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Abstract

In this study, we present two new regularity criteria based on pressure and its gradient to the Cauchy problem of the
3D magneto-micropolar system in anisotropic Lorentz spaces.
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1 Introduction and preliminaries

We analyze the following 3D magneto-micropolar system in R? x [0, T):

WU Y - VU — (K1 + ko) AU+ V(T +V2) — 5V x W =V - VY =0,

MW — kg AW +U - VW — 5oV X U + 2620 — k4 Vdiv W = 0,

N ks AV+U-VV -V VU =0, (1.1)
V-U=0, V-V=0,

U(z,0) =Up(z), W(z,0) = Wy(z), V(z,0)=Vy(x),

where U, V and W are, respectively, the fluid velocity, magnetic field and the micro-rotational fluid velocity of the flow.
The symbol W represents pressure, while Uy, Vy and W, are the given initial velocity, magnetic field and micro-rotation
velocity with V- Uy = 0 and V -Vy = 0 in the distributional sense. As the varying values of various viscosites and
diffusitivity would not effect our system, so through out this article we take k1 = ko = k3 = kg = k5 = 1.

In [7], Eringen initiated the study of system for the case of zero magnetic field that is for micropolar fluids.
These microstructured fluids can be used to simulate physiological fluids such as the cerebrospinal fluids that circulate
through the brain. Polymers, suspensions, rheological materials, and other microstructural fluids require microscale
spin simulation. See [I8] and the references therein for further information on these types of fluids. Because of
their vast industrial applications, the theory of micropolar fluids, for the last few decades has been a hot topic of
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discussion among the researchers working in this field. In 1977, Galdi and Rionero [II] demonstrated the existence
and uniqueness of weak solutions of the micropolar fluid equations. For various other regularity results regarding the
micropolar fluid model (see [B] [10, 15 23 26]). Ignoring the micro-rotational effects, our system models the
magnetohydrodynamics flows. The finite-time singularity problem for MHD flows has been extensively tackled by
different authors (see [6, 13, 14, 16, 30, B3] 34]) but it is still an important open problem.

Ahmadi and Shahinpoor [I] proposed magneto-micropolar model, which were based on Eringen’s theory of mi-
cropolar fluids and investigated the stability of solutions in bounded domains. Later on, Torres and Medar [22] and
Rojas-Medar [25] proved the global existence of the strong solutions and existence of weak solutions respectively for
the magneto micropolar equations. In several function spaces, such as Morrey—Campanato spaces [9] [12] Besov spaces,
homogeneous Besov spaces and on different domains the blow-up criteria for smooth solutions and regularity conditions
for weak solutions has been obtained (see [19] 20}, 27, 28] 29] 32]).

Before presenting our main findings, first, we will go over the problem’s history. For the Navier-Stokes equations
Berselli and Galdi [3] showed the smoothness of weak solutions on [0,T], if conditions

2 3 3
U e L™0,T, L") with —+> =2, = <I<o0,
m l 2

and ) 3
V¥ e L™(0,T, L") with — + 7=3 1< 1 < o0,
m

are satisfied. Similarly, for the magneto-hydrodynamics system Zhou [35] obtained the conditions

2 3 3
‘IJ c Ll7m7 V c L2l¢2m7 or ||\I/||L(X>)%7 ||1)||L<>o,37 Where 7 + — S 27 5 <m S oo,

m

and
2 - 2 3
VU e L™ Ve L33™ or |VU|pes, |VV|pes, where T+ <3 1<m<oo
m
This important result in Lorentz space for micropolar fluid system was presented by Yuan [31] as

2 3
VU e L™(0,T, L") with — 42 <3, 1<l<oo,
m

Feng-Ping and Guang-Xia [8] presented the following regularity criteria for the magneto-micropolar system
m l,00 : 2 3
Ve e L™(0,T,L" )w1th—+7§3, m>2, [>1, (1.2)
m

VU € L3(0,T, BMO).
Recently, Li and Niu [I7] presented the regularity criteria in Lorentz spaces

2
= Lm’OO(O,T, Ll,OO) with — + % =2, m2>2, g <l < oo. (13)
m

Motivated by the above results specifically in Lebesgue and Lorentz spaces we will establish two new conditions
for the regularity of system (1.1]) in generalised Lorentz spaces i.e., in anisotropic Lorentz spaces.

Remark 1.1. The results of Theorem 2.1 and Theorem 2.2 are also true for the Navier-Stokes system (putting
W =V = 0 in system , MHD system (putting W = 0 in system and for Micropolar fluid system (putting
Y =0 in system . As pressure plays a significance role in controlling the regularity of weak solutions. Therefore,
it is vital to study the regularity of system for pressure and its gradient in anisotropic Lorentz spaces.

Remark 1.2. The following embedding relations are helpful in proving our main results.

170t = 17l HHHf\

Lisyloo Lo n,00
z2 Lz}
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Definition 1.1. [2] Let I = (I1,12,13) and m = (my, ma,m3) with 0 < I; < 00, 0 < m; < oo. If [; = co then m; = oo
for every i = 1,2,3. An anisotropic Lorentz space L'*"™1 (R, ; L!2™2(R,,; L'*™3((R,,)) is the set of functions defined
as

ll mq

o0 o0 o oL dti\ me dto\ me dt
HHf\ = (/ (/ (/ 1130 s (o, ) ) 2 3) < 0.
0 0 0 t1 to t3

For the detailed study on the anisotropic Lorentz spaces and mixed norm spaces (see [2), 4, 21]).

12 mo
lg,m
La% 3

Lemma 1.2. (Holder’s inequality for Lorentz spaces)[2, 21| If 1 < Iy,la, m1,mg < oo, then for any f € L™ (R"),
g € L=m2(R"),
[ £gllem@ny < Clfllim @ny 19l iz ima (nys

1 _ 1 1 1 _ 1 1
where 7=7 113 andm— + .

r=1

1
m

Lemma 1.3. (Young’s inequality for Lorentz Spaces)[2, 2T Let 1 <1 < 00,1 < m < oo and % + ll, =1, % +
with1 <1< and m <m < 0. If S tl=7 T and n% = % + mi then the convolution operator
1

0 LY™(R™) x Lh™ (R™) — L™ (R™)
is a bounded bilinear operator.

For any s > 0, we define homogeneous Sobolev space H* (R™) as
o) = {7es’ je L) ad [ PTG a5 < oo,
where S’ is the space of tempered distributions.

Lemma 1.4. [24] For 2 < | < oo, there exists a constant C=C(1) such that f € H7, then f € L2232 and

112y 2 < Cllfll 4

where HT is the homogenous Sobolev space.

Lemma 1.5. Let 2 <[ ,m,n <ooand 1— (%—l—%—i—%) > 0, then then there exists C' > 0, such that for all f € C§°(R?)

1—(h+5+71
<c||alf||L2||azf||L2||agf||L2||f|| ( g (1.4)

2n

Let 1 <l,m,n <ooand 1— (3 + 70 + 5=) > 0, then there exists C > 0, such that for all f € C§°(R?)

.

Proof . The proof of condition (|1.4) is given by Ragusa and Wu [24], for the benefit of reader, we shall give the proof
of condition (1.5)). Let A} be the Fourier multiplier, given as

Fi(ALF)(Br, w2, x3) = |B1[PFif(Br, w2, 23)

2me o < C”alf” ||82f||2m Haf)‘f” ”fHLz 27"+Q"+2l) (1.5)

- 2n
1 n—1"
z3

with
.7:1f(51,$27$3)=/€_wlmlf($61,$27$3)d$1-
R
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Similarly, we can define A5* and A¥. Then by Sobolev embedding, Minkowski’s inequality and Holder’s inequality
and Fourier-Plancherel formula, we can obtain

1
[i4, 2 o250 P P IO || i A I
L;;L,Q Lz, Lm L%—l2 Loy Lz, L;;l’z
1 1 1 1 1 1 1
<c||afaz s <of|[afazs| < O||AFAZTAT
2 n_ o
L3 2s L7, 2 L=t L2 oy L3 eg.es

1

1 1 1 1 1 1 (i, 1.1 2

<C( [ 1001 F I8 #1515 Bl A1 F 254 D asrdadin)

<O\l =0y £1| 2 01122 101123

Hence the proof is complete. [

The next section is dedicated to prove our main results.

2 Main results and proofs

In this section, we present two new main results and their logarithmic improvements.

Theorem 2.1. Suppose, the initial datum (Uy, Vo, Wo) € H'(R3) with V-Uy = V-V = 0 in the sense of distributions.
Suppose that (U, V, W) is the weak solution of the system (1.1). If

¢
Ll

then the solution remains its smoothness upto T. Where 2 < I, m,n < co and 1—(% + % + %)2 0.

dt < oo, (2.1)

[l | I
2 Lz}

Proof . For finding L*-estimates for & multiply (1.1); with |[U/|?U integrating by parts and using divergence free
condition, we get

4dt/ |u|4d:v+/ IVUPUPde + 5 / VU Pda

§2/ ||| |vmdx+3/ WllU| |vmdx—/ VIV (UPU)||V|da. (2.2)
R3 R3 R3

Similarly, evaluating L*-estimates for W, taking the inner product to (1.1, with |[W|?>W, we obtain

4dt/ |W|4d:c+/ VW2 W2 do+ = / |V|W|2|2dx+/ |div W dz+2/ |W|4dx<3/ U2 VW dz. (2.3)

In case of (1.1))3, we take inner product with [V|?V, and obtain L*-estimates for V

T [ovrde s [ vpvRds sz [ wmviEa < [ vieevey)uie. (2.4)
Adding (2.2 , and ([2.4) implies
1d
1 Uz + WL+ [VI7a) + VUl 72 + *||V|U\ [

HIVWIWIIZ: + §IIV|W| 172 + lIdiv W22 +2[WI s + [IVVIVIIIZ2 + 2 VVIVIZ.
gz/ |\1/\|u|2|vu|da:+3/ \W\|u|2|vu|da:+3/ U|IWAVW|dx
R3 R3 R3

- [ IV uiwvias+ [ MISQVEY)uide

=L1+ Lo+ L3+ Ls+ Ls. (2.5)
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Now, estimating Ly by employing Holder’s and Young’s inequality

1
2/ WU Vitlde < L[IVU]7: +C/ U[|P[[t|*dz = Py + P,.
R3 R3

Now, for P, using Holder’s and Young’s inequality as given by Lemma 1.4., Lemma 1.5. and applying Lemma 1.7.

we obtain
Py = |\I/\|\If||l/l| dz < C| ||| || e
Lloo 27")
£yl
(4Ll d 1 L 1
|- e ")\Ial‘PIIizII@z\PIIEzHas‘lllllelulli4
1 L7y ™ L
THmts) ot
<c|||l] v .. 1 T
1 L7y ™ L
<o/ ..~ e e 7 g )
L llpgye L3>
1 , TEEAD
<jleaves +c|l o], el
1 NLEy || oo

The final estimates for L; are

-2
(I L2

)

1 1
Ly < VP + ZlIuVUlz: + C

[l

1,00
Lz,

m, oo
L

L™
Assessing L%-estimates for Ly and L
1
Ly < SIUIIVUlIE +C(JUllts + VI )

and 1
< SIWIVWIIE: +C (Il + WIEs).

Now, assessing L?-estimates for Ly and Ls

1
Ly <ClIVPU[ 2 VU 22 < CIVPAIT: + L IVUAP] 72

12|l 2

(24

1 1
<CIPPIZs IllZs + IVRAPIZ: < CIVPIZ VUl ] 22 + VAP

1
<C|[VIVIVII7= + ZIIV\UIQII%z
and )
Ls < C|V?ulll7 + §||V|V|2||L2 < CIVIVV|Ze.

Putting all the estimates ([2.6)), (2.7] n, , (2.10), (2.9) in (2.5)results as

1d
1 dt(||U||L4 + W Ls + [VIIza) + VUl |72 + *||VW| 172
+[[VWIWI|172 + §||V|W| 72 + lldiv W22 +2[WILs + [[IVVIIVIII72 + 2 V]V
1 22, L 2 SRAE AL TR 2
<S vt + Seavug. + o | el + L lea v
L;Tz’oo Ln,oo
x3

1 1
+ S IVIVWIIL: + C(HUH% + ||W||i4) +CIVIVIVIIZ: + IVIMPIZ: + CIVIVIVII..

IVIIIZ

Iz2

(2.6)

(2.7)

(2.8)
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Further simplifications yield

1
L (Wl + WL+ VIR + VU + S VIl

4dt
+IIVWIWIIZ: + §IIVIWIZIIiz +lldiv WL + 2[WIIzs + IVVIVIIZ: + 2[VIVIVIIZ
2—<%+2%+7

<c(1+ 1 ) (a4 VI + VI (2.11)

[l

Gronwall’s Lemma to (2.11]) results in

1,00
Lk m, o0
1 WLz, L

2
2-(3+1+dD)

t
s (U WLVl < Cesp [ (14 ) ¢ (ol +IWoll2+ Vol < oo

[l

1,00
Ly

il | I
z2 Lz}

Which proves Theorem 2.1. as desired. [

Theorem 2.2. Let the initial datum (Uy, Vo, Wo) € HYH(R?) with V - Uy = V - Vy = 0 in the distributional sense.
Suppose (U, V, W) be the weak solution to system ([1.1]). If

2
1 1 1
3—(7+3;+xn)

dt < oo, (2.12)

el

oo
12

L3>
then the solution remains its smoothness upto T. Where 1 < [,m,n < oo and 1—(2%4—%4—%) > 0.

Proof . We will prove Theorem 2.2 by finding a priori estimates, in that regards, we continue our calculations from
equation (2.5)), and rewrite it as

1d<
4dt

+ §||V|W| 22 + lldiv WLz + 2[WIlzs + [IVVIVIIL: +2[V VIV

dllZs + IWIIZs + [IVIZ) + [IVUlAZ + *HVIUI 72 + [IYWIVI1Z

§2/ |\IJ|\M|2|VU\dx+3/ |W|\u|2|VU\dx+3/ UWRIYWde
R3 R3 R3

= [ ISP i+ [ MIDQVEY) s
=1 +Dyg+I3+T4+T5. (2.13)

Estimating I'y by employing Holder’s and Young’s inequality and Lemma 1.7.

r, :2/ 0| U 2|V de < c/ V| dz < C/ Vo3 VO e
R3 R3

1
<] Jlvo? - [T e 7
L1:1 Li'rzn,oo Lig’x L;g—l ﬁ,Z
<c|(ve|... IV =2 o s e
<c||||w] ... "+ v+ ) (2.14)
£l ;"2’00 L;Léoo

For I'y
1
Ly < Sl VUllE: + (1L + WL )
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For F3
1
Dy < SIWIVWPIE + O (Il + V).

Ty and T'5 are estimated same as Ly and Ls. Putting all the estimates in (2.13)) results in

1
137 UL+ VI + VI + VU7 + 519?12

4 dt
1 )
+ VW22 + §IIVIWI2II%z + [[div W72 + 2I W za + [IVVIVIIZ: + 21V VIV]][72
1 a2 1 2 R EE S g 1 2
<1Vl + vl + | |[ve . el + S edvea 3
z1 L;’;’O" L;Léoo
Liwiewlizs + o (ju) W7 CIVIVIVIIZ: + SV + VIV 2.15
+ S IWIVWIIIZ: + Oz + IWVILs ) + CHVIVIVIIZ: + 2 IVIHEIZ: + CIVIVIVIZ.. (2.15)
Simplify (2.15)) further yields
1 d 4 4 4 2 1 2112
1 UL +IWIL + [IVILa) + IVUIUIL: + SV (2.16)
1 .
+IIVWIWIIZ: + §IIVIW|2||%Z + [[div W72 + 2l W za + [IVVIVIIZ: + 2V VIV]][72 (2.17)
W 4 4 4
<c {1+ |09, . - (Il WL+ VIS ). (2.18)
x 1‘2»
Applying Gronwall’s lemma for ([2.16])
2
T (T E+D)
sup (JU||7a+IIWI|1a+] V7)< exp / C(l-i— HHV\II‘ . )dT < 00. (2.19)
OStST 0 Lz’l L;nz’oo Loe
=3

The bounds on (2.19)) proved our result. O

Theorem 2.3. Considering same assumptions as for Theorem 2.1 and Theorem 2.2. The sufficient conditions

2

HH“I’\ ,
T LI’100 L,TIRZ’OO I aed
=3 dt < oo, 2.20
/o [ESIRNTIEN (2:20)
and 2
HHW\ :
T Lﬂ;loo L;r;’oo L7
=3 dt < o, 2.21
/o T (92, (2.21)

are the logarithmic improvements of the conditions (2.1)) and (2.12)).
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Proof . Continuing from inequality (2.11)), as 1+In(1+||¥[|2,) < 1+In(II(¢)), where II() = e+||U|| 1. +[W| 1.+ V|4,

Ly

II
dt - 1+ In(e+||7||2.)

_ 2
2-(F+5+D

1+

1,00
L

m, o0
Lz,

eI+ VI ZaHIVIZa) (1 + e+ 9]72)

2
1 1 1
=+ L+ D

1+

HH\P‘ L™
x1 Ln,oo

<c TR (IL(£)) (1 + In(TI(2))

m, oo
Ly

Hence,

2
2—(F+5+2)

1+

1,00
LS

n,00
Ly

1+ In(1+[|W[2,)

m. oo
Ly

L +mIe) <c

- (1 + InTI(¢)).

Gronwall’s lemma results in

2

InTI(t) < (1 + InT1(0)) L I e Nyl e )

S n ex _

. ’ T In(L + [9]2.)

This implies that
sup (IlE+HIWIL+IVILL) < oo, -
0<t<T

which proves our result in the interval [0, T]. These bounds together with (2.22)) ensure the regularity of weak solutions
on the interval [0, T]. Following the same steps as for (2.20)), condition (2.21)) can be proved. Therefore, its proof is
omitted. [

3 Conclusion

Regularity conditions (2.1)) and 12.12 are new on the framework of anisotorpic Lebesgue spaces and improve or
generalize the conditions (1.2) and (1.3 for the system (1.1) . Here we pose a future problem of finding regularity
criteria based on one-directional derivative of pressure in anisotropic Lorentz spaces.
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