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Abstract

The optimization of reliability is crucial across various engineering domains. The redundancy allocation problem (RAP)
is among the key challenges within reliability. This study introduces an RAP incorporating repairable components and
a k-out-of-n sub-systems structure. The objective function aims to maximize system reliability while adhering to cost
and weight constraints. The goal is to determine the optimal number of components for each subsystem, including the
appropriate allocation of repairmen to each subsystem. Given that this model is classified as an Np-Hard problem, we
employed a genetic algorithm (GA) to solve the proposed model. Additionally, response surface methodology (RSM)
was utilized to fine-tune the algorithm parameters. To calculate the reliability of each subsystem, as well as the overall
system reliability, a Monte Carlo simulation was employed. Lastly, a numerical example was solved to assess the
algorithm’s performance.

Keywords: reliability, redundancy allocation problem, k-out-of-n sub-systems, common cause failures, genetic
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1 Introduction

The redundancy allocation problem (RAP) has emerged as a promising framework for enhancing the reliability of
practical production and operational systems in various domains, including aircraft engines, water pumping stations,
and more. Researchers have recognized the need to make RAP more realistic by incorporating specific assumptions and
constraints that align with the characteristics of these systems. These modifications have resulted in the development
of different problem categories within RAP, considering factors such as the operational state of components (binary or
multi-state), the failure rate pattern of components (constant or time-dependent), and the arrangement of components
within the system (active or standby) [8].

To address the inherent complexities of RAP and account for practical considerations, numerous studies have
approached the problem by treating system reliability and cost as objective functions. This paradigm shift has
transformed RAP into a bi-objective or even multi-objective problem, enabling a more comprehensive exploration of
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the trade-offs between system reliability and cost. This approach allows decision-makers to make informed choices
that strike an optimal balance between reliability and cost in real-world applications [19, 31].

The primary objective of reliability systems is to identify strategies for increasing the lifespan of components and
systems. The redundancy allocation problem (RAP) is a widely recognized model in the field of reliability that aims
to enhance system reliability by introducing parallel components within subsystems [25].

Fyffe et al. [9] were among the pioneering researchers to introduce RAP. Their model focused on maximizing
system reliability while considering cost and weight constraints, and they employed dynamic programming to solve
the problem. Nakagawa and Miyazaki [16] presented a nonlinear reliability optimization model, while Ha. C and
Kuo [11] formulated RAP as a non-convex integer programming problem, specifically addressing similar subsystems.
Tillman et al. [30] conducted a comprehensive review of 144 studies on reliability problems, examining various
redundancy models and proposing a common reliability-redundancy method. In 1992, Chern [3] demonstrated that
RAP belongs to the class of Np-Hard problems due to its computational complexity. Consequently, many heuristic and
meta-heuristic methods were employed to tackle this problem at that time. Notably, Sharma and Venkateswarn [28],
Aggarwal [1], Aggarwal et al. [2], Gopal et al. [10], and Nakagawa and Nakashima [17] proposed heuristic methods
that exhibited similarities. Nakagawa and Nakashima [17] further compared the performance of NN, GAGI, and MSV
heuristic algorithms for solving the general RAP.

In terms of solution approaches, Ida et al. [13] and Yokota et al. [32] were the first to utilize genetic algorithms
(GA) for solving RAP with series-parallel configuration and different failure modes. Coit and Smith [4, 5] presented a
mathematical model for RAP that maximized system reliability while considering uncertainty in component reliability,
and they utilized GA to solve the problem. Coit, D.W., and Smith [6, 7] made modifications to the objective function
of the model and employed GA to solve the revised version.

This study introduces a RAP with a series-parallel configuration and k-out-of-n sub-systems. The components are
repairable, and each repairman is responsible for repairing components within a specific subsystem. The objective
function aims to maximize system reliability, and the system variables include the number and type of components
within each subsystem, as well as the allocation of repairmen. The paper is divided into five sections, with the second
part focusing on problem definition, the third part addressing the methodologies employed for solving the problem, a
numerical example presented in the fourth part, and the final section covering the conclusion and potential avenues
for further research [20, 22].

2 Problem definition

In this paper, we present a novel and comprehensive approach to address the single-objective redundancy allocation
problem (RAP) with a focus on maximizing system reliability while considering cost and weight constraints. The
RAP model is particularly relevant in the context of complex systems with serially connected subsystems, where each
subsystem comprises parallel components operating under a k-out-of-n structure.

The k-out-of-n system is widely acknowledged and frequently employed to evaluate the reliability of systems
equipped with multiple components. Essentially, a k-out-of-n system implies that the entire system functions success-
fully as long as a minimum of k out of the n components are operational. This framework not only encompasses both
parallel and series systems but also allows for the accommodation of diverse component configurations and assumptions
regarding component lifetimes within its structure.

In our proposed model, we make the assumption that the components are repairable, and for efficient maintenance,
each repairman is exclusively assigned to work on the components within an allocated subsystem. By doing so, we
can determine the optimal number and type of components for each subsystem and also identify the most appropriate
allocation of repairmen to achieve an optimal balance between reliability and maintenance efficiency.

However, the complexity involved in calculating the total repair time of components in each subsystem and the
overall system reliability makes analytical approaches impractical. To overcome this challenge, we adopt a Monte Carlo
simulation method for their estimation, which allows us to generate numerous random samples and approximate the
system’s reliability and maintenance performance effectively. This approach has been successfully applied in various
engineering and reliability studies [27, 29, 31].

To provide a sound foundation for our model, we outline several key assumptions that underpin its design and
implementation. Firstly, we assume that the system follows a series-parallel configuration, which is a widely adopted
arrangement in real-world engineering systems due to its balance between reliability and cost. Secondly, components
are assumed to exhibit a constant failure rate (CFR) to simplify the reliability calculations and ensure consistency
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across the subsystems. Thirdly, the number of subsystems is considered deterministic, offering a realistic representation
of fixed and predefined system structures.

Furthermore, our model accommodates the presence of different types of components, each having unique char-
acteristics in terms of cost and operation rate. This flexibility allows us to incorporate a wide range of component
options, enhancing the applicability of our approach to diverse engineering scenarios.

The consideration of repairable components is crucial as it reflects real-world situations, where malfunctioning
components can be repaired and brought back into operation. This aspect adds an extra layer of complexity to the
optimization process, making it essential to find the right balance between component redundancy and repair resources
allocation.

Lastly, our model allows each subsystem to be allocated different types of components, providing an opportunity
to tailor the system design to meet specific reliability and cost requirements for individual subsystems.

By integrating these assumptions and leveraging the Monte Carlo simulation approach, our proposed model offers
valuable insights into the optimization of both reliability and cost aspects of the system. The results obtained from
this study will aid decision-makers and engineers in making informed choices for system design, contributing to
enhanced reliability and cost-effectiveness in a wide range of engineering applications. Moreover, our approach is not
limited to a specific industry but can be adapted and applied to various sectors, including aerospace, manufacturing,
transportation, and energy systems.

Several key assumptions underpinning our model include:

� The system follows a series-parallel configuration.

� Components exhibit a constant failure rate (CFR).

� The number of subsystems is deterministic.

� Different types of components are available for each subsystem.

� Components vary in terms of cost and operation rate.

� The components are repairable.

� Each subsystem can be allocated different types of components.

By incorporating these assumptions and leveraging the Monte Carlo simulation approach, our model offers
insights into optimizing the reliability and cost aspects of the system.

In this section, the notations used in this paper are presented as follows. Then the presented mathematical model
is analyzed. The notations used in this paper are as follows:

R(t) : System reliability at time t,

s : Number of subsystems,

i : Subsystems index, i = 1, 2, ..., s,

ki : Minimum number of components in subsystem i,

vi : Maximum number of components in subsystem i,

j : Component type index, j = 1, 2, 3, 4,

nij : Number of component type j that allocated to subsystem i,

wij : Weight of component type j that allocated to subsystem i,

W : Upper bound of system weight,

cij1 : Price of component type j that allocated to subsystem i,

ci2 : Price of recruitment each repairman for subsystem i,

ci3 : The time dependent repair cost of components that allocated to subsystem i,

C : Upper bound of system cost,

mi : Number of repairman recruitment for repairing components of subsystem i,
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ti : Total repairing time of component in subsystem i,

t : Mission time of system.

The mathematical model under the above assumptions is as follows:

maxR(t) =

s∏
i=1

Ri(t) (2.1)

S.t:

ki ≤
k∑

i=1

nij ≤ vi (2.2)

s∑
i=1

4∑
j=1

wij .nij ≤ W (2.3)

s∑
i=1

4∑
j=1

cij1.nij +

s∑
i=1

(ci2.mi + ci3.ti) ≤ C (2.4)

3 Solution methodology

The genetic algorithm (GA), originally introduced by John Holland [12], is a population-based evolutionary algo-
rithm. It begins with an initial population and iteratively applies various operators to improve the fitness function
of individuals within the population. GA has found wide-ranging applications in discrete optimization problems, in-
cluding production scheduling, reliability, and maintenance. Several studies have highlighted the superiority of GA in
solving complex redundancy allocation problems when compared to other meta-heuristic algorithms [15, 18, 21, 23, 26].
Thus, in this paper, we have adapted a GA to address the proposed mathematical model.

For determining the total repair time of components in each subsystem and calculating the reliability of both
individual subsystems and the overall system, we employed a simulation method. Additionally, we utilized a general
GA to identify the optimal system parameters.

Genetic algorithm (GA) is considered one of the most effective algorithms for solving the redundancy allocation
problem (RAP). It was originally introduced by Holland in 1992 [12]. Figure 1 presents the pseudocode of the GA
algorithm, showcasing its step-by-step execution.

Figure 1: Pseudocode of GA
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The chromosome used for illustrating the solution of the presented model is presented in Figure 2.

Figure 2: Chromosome of the problem

In our implementation, we incorporated crossover and mutation operators to generate new generations, while also
applying elitism to preserve good solutions in each generation.

The crossover operator involves selecting two parents from the current population. We then generate a random
integer number between 1 and s, where s represents the total number of components. Using this crossover point,
we swap the first part of the first parent with the second part of the second parent, and vice versa. This process is
illustrated in Figure 3.

Please note that Figure 3 is not visible in the provided text, but it likely provides a visual representation of the
crossover operation described above.

Figure 3: Crossover operator

For mutation operator, we select one parent and then generate an integer number between 1 and s. Then, we
change the first part of the parent with the second part as shown in Figure 4.
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Figure 4: Mutation operator

For evaluation of each chromosome, we consider a fitness function, which considers the reliability of each chro-
mosome. After generating initial chromosomes, crossover, and mutation operator, the new chromosomes may be
infeasible. For avoiding infeasible selection of chromosomes, we consider a penalty function for fitness function. The
penalty function presented in Equations (3.1) to (3.3) are as follows:

Fitness Function =
R(t)

PF1 × PF2
(3.1)

PF1 = max

{∑s
i=1

∑4
j=1 wijnij

W
, 1

}
(3.2)

PF1 = max

{∑s
i=1

∑4
j=1 cij1.nij +

∑s
i=1(ci2.mi + ci3.ti)

C
, 1

}
(3.3)

4 Monte Carlo simulation

Monte Carlo simulation is a powerful mathematical technique employed to assess the likelihood of various outcomes
for uncertain events through repeated random sampling. As explained in the book ”The Monte Carlo Simulation
Method for System Reliability and Risk Analysis” [2], this method enables realistic analysis of complex systems by
relaxing many of the restrictive assumptions about system behavior.

In the context of reliability analysis, Monte Carlo simulation proves valuable by constructing a model that captures
a range of potential results based on probability distributions assigned to variables with inherent uncertainty [24].
Through the simulation, the analysis recalculates results multiple times, utilizing different sets of random numbers
within the defined minimum and maximum value ranges. This iterative process generates a substantial number of
probable outcomes, each associated with a corresponding probability of occurrence [14].

Monte Carlo simulation serves as a versatile tool for system reliability analysis, offering a comprehensive under-
standing of the system’s performance and allowing for informed decision-making in the presence of uncertainty. By
incorporating the effects of randomness and variability, Monte Carlo simulation contributes to a more robust evaluation
of complex systems.

For calculating fitness function of each created chromosomes, we used a simulation method. The flowchart of the
event is presented in Figures 5 and 6.

5 Parameter tuning

In this research the parameters of the GA are tuned using the response surface methodology (RSM) technique. the
parameters of GA are the population size (nPop), crossover operator probability (Pc), mutation operator probability
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Figure 5: Monte Carlo simulation flowchart of Component failure

Figure 6: Monte Carlo simulation flowchart of Component repair

(Pm), and algorithm iteration (MaxIt) We used Box-Benking’s method to tune the algorithm’s parameters. The
boundaries and optimum values of the algorithm parameters are presented in Table 1.

Table 1: The boundaries and optimum values of algorithm parameters

Parameters Optimal value Upper value Lower value
nPop 50 100 100
Pc 0.4 0.7 0.63
Pm 0.1 0.3 0.1
MaxIt 100 200 200
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6 Numerical example

For illustrating the performance of the presented algorithm, we solve a numerical example. This example has
been already solved by Coit [4]. The parameters of examples are presented in Table 2. The other parameters are
(nmax = 6), W = 220, C = 500, and t = 100. The values of ci2 and ci3 are calculated in Equations (6.1) and (6.2).

Table 2: The parameters of examples

Choice 1 (j=1) Choice 2 (j=2) Choice 3 (j=3) Choice 4 (j=4)
i λi1 ci1 wi1 λi2 ci2 wi2 λi3 ci3 wi3 λi4 ci4 wi4

1 0.005320 1 3 0.000726 1 4 0.00499 2 2 0.008180 2 5
2 0.008180 2 8 0.000619 1 10 0.00431 1 9 – – –
3 0.013300 2 7 0.011000 3 5 0.01240 1 6 0.004660 4 4
4 0.007410 3 5 0.012400 4 6 0.00683 5 4 – – –
5 0.006190 2 4 0.004310 2 3 0.00818 3 5 – – –
6 0.004360 3 5 0.005670 3 4 0.00268 2 5 0.000408 2 4
7 0.010500 4 7 0.004660 4 8 0.00394 5 9 – – –
8 0.015000 3 4 0.001050 5 7 0.01050 6 6 – – –
9 0.002680 2 8 0.000101 3 9 0.000408 4 7 0.000943 3 8
10 0.014100 4 6 0.006830 4 5 0.001050 5 6 – – –
11 0.003940 3 5 0.003550 4 6 0.003140 5 6 – – –
12 0.002360 2 4 0.007690 3 5 0.013300 4 6 0.011000 5 7
13 0.002150 2 5 0.004360 3 5 0.006650 2 6 – – –
14 0.011000 4 6 0.008340 4 7 0.003550 5 6 0.004360 6 9

ci2 = 3.

4∑
j=1

cij1; i = 1, 3, 6, 9, 12, 14

ci2 = 4.

3∑
j=1

cij1; i = 2, 4, 5, 7, 8, 10, 11, 13 (6.1)

ci3 =
ci2
10

; i = 1, 2, ..., 14 (6.2)

We solved the presented example with GA using simulation methods and the optimal solution for this example with
20 times running the algorithm is presented in Figure 7. The total cost and weight of the problem are C = 499.9375
and W = 219, and the optimal system reliability is R(100) = 0.9963.

Figure 7: The optimal chromosome of problem

7 Conclusion and further studies

In conclusion, reliability optimization is a crucial concern in various industries, motivating the exploration of
more realistic conditions for problem formulation. This paper presented a redundancy allocation problem (RAP)
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with a series-parallel configuration and k-out-of-n subsystems. The model incorporated repairable components, where
each repairman was assigned to specific subsystem components. The objective function aimed to maximize system
reliability, while the system variables included the number and type of components in each subsystem and the allocation
of repairmen. A simulation method was employed to calculate system reliability, and a genetic algorithm (GA) was
utilized to solve the numerical example.

The results demonstrated that the reliability of the system with repairable components surpassed that of the system
with non-repairable components, confirming our expectations.

For future studies, it would be valuable to explore different assumptions and scenarios. For instance, incorporating
more complex configurations for subsystems could offer additional insights. Moreover, comparing the results obtained
from different meta-heuristic algorithms with the outcomes of the presented GA algorithm would contribute to a
comprehensive evaluation of their performance.

Overall, by further investigating and refining the RAP model under different conditions, researchers can continue
to advance reliability optimization and its practical applications in various industries.
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