, then (L,Q) and (G, I) have a coincidence point in Π. If
ηλ(QU , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I have a coincidence point.

(B) if (L,Q) and (G, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I
have a common fixed point in Π. If ηλ(QU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L, G, Q and I
have a unique common fixed point in Π.

Proof . Let ζ0 be an arbitrary point of Π. Choose ζ1 ∈ Π such that Lζ0 = Iζ1 and ζ2 ∈ Π such that Gζ1 = Qζ2.
Continuing this way, construct a sequence {ℓℏ} by:{

Lζ2ℏ = Iζ2ℏ+1 = ℓ2ℏ+1

Gζ2ℏ+1 = Qζ2ℏ+2 = ℓ2ℏ+2, ∀ℏ ≥ 0.
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As ζ1 ∈ I−1(Lζ0) and ζ2 ∈ Q−1(Gζ1) and the pairs (L,G) and (G,L) are partially weakly η-admissible with respect
to I and Q, respectively, we have,

ηλ(Iζ1 = Lζ0,Gζ1 = Qζ2, ι) ⪰ IA

and
ηλ(Gζ1 = Qζ2,Lζ2 = Iζ3, ι) ⪰ IA.

Repeating this process, we obtain ηλ(Iζ2ℏ+1,Qζ2ℏ+2, ι) = ηλ(ℓ2ℏ+1, ℓ2ℏ+2, ι) ⪰ IA for all ℏ ≥ 0. So, we can apply
contraction (2.1) which implies that

Cλ(ℓ2ℏ+1, ℓ2ℏ+2, ι) = Cλ(Lζ2ℏ,Gζ2ℏ+1, ι)

⪯ ∂∗[Cλ(Qζ2ℏ, Iζ2ℏ+1, ι)]∂

= ∂∗[Cλ(ℓ2ℏ, ℓ2ℏ+1, ι)]∂.

So, by induction, we get

Cλ(ℓ2ℏ+1, ℓ2ℏ+2, ι) ⪯ (∂∗)2ℏ+1[Cλ(ℓ0, ℓ1, ι)]∂2ℏ+1.

Similarly, it can be shown that

Cλ(ℓ2ℏ, ℓ2ℏ+1, ι) ⪯ (∂∗)2ℏ[Cλ(ℓ0, ℓ1, ι)]∂2ℏ.

Now, for every ℏ ∈ N we can get

Cλ(ℓℏ, ℓℏ+1, ι) ⪯ (∂∗)ℏ[Cλ(ℓ0, ℓ1, ι)]∂ℏ

⪯ (∂∗)ℏϖ0∂
ℏ,

where ϖ0 := Cλ(ℓ0, ℓ1, ι). Therefore,
∥Cλ(ℓℏ, ℓℏ+1, ι)∥ ≤ (∥∂∥2)ℏ∥ϖ0∥. (2.2)

Since ∥ ∂ ∥< 1, taking ℏ → ∞, we have limℏ→∞ ∥Cλ(ℓℏ, ℓℏ+1, ι)∥ = θA. We show that {ℓℏ} is a Cauchy sequence
in Π. Assume on contrary that, there exists ε > 0 for which we can find subsequences {ℓ2m(k)} and {ℓ2ℏ(k)} of {ℓ2ℏ}
such that ℏ(k) > m(k) ≥ k and

Cλ(ℓ2m(k), ℓ2ℏ(k), ι) ⪰ ε (2.3)

for some λ, ι > 0 and ℏ(k) is the smallest number such that the above condition holds, i.e.,

Cλ(ℓ2m(k), ℓ2ℏ(k)−1, ι) ≺ ε. (2.4)

From triangle inequality and (2.3) and (2.4), we have

ε ⪯ Cλ(ℓ2m(k), ℓ2ℏ(k), ι) ⪯ Cλ
2
(ℓ2m(k), ℓ2ℏ(k)−1, ι) + Cλ

2
(ℓ2ℏ(k)−1, ℓ2ℏ(k), ι). (2.5)

Taking the limit as k → ∞ in (2.5), from (2.2) we obtain that,

lim sup
k→∞

Cλ(ℓ2m(k), ℓ2ℏ(k), ι) = ε. (2.6)

Using triangle inequality again, we have

Cλ(ℓ2m(k), ℓ2ℏ(k), ι) ⪯ Cλ
2
(ℓ2m(k), ℓ2m(k)+1, ι) + Cλ

2
(ℓ2m(k)+1, ℓ2ℏ(k), ι).

Making k → ∞ in the above inequality, we have

ε ⪯ lim sup
k→∞

Cλ(ℓ2m(k)+1, ℓ2ℏ(k), ι). (2.7)

We know that 2ℏ(k)− 1 ≥ 2m(k) and ηλ(Qζ2ℏ+2, Iζℏ+1, ι) = ηλ(Gζ2ℏ+1,Lζ2ℏ, ι) ⪰ IA for all ℏ ∈ N. On the other
hand, the pairs (L,G) and (G,L) are triangular partially weakly η-admissible with respect to I and Q, respectively.
So, ηλ(Iζ2ℏ(k)−1,Qζ2ℏ(k)−2, ι) ⪰ IA and ηλ(Qζ2ℏ(k)−2, Iζ2ℏ(k)−3, ι) ⪰ IA implies ηλ(Iζ2ℏ(k)−1, Iζ2ℏ(k)−3, ι) ⪰ IA.
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Also, ηλ(Iζ2ℏ(k)−1, Iζ2ℏ(k)−3, ι) ⪰ IA and ηλ(Iζ2ℏ(k)−3,Qζ2ℏ(k)−4, ι) ⪰ IA implies that ηλ(Iζ2ℏ(k)−1,Qζ2ℏ(k)−4, ι) ⪰
IA. By continuing this process, we get ηλ(Iζ2ℏ(k)−1,Qζ2m(k), ι) ⪰ IA. Now by applying (2.1) we have

Cλ(ℓ2m(k)+1, ℓ2ℏ(k), ι) ⪯ Cλ
2
(ℓ2m(k)+1, ℓ2ℏ(k), ι)

= Cλ
2
(Lζ2m(k),Gζ2ℏ(k)−1, ι)

⪯ ∂∗[Cλ
2
(Qζ2m(k), Iζ2ℏ(k)−1, ι)]∂

= ∂∗[Cλ
2
(ℓ2m(k), ℓ2ℏ(k)−1, ι)]∂.

(2.8)

Taking the limit as k → ∞ in (2.8), we have

ε ⪯ ∂∗[ε]∂ (2.9)

which after getting the norm leads to a contradiction. Hence, {ℓℏ} is a Cauchy sequence in Π. Assume thatQ(Π)∪I(Π)
be complete. In this case, there is U ∈ Q(Π) ∪ I(Π) so that ℓℏ → U as ℏ → ∞. Further, the subsequences
{Qζ2ℏ+2} = {Gζ2ℏ+1} = {ℓ2ℏ+2} and {Iζ2ℏ+1} = {Lζ2ℏ} = {ℓ2ℏ+1} of {ℓℏ} also converge to the point U . Since
U ∈ Q(Π) ∪ I(Π), we have U ∈ Q(Π) or U ∈ I(Π). If U ∈ Q(Π), then we can find V ∈ Π so that QV = U . We claim
that LV = U . η-regularity of Π implies that ηλ(QV, Iζ2ℏ+1, ι) ⪰ IA. So, we see that

C2λ(LV,U , ι) ⪯ Cλ(LV,Gζ2ℏ+1, ι) + Cλ(Gζ2ℏ+1,U , ι)
⪯ ∂∗[Cλ(QV, Iζ2ℏ+1, ι)]∂ + Cλ(Gζ2ℏ+1,U , ι).

So, we get

∥ C2λ(LV,U , ι) ∥ ≤∥ ∂ ∥2∥ Cλ(U , Iζ2ℏ+1, ι)∥+ ∥ Cλ(Gζ2ℏ+1,U , ι)∥.

Since ∥ ∂ ∥< 1, making ℏ → ∞, we have LV = QV = U . Since U ∈ L(Π) ⊂ I(Π), there is ℑ ∈ Π such that
Iℑ = U . Now, we show that Gℑ = U . In fact, as ηλ(Iℑ,Qζ2ℏ, ι) ⪰ IA, we have

C2λ(Gℑ,U , ι) ⪯ Cλ(Gℑ,Lζ2ℏ, ι) + Cλ(Lζ2ℏ,U , ι)
⪯ ∂∗[Cλ(Iℑ,Qζ2ℏ, ι)]∂ + Cλ(Lζ2ℏ,U , ι),

so, we get

∥ C2λ(Gℑ,U , ι) ∥ ≤∥ ∂ ∥2∥ Cλ(U ,Qζ2ℏ, ι) ∥ +∥Cλ(Lζ2ℏ,U , ι)∥.

If ℏ → ∞, ∥ C2λ(Gℑ,U , ι) ∥= θA, since ∥ ∂ ∥< 1. So, Gℑ = Iℑ = U . Thus, the pairs (L,Q) and (G, I) have a
coincidence point in Π. If (L,Q) and (G, I) be w-compatible, LU = LQV = QLV = QU := ℑ1 and GU = GIℑ =
IGℑ = IU := ℑ2. Now, as ηλ(QU , IU , ι) = ηλ(ℑ1,ℑ2, ι) ⪰ IA,

Cλ(ℑ1,ℑ2, ι) = Cλ(LU ,GU , ι)
⪯ ∂∗[Cλ(QU , IU , ι)]∂
= ∂∗[Cλ(ℑ1,ℑ2, ι)]∂.

This implies that

∥CAλ
(ℑ1,ℑ2, ι)∥ ≤ ∥∂∥2∥Cλ(ℑ1,ℑ2, ι)∥.

Since ∥ ∂ ∥< 1, this fact implies that ℑ1 = ℑ2 and hence LU = GU = QU = IU , that is, the point U is a
coincidence point of the pairs {L,Q} and {G, I}. Now, we show that U = GU . In fact, as ηλ(U = QV, IU , ι) ⪰ IA, we
have

Cλ(U , IU , ι) = Cλ(U ,GU , ι) = Cλ(LV,GU , ι)
⪯ ∂∗[Cλ(QV, IU , ι)]∂ = ∂∗[Cλ(U , IU , ι)]∂,

which conclude that

∥ CAλ
(U ,GU , ι) ∥ ≤ θA.
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Hence, GU = U and therefore U is a common fixed point of L, G, Q and I.
Finally, to show the uniqueness of point U , suppose that U∗ be another common fixed point of L,G,Q and I. From

(2.1), as ηλ(QU , IU∗, ι) ⪰ IA it follows that

Cλ(U ,U∗, ι) = Cλ(LU ,GU∗, ι)

⪯ ∂∗[Cλ(QU , IU∗, ι)]∂.

This implies that

∥Cλ(U ,U∗, ι)∥ ≤ ∥∂∥2∥Cλ(U ,U∗, ι)∥,

since ∥ ∂ ∥< 1, we have U = U∗. Suppose that L(Π) ∪ G(Π) be complete and U ∈ I(Π). In this case, the proof is
similar to the completeness of Q(Π) ∪ I(Π) and U ∈ I(Π). □

Corollary 2.12. Let (Π,A, CA) be a complete CAVMPMS and L, G, Q, I be self-mappings on Π satisfying L(Π) ⊆
I(Π), G(Π) ⊆ Q(Π) and η : (0,∞)×Π2×(0,∞) → A+ be a function, so that for all ζ, ℓ ∈ Π with ηλ(Qℜζ, Iℏℓ, ι) ⪰ IA
and for some ℜ, ℏ ≥ 1

Cλ(Lℜζ,Gℏℓ, ι) ⪯ ∂∗[Cλ(Qℜζ, Iℏℓ, ι)]∂, for all λ, ι > 0, (2.10)

where ∥ ∂ ∥< 1.

Assume that (Π,A, C) is η-regular and the pairs (L,G) and (G,L) are triangular partially weakly η-admissible with
respect to I and Q, respectively.
Then

(A) If one of L(Π) ∪ G(Π) and Q(Π) ∪ I(Π) be complete, then (L,Q) and (G, I) have a coincidence point in Π. If
ηλ(QU , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I have a coincidence point.

(B) if (L,Q) and (G, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I
have a common fixed point in Π. If ηλ(QU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L, G, Q and I
have a unique common fixed point in Π.

Proof . By using Theorem 2.11, it follows that (Lℜ,Qℜ) and (Gℏ, Iℏ) have a unique common fixed point ℑ ∈ Π.
Now, we have

L(ℑ) = L(Lℜ(ℑ)) = Lℜ+1(ℑ) = Lℜ(L(ℑ)),
Q(ℑ) = Q(Qℜ(ℑ)) = Qℜ+1(ℑ) = Qℜ(Q(ℑ))

and therefore L(ℑ) and Q(ℑ) are also fixed points for mappings Lℜ and Qℜ. Hence, L(ℑ) = Q(ℑ) = ℑ. Using the
same reasoning in the proof of Theorem 2.11, we get G(ℑ) = I(ℑ) = ℑ. Therefore, the proof is complete. □

Corollary 2.13. Let L, G and I be self-mappings on complete CAVMPMS (Π,A, C), satisfying L(Π)∪G(Π) ⊂ I(Π),
and η : (0,∞)×Π2 × (0,∞) → A+ be a function, so that for all ζ, ℓ ∈ Π with ηλ(Iζ, Iℓ, ι) ⪰ IA,

Cλ(Lζ,Gℓ, ι) ⪯ ∂∗[Cλ(Iζ, Iℓ, ι)]∂, for all λ, ι > 0, (2.11)

where ∥ ∂ ∥< 1.

Assume that (Π,A, C) is η-regular and the pairs (L,G) and (G,L) are triangular partially weakly η-admissible with
respect to I, respectively.
Then

(A) If one of L(Π) ∪ G(Π) and I(Π) be complete, then (L, I) and (G, I) have a coincidence point in Π. If
ηλ(IU , IU , ι) ⪰ IA for all coincidence point U , then L, G, and I have a coincidence point.

(B) if (L, I) and (G, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L, G, and I
have a common fixed point in Π. If ηλ(IU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L, G and I have
a unique common fixed point in Π.
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Corollary 2.14. Let L and I be self-mappings on complete CAVMPMS (Π,A, C), satisfying L(Π) ⊂ I(Π), and
η : (0,∞)×Π2 × (0,∞) → A+ be a function, so that for all ζ, ℓ ∈ Π, with ηλ(Iζ, Iℓ, ι) ⪰ IA,

Cλ(Lζ,Lℓ, ι) ⪯ ∂∗[Cλ(Iζ, Iℓ, ι)]∂, for all λ, ι > 0, (2.12)

where ∥ ∂ ∥< 1.

Assume that (Π,A, C) is η-regular and L is triangular partially weakly η-admissible with respect to I.
Then

(A) If one of L(Π) and I(Π) be complete, then (L, I) have a coincidence point in Π. If ηλ(IU , IU , ι) ⪰ IA for all
coincidence point U , then L and I have a coincidence point.

(B) if (L, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L, and I have a common
fixed point in Π. If ηλ(IU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L and I have a unique common
fixed point in Π.

2.2 η-admissible mapping and Kannan-Ćirić C∗-contractions

Now, we generalize the Kannan-Ćirić contraction condition [22] as follows.

Theorem 2.15. Let (Π,A, C) be a complete CAVMPMS and L, G, Q, I be self-mappings on Π, so that the following
conditions are satisfies:

(i) L(Π) ⊆ I(Π), G(Π) ⊆ Q(Π) and η : (0,∞)×Π2 × (0,∞) → A+ be a function.

(ii) Suppose that for all ζ, ℓ ∈ Π with ηλ(Qζ, Iℓ, ι) ⪰ IA,

Cλ(Lζ,Gℓ, ι) ⪯ ∂∗[P(ζ, ℓ, ι)]∂, for all ζ, ℓ ∈ Π, λ, ι > 0, (2.13)

where ∥ ∂ ∥< 1 and

P(ζ, ℓ, ι) = max{Cλ(Qζ,Lζ, ι), Cλ(Iℓ,Gℓ, ι)}.

Assume that (Π,A, C) is η-regular and the pairs (L,G) and (G,L) are triangular partially weakly η-admissible with
respect to I and Q, respectively.
Then

(A) If one of L(Π) ∪ G(Π) and Q(Π) ∪ I(Π) be complete, then (L,Q) and (G, I) have a coincidence point in Π. If
ηλ(QU , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I have a coincidence point.

(B) if (L,Q) and (G, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I
have a common fixed point in Π. If ηλ(QU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L, G, Q and I
have a unique common fixed point in Π.

Proof . Let ζ0 be an arbitrary point of Π. Choose ζ1 ∈ Π such that Lζ0 = Iζ1 and ζ2 ∈ Π such that Gζ1 = Qζ2.
Continuing this way, construct a sequence {ℓℏ} defined by:{

Lζ2ℏ = Iζ2ℏ+1 = ℓ2ℏ+1

Gζ2ℏ+1 = Qζ2ℏ+2 = ℓ2ℏ+2, ∀ℏ ≥ 0.

As ζ1 ∈ I−1(Lζ0) and ζ2 ∈ Q−1(Gζ1) and the pairs (L,G) and (G,L) are partially weakly η-admissible with respect
to I and Q, respectively, we have

ηλ(Iζ1 = Lζ0,Gζ1 = Qζ2, ι) ⪰ IA

and
ηλ(Gζ1 = Qζ2,Lζ2 = Iζ3, ι) ⪰ IA.

Repeating this process, we obtain ηλ(Iζ2ℏ+1,Qζ2ℏ+2, ι) = ηλ(ℓ2ℏ+1, ℓ2ℏ+2, ι) ⪰ IA for all ℏ ≥ 0. According to (2.13)

Cλ(ℓ2ℏ+1, ℓ2ℏ+2, ι) = Cλ(Lζ2ℏ,Gζ2ℏ+1, ι)

⪯ ∂∗[P(ζ2ℏ, ζ2ℏ+1, ι)]∂,
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where

P(ζ2ℏ, ζ2ℏ+1, ι) = max{Cλ(Qζ2ℏ,Lζ2ℏ, ι), Cλ(Iζ2ℏ+1,Gζ2ℏ+1, ι)

= max{Cλ(ℓ2ℏ, ℓ2ℏ+1, ι), Cλ(ℓ2ℏ+1, ℓ2ℏ+2, ι)}.

IfP(ζ2ℏ, ζ2ℏ+1, ι) = Cλ(ℓ2ℏ+1, ℓ2ℏ+2, ι), then we simply see that it is impossible. So, P(ζ2ℏ, ζ2ℏ+1, ι) = Cλ(ℓ2ℏ, ℓ2ℏ+1, ι)
for all ℏ ∈ N, and

Cλ(ℓ2ℏ+1, ℓ2ℏ+2, ι) ⪯ ∂∗[P(ζ2ℏ, ζ2ℏ+1, ι)]∂

= ∂∗[Cλ(ℓ2ℏ, ℓ2ℏ+1, ι)]∂.

By induction, we get

Cλ(ℓ2ℏ+1, ℓ2ℏ+2, ι) ⪯ (∂∗)2ℏ+1[Cλ(ℓ0, ℓ1, ι)]∂2ℏ+1.

Similarly, it can be shown that

Cλ(ℓ2ℏ, ℓ2ℏ+1, ι) ⪯ (∂∗)2ℏ[Cλ(ℓ0, ℓ1, ι)]∂2ℏ.

Now, for every ℏ ∈ N , we can get

Cλ(ℓℏ, ℓℏ+1, ι) ⪯ (∂∗)ℏ[Cλ(ℓ0, ℓ1, ι)]∂ℏ

⪯ (∂∗)ℏϖ0∂
ℏ,

where ϖ0 := Cλ(ℓ0, ℓ1, ι).
Step II. Following similar lines in the proof of Theorem 2.11 we can show that {ℓℏ} is a Cauchy sequence in Π.

Suppose that Q(Π) ∪ I(Π) be complete. In this case there is U ∈ Q(Π) ∪ I(Π) so that ℓℏ → U as ℏ → ∞.
Furthermore, the subsequences {Qζ2ℏ+2} = {Gζ2ℏ+1} = {ℓ2ℏ+2} and {Iζ2ℏ+1} = {Lζ2ℏ} = {ℓ2ℏ+1} of {ℓℏ} also
converge to the point U . Since U ∈ Q(Π) ∪ I(Π), we have U ∈ Q(Π) or U ∈ I(Π). If U ∈ Q(Π), then we can find
V ∈ Π so that QV = U . Now, we claim that LV = U . For this, as ηλ(QV, (Iζ2ℏ+1, ι) ⪰ IA we see that

C2λ(LV,U , ι) ⪯ Cλ(LV,Gζ2ℏ+1, ι) + Cλ(Gζ2ℏ+1,U , ι)
⪯ ∂∗[P(V, ζ2ℏ+1, ι)]∂ + Cλ(Gζ2ℏ+1,U , ι),

where

P(V, ζ2ℏ+1, ι) =max{Cλ(QV,LV, ι), Cλ(Iζ2ℏ+1,Gζ2ℏ+1, ι)}.

Therefore, we get

∥ CA2λ
(LV,U , ι) ∥ ≤∥ ∂ ∥2∥ P(V, ζ2ℏ+1, ι) ∥ +∥Cλ(Gζ2ℏ+1,U , ι)∥.

Since ∥ ∂ ∥< 1, making ℏ → ∞, we have a contradiction, so C2λ(LV,U , ι) = 0. Consequently, we have LV = QV = U
and since U ∈ L(Π) ⊂ I(Π), there is ℑ ∈ Π so that Iℑ = U .

Now, we show that Gℑ = U . So, we have

C2λ(Gℑ,U , ι) ⪯ Cλ(Gℑ,Lζ2ℏ, ι) + Cλ(Lζ2ℏ,U , ι)
⪯ ∂∗[P(ℑ, ζ2ℏ, ι)]∂ + Cλ(Lζ2ℏ,U , ι),

because ηλ(Qℑ, Iζ2ℏ, ι) ⪰ IA where

P(ℑ, ζ2ℏ, ι) =max{Cλ(Qℑ,Lℑ, ι), Cλ(Iζ2ℏ,Gζ2ℏ, ι)}.

We get

∥ C2λ(Gℑ,U , ι) ∥ ≤∥ ∂ ∥2∥ U(ℑ, ζ2ℏ, ι) ∥ +∥Cλ(Lζ2ℏ,U , ι)∥.
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If ℏ → ∞, since ∥ ∂ ∥< 1, C2λ(Gℑ,U , ι) ⪯ θA. So, Gℑ = Iℑ = U . Hence, (L,Q) and (G, I) have a coincidence point
in Π. Now, if (L,Q) and (G, I) be w-compatible, LU = LQV = QLV = QU := ℑ1 and GU = GIℑ = IGℑ = IU := ℑ2.
Now

Cλ(ℑ1,ℑ2, ι) = Cλ(LU ,GU , ι)
⪯ ∂∗[P(U ,U , ι)]∂,

because we have ηλ(QU , IU , ι) = ηλ(ℑ1,ℑ2, ι) ⪰ IA, where

P(U ,U , ι) =max{Cλ(QU ,LU , ι), Cλ(IU ,GU , ι)}.

This implies that

Cλ(ℑ1,ℑ2, ι) ⪯ θA.

So ℑ1 = ℑ2 and hence LU = GU = QU = IU , i.e., the point U is a coincidence point of (L,Q) and (G, I). Now,
we show that U = GU . We have

Cλ(U ,GU , ι) = Cλ(LV,GU , ι)
⪯ ∂∗[P(V,U , ι)]∂,

because ηλ(QV, IU , ι) ⪰ IA where

P(V,U , ι) = max{Cλ(QV,LV, ι), Cλ(IU ,GU , ι)}
= CAλ

(U ,GU , ι).

So, we get

∥ CAλ
(U ,GU , ι) ∥ ≤∥ ∂ ∥2 ∥CAλ

(U ,GU , ι)∥.

Since ∥ ∂ ∥< 1, GU = U and hence U is a common fixed point of L,G,Q and I. Finally, to show the uniqueness of
point U , suppose that U∗ be another common fixed point of L,G,Q and I. From (2.13), it follows that

Cλ(U ,U∗, ι) = Cλ(LU ,GU∗, ι)

⪯ ∂∗[P(U ,U∗, ι)]∂,

because ηλ(QU , IU∗, ι) = ηλ(U ,U∗, ι) ⪰ IA in which

P(U ,U∗, ι) =max{Cλ(QU ,LU , ι), Cλ(IU∗,GU∗, ι)}.

This implies that

Cλ(U ,U∗, ι) ⪯ θA.

Then U = U∗. Suppose that L(Π) ∪ G(Π) be complete and U ∈ I(Π). In this case, the proof is similar to the
completeness of Q(Π) ∪ I(Π) and U ∈ I(Π). □

Corollary 2.16. Let (Π,A, CA) be a complete CAVMPMS and L, G, Q, I be self-mappings on Π satisfying L(Π) ⊂
I(Π), G(Π) ⊂ Q(Π), and η : (0,∞)×Π2×(0,∞) → A+ be a function, so that for all ζ, ℓ ∈ Π with ηλ(Qℜζ, Iℏℓ, ι) ⪰ IA
and for some ℜ, ℏ ≥ 1

Cλ(Lℜζ,Gℏℓ, ι) ⪯ ∂∗[P(ζ, ℓ, ι)]∂, for all λ, ι > 0, (2.14)

where ∥ ∂ ∥< 1 and

P(ζ, ℓ, ι) =max{Cλ(Qℜζ,Lℜζ, ι), Cλ(Iℏℓ,Gℏℓ, ι)}.

Assume that (Π,A, C) is η-regular and the pairs (L,G) and (G,L) are triangular partially weakly η-admissible with
respect to I and Q, respectively. Then

(A) If one of L(Π) ∪ G(Π) and Q(Π) ∪ I(Π) be complete, then (L,Q) and (G, I) have a coincidence point in Π. If
ηλ(QU , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I have a coincidence point.

(B) if (L,Q) and (G, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L, G, Q and I
have a common fixed point in Π. If ηλ(QU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L, G, Q and I
have a unique common fixed point in Π.
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Corollary 2.17. Let L, G and I be self-mappings on complete CAVMPMS (Π,A, C), satisfying L(Π)∪G(Π) ⊂ I(Π),
and η : (0,∞)×Π2 × (0,∞) → A+ be a function, so that for all ζ, ℓ ∈ Π with ηλ(Iζ, Iℓ, ι) ⪰ IA,

Cλ(Lζ,Gℓ, ι) ⪯ ∂∗[P(ζ, ℓ, ι)]∂, for all λ, ι > 0, (2.15)

where ∥ ∂ ∥< 1 and

P(ζ, ℓ, ι) =max{Cλ(Iζ,Lζ, ι), Cλ(Iℓ,Gℓ, ι)}.

Assume that (Π,A, C) is η-regular and the pairs (L,G) and (G,L) are triangular partially weakly η-admissible with
respect to I.
Then

(A) If one of L(Π) ∪ G(Π) and I(Π) be complete, then (L, I) and (G, I) have a coincidence point in Π. If
ηλ(IU , IU , ι) ⪰ IA for all coincidence point U , then L, G, and I have a coincidence point.

(B) if (L, I) and (G, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L, G, and I
have a common fixed point in Π. If ηλ(IU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L, G and I have
a unique common fixed point in Π.

Corollary 2.18. Let L and I be self-mappings on complete CAVMPMS (Π,A, C), satisfying L(Π) ⊂ I(Π), and
η : (0,∞)×Π2 × (0,∞) → A+ be a function, so that for all ζ, ℓ ∈ Π, with ηλ(Iζ, Iℓ, ι) ⪰ IA,

Cλ(Lζ,Lℓ, ι) ⪯ ∂∗[P(ζ, ℓ, ι)]∂, for all λ, ι > 0, (2.16)

where ∥ ∂ ∥< 1 and

P(ζ, ℓ, ι) =max{Cλ(Iζ,Lζ, ι), Cλ(Iℓ,Lℓ, ι)}.

Assume that (Π,A, C) is η-regular and L is triangular partially weakly η-admissible with respect to I. Then
(A) If one of L(Π) and I(Π) be complete, then (L, I) have a coincidence point in Π. If ηλ(IU , IU , ι) ⪰ IA for all

coincidence point U , then L and I have a coincidence point.

(B) if (L, I) be w-compatible, and if ηλ(U , IU , ι) ⪰ IA for all coincidence point U , then L and I have a common
fixed point in Π. If ηλ(IU , IU∗, ι) ⪰ IA for all common fixed points U and U∗, then L and I have a unique common
fixed point in Π.

Example 2.19. Let H be a Hilbert space and let L(H) be the set of all linear bounded operators on H. Let {Di} ⊆
L(H), with

∑∞
ℏ=1 ∥ Dℏ ∥2< 1, Π ∈ L(H) and P ∈ L(H)+. Then the operator equation

�−
∞∑
ℏ=1

D∗
ℏ�Dℏ = P,

has a unique solution in L(H).

Proof . Set ϱ =
∑∞

ℏ=1 ∥ Dℏ ∥2. Clearly, if ϱ = 0, then the Dℏ = θA (ℏ ∈ N), and the equation has a unique solution
in L(H). We suppose that ϱ > 0. Choose a positive operator T ∈ L(H). For �,Y ∈ L(H), set

Cλ(�,Y, ι) =∥ ι �−Y

λ
∥ T .

It is clear that (L(H),A, C) is a CAVMPMS which is complete since L(H) is a Banach space. We defined ηλ(ζ, ℓ, ι) =
IA and the mapping F : L(H) → L(H) by

F(�) =

∞∑
ℏ=1

D∗
ℏ�Dℏ +P.
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Then

Cλ(F�,FY, ι) =∥ ιF�−FY

λ
∥ T

=∥ ι
∑∞

ℏ=1 D
∗
ℏ(�−Y)Dℏ

λ
∥ T

⪯
∞∑
ℏ=1

∥ Dℏ ∥2∥ ι (�−Y)

λ
∥ T

= ϱ ∥ ι (�−Y)

λ
∥ T

= (ϱ
1
2 IA)

∗[∥ ι (�−Y)

λ
∥ T ](ϱ

1
2 IA)

= (ϱ
1
2 IA)

∗[Cλ(�,Y, ι)](ϱ
1
2 IA).

Using Theorem 2.11 for mapping F , there is a unique fixed point X ∈ L(H). Moreover, since
∑∞

ℏ=1 D
∗
ℏXDℏ +P is

a positive operator, the solution is a Hermitian operator. □

3 Application

Let X = L∞(S) be the set of essentially bounded measurable functions onS. Consider the Hilbert space H = L2(S)
and L(H) = A, where S is a Lebesgue measurable set and m(S) < ∞. We consider a Fredholm integral equation as
follows:

ζ(ι) =

∫
S

Υ(ι, ς, ζ(ς))dς + h(ι), for all ς, ι ∈ S, (3.1)

where Υ : S2 ×R −→ R and h ∈ L∞(S). Define C : (0,∞)× [L∞(S)]2 × (0,∞) → L(H) by Cλ(ζ, ℓ, ι) =M| ι|ζ−ℓ|
λ |, for

all ζ, ℓ ∈ X and for all λ, ι > 0, where Mτ is the multiplication operator on L2(S) which is given by Mτ (ϖ) = τ.ϖ,
for all ϖ ∈ L2(S). Then (X,A, C) is a complete CAVMPMS. Now we consider the following assumption:

There is κ ∈ (0, 12 ) such that for all ζ, ℓ ∈ X:

|Υ(ς, ι, ζ(ς))−Υ(ς, ι, ℓ(ς))| ≤ κ
(
|ζ(ς)− ℓ(ς)|

)
.

Theorem 3.1. Under the above assumption, the integral equation (3.1) has a unique solution in X.

Proof . We define L : X → X by

L(ζ)(ι) =
∫
S

Υ(ι, ς, ζ(ς))dς + h(ι), ∀ς, ι ∈ S,

and η : (0,∞) × X2 × (0,∞) → A+ by ηλ(ζ, ℓ, ι) = IA. Set ϱ = κIA, then ϱ ∈ L(H)+ and ∥ ϱ ∥= κ < 1. For every
φ ∈ H, we have

∥ Cλ(Lζ,Lℓ, ι) ∥ =∥M| ι|Lζ−Lℓ|
λ | ∥

= sup
∥φ∥=1

(M| ι|Lζ−Lℓ|
λ |φ,φ)

≤ sup
∥φ∥=1

∫
S

[ ι
λ

∣∣∣ ∫
S

Υ(ι, ς, ζ(ς))dς −
∫
S

Υ(ι, ς, ℓ(ς))dς
∣∣∣]φ(r)φ(r)dr

≤ sup
∥φ∥=1

∫
S

[ ι
λ

∫
S

|Υ(ι, ς, ζ(ς))−Υ(ι, ς, ℓ(ς))|dς
]
|φ(r)|2dr

≤ sup
∥φ∥=1

∫
S

|φ(r)|2dr ι
(
κ ∥ ζ − ℓ

λ
∥∞

)
≤ κ

(
∥ ι ζ − ℓ

λ
∥∞

)
= κ

(
∥M| ι|ζ−ℓ|

λ | ∥

=∥ ϱ ∥∥ Cλ(ζ, ℓ, ι) ∥ .
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This implies that

∥ Cλ(Lζ,Lℓ, ι) ∥≤∥ ϱ ∥∥ Cλ(ζ, ℓ, ι) ∥,

for λ, ι > 0. Since ∥ ϱ ∥< 1, L is a contractive mapping and Theorem 2.11 hold for a mapping L. Therefore, the
equation (3.1) has a unique solution, that is, L has a unique fixed point. □

4 Conclusion

In this article, we reviewed and revised the chapter published in CRC Press [12]. To improve the previous version,
definitions and assumptions needed to prove the main results have been added. In this way, we expressed the concept
of η-admissiblity in C∗-algebra-valued modular parametric metric spaces for C∗-contractions and also Kannan-Ćirić
C∗-contractions. In fact, we have combined the concepts of modular metric, parametric metric and C∗-algebra-valued
metric spaces. Using this new space, we presented a new development of the Banach contraction principle. To confirm
the new results, we provide an example and an application about the solvability of operator equations and integral
equations. Our results extend and generalize the relevant results in [16, 18, 20, 22, 25, 30].
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