Multiplicity analysis of positive weak solutions in a quasi-linear Dirichlet problem inspired by Kirchhoff-type phenomena

Ahmed AHMED ${ }^{\text {a,*, }}$, Mohamed Saad Bouh Elemine Vall ${ }^{\text {b }}$
${ }^{a}$ Mathematics and Computer Sciences Department, Research Unit Geometry, Algebra, Analysis and Applications, Faculty of Science and Technology, University of Nouakchott, Nouakchott, Mauritania
${ }^{b}$ Department of Industrial Engineering and Applied Mathematics, Professional University Institute, University of Nouakchott, Nouakchott, Mauritania

(Communicated by Abdolrahman Razani)

Abstract

The main focus of this paper lies in investigating the existence of infinitely many positive weak solutions for the following elliptic-Kirchhoff equation with Dirichlet boundary condition $$
\begin{cases}-\sum_{\substack{i=1}}^{N} M_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}}\right)=f(x, u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

The methodology adopted revolves around the technical approach utilizing the direct variational method within the framework of anisotropic variable exponent Sobolev spaces.

Keywords: Nonlinear elliptic equations, Variational methods applied on PDEs, Positive solutions to PDEs
2020 MSC: Primary 35A15; Secondary 35H30, 35J60, 35B09

1 Introduction

Over the past years, differential equations have been a focal point of research, owing to their extensive practical implications and widespread use in numerous fields.

Proposed by Kirchhoff [20], the Kirchhoff differential equations offer an extension to D'Alembert's wave equation, accommodating the effects of string length changes during vibrations

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1.1}
\end{equation*}
$$

in this context, L denotes the length of the chord, h represents the area of the cross-section, E stands for the Young's modulus of the material, denotes the density, and P_{0} corresponds to the initial tension. The Kirchhoff equation 1.1

[^0]exhibits a unique characteristic in its inclusion of a non-local coefficient $\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x$, which is dependent on the average $\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2}$ of the kinetic energy $\frac{1}{2}\left|\frac{\partial u}{\partial x}\right|^{2}$ within the interval $[0, L]$. Thus, the equation loses its property of being a point-wise identity. See also [6, 19, 32] for related topics.

In recent times, numerous mathematicians, physicists, and engineers have shown a keen interest in anisotropic variable exponent Sobolev spaces. The motivation behind this stems from the crucial role these spaces play in modeling real-world phenomena, including electrorheological and image restoration, magnetorheological fluids, and elastic materials, (look at, for example [5, 8, 10, 30, 33, 34, 35, 36]).

In the present paper we study the existence of positive solutions of the nonhomogeneous anisotropic Kirchhoff problem

$$
\begin{cases}-\sum_{i=1}^{N} M_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}}\right)=f(x, u) & \text { in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N},(N>3)$ represents a bounded domain with a smooth boundary $\partial \Omega$, and $p_{i}, i=1, \ldots N$ are continuous functions. Additionally, for each $i=1, \ldots N, M_{i}$ and f are continuous functions which satisfies some conditions detailed in Section 3.

The differential operator

$$
\begin{equation*}
\Delta_{\vec{p}(\cdot)} u=\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}}\right), \tag{1.3}
\end{equation*}
$$

involved in problem (1.2) is an anisotropic variable exponent $\vec{p}(\cdot)$-Laplace operator which represents an extension of the operator

$$
\begin{equation*}
\Delta_{p(\cdot)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right) \tag{1.4}
\end{equation*}
$$

The $p(\cdot)$-Laplacian operator, obtained by setting each $p_{i}(x)$ to be equal to $p(x)$ for $i=1, \ldots N$, serves as a natural extension of the isotropic p-Laplacian operator

$$
\begin{equation*}
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \tag{1.5}
\end{equation*}
$$

where $p>1$ denotes a real constant. In the classical Sobolev spaces, F. J. S. A. Corrêa, R. G. Nascimento [12] have established the existence of solutions for problem 1.2 in this particular case p-Kirchhoff-type equation, for additional results, refer to [22, 28, 29, 31.

In the Sobolev variable exponent setting, G. Dai and D. Liu [13] has analyzed the problem 1.2 in the context of $p(x)$-Kirchhoff-type equation, see also [2, 9, 11, 14, 18] for related topics.

The investigation of problem (1.2) in anisotropic variable exponent Sobolev spaces has been previously addressed by other researchers (see [7, 16, 25]). However, our study stands apart due to the entirely distinct hypotheses adopted, which subsequently lead to different and novel findings.

The shift from a variable exponent to an anisotropic variable exponent inevitably introduces fresh complexities. To tackle these challenges, we adopt a combined approach, utilizing traditional methodologies alongside modern techniques specifically designed for handling problems of anisotropic nature with variable exponents. The organization of this paper is as follows: In Section 2, we provide an introduction to anisotropic variable exponent Sobolev spaces, laying the necessary groundwork for the subsequent analysis. Section 3 is dedicated to presenting the assumptions under which our problem yields positive solutions, accompanied by an illustrative example.

2 Preliminary

Let Ω denote a smooth bounded domain in \mathbb{R}^{N}, where we introduce the following definitions:

$$
\mathcal{C}_{+}(\bar{\Omega})=\left\{p \in \mathcal{C}(\bar{\Omega}) \quad \text { such that } \quad 1<p^{-} \leq p^{+}<\infty\right\}
$$

where

$$
p^{-}=\operatorname{ess} \inf \{p(x): x \in \bar{\Omega}\} \quad \text { and } \quad p^{+}=\operatorname{ess} \sup \{p(x): x \in \bar{\Omega}\}
$$

For any $p \in \mathcal{C}_{+}(\bar{\Omega})$, we introduce the Lebesgue space with variable exponent $L^{p(\cdot)}(\Omega)$, which encompasses all measurable functions $u: \Omega \longmapsto \mathbb{R}$ such that the convex modular

$$
\rho_{p(\cdot)}(u):=\int_{\Omega}|u|^{p(x)} d x
$$

remains finite. Consequently, we define the norm

$$
\|u\|_{L^{p(\cdot)}(\Omega)}=\|u\|_{p(\cdot)}=\inf \left\{\lambda>0: \rho_{p(\cdot)}\left(\frac{u}{\lambda}\right) \leq 1\right\}
$$

as the Luxemburg norm in $L^{p(\cdot)}(\Omega)$. As a separable Banach space, $\left(L^{p(\cdot)}(\Omega),|\cdot|_{p(\cdot)}\right)$ exhibits desirable properties. Additionally, the space $L^{p(\cdot)}(\Omega)$ is uniformly convex, making it reflexive, and its dual space is isomorphic to $L^{p^{\prime}(\cdot)}(\Omega)$, with $\frac{1}{p(\cdot)}+\frac{1}{p^{\prime}(\cdot)}=1$. Lastly, we arrive at the following Hölder-type inequality.

$$
\begin{equation*}
\left|\int_{\Omega} u(x) v(x) d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{-}\right)^{\prime}}\right)\|u\|_{p(\cdot)}\|v\|_{p^{\prime}(\cdot)} \quad \text { for all } u \in L^{p(\cdot)}(\Omega) \text { and } v \in L^{p^{\prime}(\cdot)}(\Omega) \tag{2.1}
\end{equation*}
$$

The modular $\rho_{p(\cdot)}$ of the space $L^{p(\cdot)}(\Omega)$ assumes a crucial role in handling the generalized Lebesgue spaces. The ensuing result is presented:

Proposition 2.1. (See [15]). Considering $u_{n}, u \in L^{p(\cdot)}(\Omega)$, with $p^{+}<+\infty$, we observe the subsequent properties:

1. If $\|u\|_{p(\cdot)}>1$, then $\|u\|_{p(\cdot)}^{p^{-}}<\rho_{p(\cdot)}(u)<\|u\|_{p(\cdot)}^{p^{+}}$.
2. For $\|u\|_{p(\cdot)}<1$, we have $\|u\|_{p(\cdot)}^{p^{+}}<\rho_{p(\cdot)}(u)<\|u\|_{p(\cdot)}^{p^{-}}$.
3. The condition $\|u\|_{p(\cdot)}<1$ (respectively $=1 ;>1$) is equivalent to $\rho_{p(\cdot)}(u)<1$ (respectively $=1 ;>1$).
4. When $\left\|u_{n}\right\|_{p(\cdot)} \rightarrow 0$ (respectively $\rightarrow+\infty$), it implies $\rho_{p(\cdot)}\left(u_{n}\right) \rightarrow 0$ (respectively $\rightarrow+\infty$).
5. Lastly, we have $\rho_{p(\cdot)}\left(\frac{u}{\|u\|_{p(\cdot)}}\right)=1$.

The definition of $W_{0}^{1, p(\cdot)}(\Omega)$ involves taking the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $W^{1, p(\cdot)}(\Omega)$, and

$$
p^{*}(x)=\left\{\begin{array}{cc}
\frac{N p(x)}{N-p(x)} & \text { for } p(x)<N \\
\infty & \text { for } p(x) \geq N
\end{array}\right.
$$

Proposition 2.2. (See [15).
(i) For $1<p^{-} \leq p^{+}<\infty$, both $W^{1, p(\cdot)}(\Omega)$ and $W_{0}^{1, p(\cdot)}(\Omega)$ are separable and reflexive Banach spaces.
(ii) If $q(x) \in C_{+}(\bar{\Omega})$ and $q(x)<p^{*}(x)$ holds true for each $x \in \Omega$, then the embedding $W_{0}^{1, p(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{q(\cdot)}(\Omega)$ is continuous and compact.

We now introduce the anisotropic Sobolev space with variable exponent, which serves as the foundation for studying our main problem. Consider N variable exponents $p_{1}(\cdot), \ldots, p_{N}(\cdot)$ belonging to $\mathcal{C}_{+}(\bar{\Omega})$. We use the notation

$$
\vec{p}(\cdot)=\left\{p_{1}(\cdot), \ldots, p_{N}(\cdot)\right\} \text { and } D^{i} u=\frac{\partial u}{\partial x_{i}} \quad \text { for } i=1, \ldots, N
$$

and we set it for all $x \in \bar{\Omega}$,

$$
p_{M}(\cdot)=\max \left\{p_{1}(\cdot), \ldots, p_{N}(\cdot)\right\} \text { and } p_{m}(\cdot)=\min \left\{p_{1}(\cdot), \ldots, p_{N}(\cdot)\right\} .
$$

The following notations are introduced:

$$
\begin{equation*}
\underline{p}=\min \left\{p_{1}^{-}, p_{2}^{-}, \ldots, p_{N}^{-}\right\}, \quad \underline{p}^{+}=\max \left\{p_{1}^{-}, p_{2}^{-}, \ldots, p_{N}^{-}\right\}, \quad \bar{p}=\max \left\{p_{1}^{+}, p_{2}^{+}, \ldots, p_{N}^{+}\right\}, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{p}^{*}=\frac{N}{\sum_{i=1}^{N} \frac{1}{p_{i}^{-}}-1}, \quad \underline{p}, \infty=\max \left\{\underline{p}^{*}, \underline{p}^{+}\right\} . \tag{2.3}
\end{equation*}
$$

In the context of this paper, we make the assumption that

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{p_{i}^{-}}>1 \tag{2.4}
\end{equation*}
$$

The definition of the anisotropic variable exponent Sobolev space $W^{1, \vec{p}(\cdot)}(\Omega)$ is as follows:

$$
W^{1, \vec{p}(\cdot)}(\Omega)=\left\{D^{i} u \in L^{p_{i}(\cdot)}(\Omega), \quad i=1,2, \ldots, N\right\}
$$

equipped with the norm

$$
\begin{equation*}
\|u\|_{W^{1, \vec{p}(\cdot)}(\Omega)}=\|u\|_{1, \vec{p}(\cdot)}=\sum_{i=1}^{N}\left\|D^{i} u\right\|_{L^{p_{i}(\cdot)}(\Omega)}, \tag{2.5}
\end{equation*}
$$

Furthermore, $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ is defined as the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $W^{1, \vec{p}(\cdot)}(\Omega)$ under the norm 2.5. The dual space of $W 0^{1, \vec{p}(\cdot)}(\Omega)$ is denoted as $W^{-1, \vec{p}(\cdot)^{\prime}}(\Omega)$, where $\overrightarrow{p^{\prime}}(x)=p_{0}^{\prime}(x), \ldots, p_{N}^{\prime}(x)$, satisfying $\frac{1}{p_{i}^{\prime}(x)}+\frac{1}{p_{i}(x)}=1$ (see [26, 27]) for the constant exponent case). The reflexivity of the Banach space $\left(W_{0}^{1, \vec{p}(\cdot)}(\Omega),|u|_{1, \vec{p}(\cdot)}\right)$ has been established in [24]. For a more comprehensive treatment of anisotropic variable exponent Sobolev spaces, researchers may delve into [1, 3, 17, 21, 24].

Proposition 2.3. (See [4, 23]). The bounded domain $\Omega \subset \mathbb{R}^{N}$, with a smooth boundary and $N>3$, satisfies relation (2.4).

1. Considering any $q \in \mathcal{C}+(\bar{\Omega})$ satisfying the condition $1<q(x)<\underline{p}, \infty$, for all $x \in \bar{\Omega}$, then

$$
W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow \hookrightarrow L^{q(\cdot)}(\Omega)
$$

2. Assume that $\underline{p}>N$ then

$$
W_{0}^{1, \vec{p}(\cdot)}(\Omega) \hookrightarrow \hookrightarrow C^{0}(\bar{\Omega})
$$

3 Fundamental assumptions and main results

For the entirety of this paper, we make the assumption that the following set of conditions is satisfied:
Assume that $f: \Omega \times \mathbb{R} \longmapsto \mathbb{R}$ is Carathéodory functions satisfying the following condition
(H1) There exists a constant $\tau>0$ such that $\sup _{t \in[0, \tau]} f(\cdot, t) \in L^{\infty}(\Omega)$.
(H2) Suppose that $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two positive sequences such that

$$
0<a_{n}<b_{n}, \lim _{n \rightarrow \infty} b_{n}=0, \text { and } \int_{0}^{a_{n}} f(x, s) d s=\sup _{t \in\left[a_{n}, b_{n}\right]} \int_{0}^{t} f(x, s) d s \text { for almost all } x \in \Omega \text { and } n \in \mathbb{N} .
$$

(H3) There is a sequence $\left(\vartheta_{n}\right)_{n}$, which is a subset of the interval $\left[0, b_{n}\right]$, such that

$$
e s s \inf _{\Omega} \int_{0}^{\vartheta_{n}} f(x, s) d s>0
$$

For the function $M_{i}, i=1, \ldots N$, we set forth the subsequent assumptions.
(H4) M_{i} is a differentiable on \mathbb{R}^{+}and there is positive constant m such that

$$
M_{i}(t) \geq m \text { for all } t \geq 0
$$

Functionals are defined for any $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ as follows:

$$
\begin{equation*}
\Phi(u)=\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} F(x, u) d x \tag{3.1}
\end{equation*}
$$

where $F(x, t)=\int_{0}^{t} f(x, s) d s$ and $\widehat{M}_{i}(t)=\int_{0}^{t} M_{i}(s) d s$.
Definition 3.1. For any measurable function $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ to be considered a weak solution of the elliptic problem (1.2), it must satisfy the condition that, for all $v \in W_{0}^{1, \vec{p} \cdot)}(\Omega)$,

$$
\begin{equation*}
\sum_{i=1}^{N} M_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} f(x, u) v(x) d x \tag{3.2}
\end{equation*}
$$

It is easy to see that $\Phi \in \mathcal{C}^{1}\left(W_{0}^{1, \vec{p} \cdot \cdot}(\Omega), \mathbb{R}\right)$ (see [7, 25]), and the function $u \in W_{0}^{1, \vec{p} \cdot \cdot)}(\Omega)$ is deemed a weak solution of (1.2) if and only if it corresponds to a critical point of the functional Φ.

Considering our assumptions on f, we can find positive constants k and τ such that $|f(\cdot, t)| \leq k$ for every $0 \leq \tau \leq t$ and almost every $x \in \Omega$. Without any loss of generality, we can suppose that $b_{n} \leq \tau$ for every $n \in \mathbb{N}$. Let's proceed by defining

$$
g(\cdot, t)= \begin{cases}0 & \text { if } t \leq 0 \tag{3.3}\\ f(\cdot, t) & \text { if } 0<t \leq \tau \\ f(\cdot, \tau) & \text { if } t>\tau\end{cases}
$$

Hence, we have

$$
\begin{equation*}
|g(\cdot, t)| \leq k \tag{3.4}
\end{equation*}
$$

for almost every $x \in \Omega$ and every $t \in \mathbb{R}$. Next, we take into account the following problem

$$
\begin{cases}-\sum_{i=1}^{N} M_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}}\right)=g(x, u) & \text { in } \Omega \tag{3.5}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

We can identify the weak solutions of (3.5) as the critical points of the functional

$$
\begin{equation*}
\Psi(u)=\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} G(x, u) d x \tag{3.6}
\end{equation*}
$$

where $G(x, t)=\int_{0}^{t} g(x, s) d s$. By (3.4), it is clear that Ψ is well defined and Gâteaux differentiable in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ (see [7, [25]). For every fixed $n \in \mathbb{N}$, we define

$$
\begin{equation*}
K_{n}(u)=\left\{u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega): 0<u(x) \leq b_{n} \text { a.e. } \Omega\right\} \tag{3.7}
\end{equation*}
$$

Having established the necessary groundwork, we can now present the main findings of this paper.
Theorem 3.2. Assume assumptions (H1) (H4) hold true and $f(\cdot, 0)=0$. Then, there exists a sequence $\left(u_{n}\right)_{n} \subset$ $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ of positive, homoclinic weak solutions of 1.2$)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \Psi\left(u_{n}\right)=0 \text { and } \lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{1, \vec{p}(\cdot)}=0 \tag{3.8}
\end{equation*}
$$

Theorem 3.3. To enhance the organization and clarity, we divided the proof into three steps.

Step 1 :. Auxiliary lemmas.
Lemma 3.4. Assume assumptions (H1), (3.4) and (H4) are satisfied. Then, the functionals Ψ is weakly lower semi-continuous.

Proof . For each $i=0, \ldots, N$ and any $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$, we can define the functionals J_{i} and $H: W_{0}^{1, \vec{p}(\cdot)}(\Omega) \longrightarrow \mathbb{R}$ as follows:

$$
\begin{gathered}
J_{i}=\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x, \quad \text { where } \quad \frac{\partial u}{\partial x_{0}}=u \\
H(u)=-\int_{\Omega} G(x, u) d x
\end{gathered}
$$

Claim 1: Consider a sequence $\left(u_{n}\right)_{n}$ with the property that $u_{n} \rightharpoonup u$ in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$. As J_{i} is convex, for every n, we obtain

$$
J_{i}(u) \leq J_{i}\left(u_{n}\right)+\left\langle J_{i}^{\prime}(u), u-u_{n}\right\rangle .
$$

Taking the limit as $n \rightarrow \infty$ in the above inequality, we observe that J_{i} is sequentially weakly lower semi-continuous. As a result, we obtain:

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{N} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x \leq \liminf _{n \rightarrow+\infty} \int_{\Omega} \sum_{i=0}^{N} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x \tag{3.9}
\end{equation*}
$$

By utilizing 3.9 and considering the continuity and monotonicity of \widehat{M}_{i}, we obtain

$$
\begin{align*}
\liminf _{n \rightarrow+\infty} J\left(u_{n}\right) & =\liminf _{n \rightarrow+\infty} \sum_{i=0}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \\
& \geq \sum_{i=0}^{N} \widehat{M}_{i}\left(\liminf _{n \rightarrow+\infty} \int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \\
& \geq \sum_{i=0}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \\
& \geq J(u) . \tag{3.10}
\end{align*}
$$

That is to say, J demonstrates sequential weak lower semi-continuity.
Claim 2: H is sequentially weakly continuous. Let $\left(u_{n}\right)_{n}$ be a sequence in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$. So, by (3.4) and Proposition 2.3. Therefore, it is easy to show that $\lim _{n \rightarrow \infty} H\left(u_{n}\right)=H(u)$, and hence H is sequentially weakly lower semicontinuous. Similarly, just like we demonstrated for the mapping H, it is possible to establish the sequential weak lower semi-continuity of Φ. Since $\Psi=J-H$, we complete the proof.

Lemma 3.5. On K_{n}, the functional Ψ is boundedly below, and the infimum m_{n} over K_{n} is attained at $u_{n} \in K_{n}$.
Proof. To begin with, considering any $u \in K_{n}$, we find that

$$
\begin{align*}
\Psi(u) & =\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} G(x, u) d x \geq-\int_{\Omega} G(x, u) d x \\
& \geq-k b_{n} \operatorname{meas}(\Omega) \tag{3.11}
\end{align*}
$$

In conclusion, we deduce that Ψ is bounded from below on K_{n}. It is apparent that K_{n} possesses the properties of convexity and closedness, thus establishing its weak closedness within $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$. Consider the sequence $\left(u_{n}\right)_{n}$ in K_{n} such that $\Psi\left(u_{n}\right)$ lies between m_{n} and $m_{n}+\frac{1}{n}$ for all $n \in \mathbb{N}$, where $m_{n}=\inf _{K_{n}} \Psi$. Next, if $\left\|u_{n}\right\|_{1, \vec{p}(\cdot)} \leq 1$, our objective
is achieved; otherwise, we proceed with the following steps

$$
\begin{aligned}
\Psi(u) & =\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} G(x, u) d x \\
& =\sum_{i=1}^{N} \int_{0}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) M_{i}(s) d s-\int_{\Omega} G(x, u) d x \\
& \geq \frac{m}{\bar{p}} \sum_{i=1}^{N}\left(\left\|\frac{\partial u}{\partial x_{i}}\right\|_{p_{i}(\cdot)}^{\underline{p}}-1\right)-\int_{\Omega} G(x, u) d x \\
& \geq \frac{m}{\bar{p} N^{\underline{p}-1}}\left\|u_{n}\right\|_{1, \vec{p}(\cdot)}^{\underline{p}}-\frac{m N}{\bar{p} N^{\underline{p}-1}}-k b_{n}(\operatorname{meas} \Omega) .
\end{aligned}
$$

Which yields

$$
\begin{equation*}
\frac{m}{\bar{p} N^{\underline{p}-1}}\left\|u_{n}\right\|_{1, \vec{p}(\cdot)}^{\frac{p}{p}} \leq m_{n}+1+\frac{m N}{\bar{p} N^{\underline{p}-1}}+k b_{n}|\Omega| \tag{3.12}
\end{equation*}
$$

for all $n \in \mathbb{N}$, thus $\left(u_{n}\right)_{n}$ is bounded in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$ which is a reflexive space. Therefore, by considering a sub-sequence denoted as $\left(u_{n}\right)_{n}$, we observe weak convergence towards a specific element $u_{n} \in K_{n}$. This leads us to the conclusion that $\Psi\left(u_{n}\right)=m_{n}$, utilizing the concept of weakly sequentially lower semi-continuity of Ψ.

Step 2 :. A priori estimates.
We start this step by proving in the following result that the sequence $\left(u_{n}\right)_{n}$ is bounded almost everywhere.
Proposition 3.6. For all $n \in \mathbb{N}$, we have $0 \leq u_{n}(x) \leq a_{n}$ a.e. $x \in \Omega$.
Proof . Let $\Lambda_{n}=\left\{x \in \Omega: b_{n} \geq u_{n}(x)>a_{n}\right\}$ and suppose that meas $\left(\Lambda_{n}\right)>0$. Define the function $\sigma_{n}(t)=$ $\min \left(\max (t, 0), a_{n}\right)$ and set $h_{n}=\sigma_{n}\left(u_{n}\right)$. It is clear that from the definition and the continuity of σ_{n} we get $h_{n} \in K_{n}$. As a consequence, we obtain that

$$
h_{n}(x)= \begin{cases}u_{n}(x) & \text { if } x \in \Omega \backslash \Lambda_{n} \tag{3.13}\\ a_{n} & \text { if } x \in \Lambda_{n}\end{cases}
$$

Then, we can write

$$
\begin{align*}
& \Psi\left(h_{n}\right)-\Psi\left(u_{n}\right) \\
= & \sum_{i=1}^{N} \widehat{M_{i}}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial h_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} \int_{0}^{h_{n}} g(x, t) d t d x-\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)+\int_{\Omega} \int_{0}^{u_{n}} g(x, t) d t d x \\
= & \sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega \backslash \Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial h_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)+\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial h_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \\
& -\int_{\Omega \backslash \Lambda_{n}} \int_{0}^{h_{n}} g(x, t) d t d x-\int_{\Lambda_{n}} \int_{0}^{h_{n}} g(x, t) d t d x \\
& -\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega \backslash \Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right) \\
& +\int_{\Omega \backslash \Lambda_{n}} \int_{0}^{u_{n}} g(x, t) d t d x+\int_{\Lambda_{n}} \int_{0}^{u_{n}} g(x, t) d t d x \\
= & -\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Lambda_{n}} \int_{0}^{a_{n}} g(x, t) d t d x+\int_{\Lambda_{n}} \int_{0}^{u_{n}} g(x, t) d t d x \\
= & -\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Lambda_{n}} \int_{u_{n}}^{h_{n}} g(x, t) d t d x \\
= & -\sum_{i=1}^{N} \widehat{M_{i}}\left(\int_{\Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Lambda_{n}} \int_{u_{n}}^{a_{n}} g(x, t) d t d x \leq 0 . \tag{3.14}
\end{align*}
$$

Because $\int_{\Lambda_{n}} \int_{u_{n}}^{a_{n}} g(x, t) d t d x \geq 0$. Hence, $\Psi\left(h_{n}\right) \geq \Psi\left(u_{n}\right)=\inf _{K_{n}} \Psi$, then every term should be zero. In particular,

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Lambda_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x=\int_{\Lambda_{n}}\left(G\left(x, a_{n}\right)-G\left(x, u_{n}\right)\right) d x \tag{3.15}
\end{equation*}
$$

Therefore, $\operatorname{meas}\left(\Lambda_{n}\right)=0$, which means $0 \leq u_{n}(x) \leq a_{n}$ almost every where $x \in \Omega$. \qquad Next we show that the sequence $\left(u_{n}\right)_{n}$ formed of weak solutions of problem (3.5) as mentioned in the following result.

Proposition 3.7. The terms of $\left(u_{n}\right)_{n}$ are local minimum points of Ψ in $W_{0}^{1, \vec{p}(\cdot)}(\Omega)$.
Proof . Set $\Gamma_{n}=\left\{x \in \Omega: b_{n} \geq u(x)>a_{n}\right\}$. So, we have $\int_{\sigma_{n}(u)}^{u} g(x, t) d t=0$ for any $x \in \Omega \backslash \Gamma_{n}$. In the other hand, if $x \in \Gamma_{n}$, then one has the following three cases.
(a) If $u(x)<0$, then $\int_{\sigma_{n}(u)}^{u} g(x, t) d t=0$.
(b) If $a_{n}<u(x) \leq b_{n}$, then by (H2). $\int_{\sigma_{n}(u)}^{u} g(x, t) d t \leq 0$.
(c) If $b_{n}<u(x)$, then $\int_{\sigma_{n}(u)}^{u} g(x, t) d t=\int_{a_{n}}^{u} g(x, t) d t \leq \int_{a_{n}}^{u} k d t=k\left(u(x)-a_{n}\right)$, by (3.4).

Fix a real $\underline{p}_{, \infty}$ such that $\underline{p}_{, \infty}>q(x)+1>\bar{p}$ for every $x \in \Omega$, then the following constant is finite

$$
\lambda=\sup _{\mu \geq b_{n}} \frac{k\left(\mu-a_{n}\right)}{\left(\mu-a_{n}\right)^{q(x)+1}} .
$$

Then, for almost every where $x \in \Omega$, we have $\int_{\sigma_{n}(u)}^{u} g(x, t) d t \leq \lambda\left|\left(u(x)-\sigma_{n}(u(x))\right)\right|^{q(x)+1}$. Then, since when $\underline{p} \leq N$, the space is $W^{1, \vec{p}(\cdot)}(\Omega)$ compactly embedded in $L^{q(\cdot)+1}(\Omega)$ and continuously embedded in $C^{0}(\bar{\Omega})$ elsewhere, there is a positive constant c such that

$$
\begin{equation*}
\int_{\Omega} \int_{\sigma_{n}(u)}^{u} g(x, t) d t d x \leq c^{q(x)+1} \lambda\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{q(x)+1} \tag{3.16}
\end{equation*}
$$

Therefore, we can write

$$
\begin{align*}
\Psi(u)-\Psi\left(\sigma_{n}(u)\right)= & \sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} \int_{0}^{u} g(x, t) d t d x \\
& -\sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial \sigma_{n}(u)}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)+\int_{\Omega} \int_{0}^{\sigma_{n}(u)} g(x, t) d t d x \\
= & \sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Gamma_{n}} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Gamma_{n}} \int_{\sigma_{n}(u)}^{u} g(x, t) d t d x \\
= & \sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}-\frac{\partial \sigma_{n}(u)}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} \int_{\sigma_{n}(u)}^{u} g(x, t) d t d x \\
\geq & \sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}-\frac{\partial \sigma_{n}(u)}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\lambda c^{q(x)+1}\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{q(x)+1} \quad(\text { by (3.16) }) \\
\geq & \frac{m}{p N^{p-1}}\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{\bar{p}}-\lambda c^{q(x)+1}\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{q(x)+1} \tag{3.17}
\end{align*}
$$

Since $\sigma_{n}(u) \in K_{n}$, we have $\Psi\left(\sigma_{n}(u)\right) \geq \Psi\left(u_{n}\right)$ and preserving the generality of our analysis, let's assume that $\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)} \leq 1$ cause we need small values of $\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}$. Then

$$
\begin{align*}
\Psi(u) & \geq \Psi\left(u_{n}\right)+\frac{m}{\bar{p}(N)^{\underline{p}-1}}\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{\bar{p}}-\lambda c^{q(x)+1}\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{q(x)+1} \\
& \geq \Psi\left(u_{n}\right)+\left(\frac{m}{\bar{p}(N)^{\bar{p}-1}}-\lambda c^{q(x)+1}\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{q(x)+1-\bar{p}}\right)\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{\bar{p}} . \tag{3.18}
\end{align*}
$$

The continuity of σ_{n} allows us to choose a positive value $\delta>0$ such that, for any $u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega)$, the condition

$$
\begin{equation*}
\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}<\delta, \quad\left\|\left(u-\sigma_{n}(u)\right)\right\|_{1, \vec{p}(\cdot)}^{q(x)+1-\bar{p}} \leq \frac{m}{\bar{p}(N)^{\underline{p}-1} \lambda c^{q(x)+1}}, \tag{3.19}
\end{equation*}
$$

this implies that u_{n} is a local minimum of Ψ.
Proposition 3.8. The sequence $\left(m_{n}\right)_{n}$ is strictly negative and converges to zero.
Proof. In view of condition (H3), we have $\vartheta_{n} \in K_{n}$

$$
\begin{equation*}
m_{n} \leq \Psi\left(\vartheta_{n}\right)=-\int_{\Omega} \int_{0}^{\vartheta_{n}} f(x, t) d t d x<0 \tag{3.20}
\end{equation*}
$$

To prove that $\lim _{n \rightarrow+\infty} m_{n}=0$ it is sufficient to observe that for every $n \in \mathbb{N}$ and $u \in K_{n}$, we have

$$
\begin{equation*}
0>m_{n}=\Psi\left(u_{n}\right) \geq-k b_{n}|\Omega| . \tag{3.21}
\end{equation*}
$$

Since $\left(b_{n}\right)_{n}$ converges to zero, we conclude the required result.
Step 3 :. Proof of Theorem 3.2. Since the terms of $\left(u_{n}\right)_{n}$ are local minima of Ψ, they are weak solutions of (1.2). In virtue of Proposition 3.6 we have $0 \leq u_{n}(x) \leq a_{n}$ for almost every where $x \in \Omega$ and since $\left(a_{n}\right)_{n}$ converges to zero. An infinite number of distinct sequences $\left(u_{n}\right)_{n}$ can be found such that $\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{L^{\infty}(\Omega)}=0$. Furthermore, we have

$$
\begin{align*}
m_{n}=\Psi\left(u_{n}\right) & \geq \sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-\int_{\Omega} G\left(x, u_{n}\right) d x \\
& \geq \sum_{i=1}^{N} \widehat{M}_{i}\left(\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p_{i}(x)} d x\right)-k b_{n}|\Omega| \tag{3.22}
\end{align*}
$$

Thus, if $\left\|u_{n}\right\|_{1, \vec{p}(\cdot)} \leq 1$, we have

$$
\begin{equation*}
\frac{m}{\bar{p} N^{\underline{p}-1}}\left\|u_{n}\right\|_{1, \vec{p}(\cdot)}^{\bar{p}} \leq m_{n}+k b_{n}|\Omega| \longrightarrow 0 . \tag{3.23}
\end{equation*}
$$

Thus, $\lim _{n \rightarrow+\infty}\|u\|_{1, \vec{p}(\cdot)}=0$, which completes our proof.
Now, we present an example to illustrate the main results.
Example 3.9. We define $M_{i}(t)=(1+t)^{\theta_{i}}$ for $i=1, \ldots N$, where $\theta_{i}>0$. It is worth noting that $M_{i}(t) \geq 1$ for all $t \geq 0$, which directly verifies the condition stated in (H4). Let

$$
f(x, t)=\left\{\begin{array}{lc}
\left(1+|x|^{2}\right)(\underline{p}+2) t^{\underline{p}}+1 \sin \left(\frac{1}{t^{\underline{p}}}\right)-\underline{p}\left(1+|x|^{2}\right) t \cos \left(\frac{1}{t^{\underline{p}}}\right) & \text { if } t>0 \tag{3.24}\\
0 & \text { otherwise }
\end{array}\right.
$$

It is easy to compute directly that

$$
F(x, t)=\left\{\begin{array}{lc}
\left(1+|x|^{2}\right) t^{\underline{p}+2} \sin \left(\frac{1}{t^{\underline{p}}}\right) & \text { if } t>0 \tag{3.25}\\
0 & \text { otherwise }
\end{array}\right.
$$

We shall now consider the following nonlinear perturbed Kirchhoff problem

$$
\left\{\begin{array}{l}
-\sum_{i=1}^{N}\left[1+\int_{\Omega} \frac{1}{p_{i}(x)}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)} d x\right]^{\theta_{i}} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}}\right) \tag{3.26}\\
=\left(1+|x|^{2}\right)(\underline{p}+2) t^{\underline{p}}+1 \sin \left(\frac{1}{t^{\underline{\underline{p}}}}\right)-\underline{p}\left(1+|x|^{2}\right) t \cos \left(\frac{1}{t^{\underline{p}}}\right) \quad \text { in } \Omega, \\
u=0 \text { on } \bar{\partial} \Omega .
\end{array}\right.
$$

Let $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$, and $\left(\vartheta_{n}\right)_{n}$ be three positive sequences satisfying the conditions:

$$
\begin{equation*}
a_{n}=\left(\frac{1}{2 n \pi+2 \pi}\right)^{\frac{1}{\underline{p}}}, \quad b_{n}=\left(\frac{1}{2 n \pi+\frac{3 \pi}{2}}\right)^{\frac{1}{\underline{p}}} \quad \text { and } \quad \vartheta_{n}=\left(\frac{1}{4 n \pi+\frac{\pi}{2}}\right)^{\frac{1}{\underline{p}}} \tag{3.27}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Then one easily deduces

$$
\int_{0}^{a_{n}} f(x, s) d s=\sup _{t \in\left[a_{n}, b_{n}\right]} \int_{0}^{t} f(x, s) d s
$$

and $F\left(x, \vartheta_{n}\right)>0$. So conditions (H2) and (H3) have been verified. Having satisfied all the assumptions of Theorem 3.2 we can affirm the existence of a sequence of positive, homoclinic weak solutions $\left(u_{n}\right)_{n}$ in $W^{1, \vec{p}(x)}(\Omega)$ for the problem (3.26).

References

[1] A. Ahmed, H. Hjiaj, and A. Touzani, Existence of infinitely many weak solutions for a Neumann elliptic equations involving the $\vec{p}(\cdot)$-Laplacian operator, Rend. Circ. Mat. Palermo (2) 64 (2015), no. 3, 459-473.
[2] M. Allaoui and A. Ourraoui, Existence results for a class of $p(x)$-Kirchhoff problem with a singular weight, Mediterr. J. Math. 13 (2016), no. 2, 677-686.
[3] C.O. Alves and A. El Hamidi, Existence of solution for an anisotropic equation with critical exponent, Nonlinear Anal. TMA. 4 (2005), 611-624.
[4] A.E. Amrouss and A. El Mahraoui, Infinitely many solutions for anisotropic elliptic equations with variable exponent, Proyec. J. Math. 40 (2021), no. 5, 1071-1096.
[5] S.N. Antontsev and J.F. Rodrigues, On stationary thermorheological viscous flows, Ann. Univer. Ferrara. 52 (2006), no. 1, 19-36.
[6] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305-330.
[7] M. Avci, R.A. Mashiyev, and B. Cekic, Solutions of an anisotropic nonlocal problem involving variable exponent, Adv. Nonlinear Anal. 2 (2013), no. 3, 325-338.
[8] M.M. Boureanu, A. Matei, and M. Sofonea, Non-linear problems with $p(\cdot)$-growth conditions and applications to anti-plane contact models, Adv. Nonlinear Stud. 14 (2014), no. 2, 295-313.
[9] F. Cammaroto and L. Vilasi, Multiple solutions for a Kirchhoff-type problem involving the $p(x)$-Laplacian operator, Nonlinear Anal. 74 (2011), no. 5, 1841-1852.
[10] Y. Chen, S. Levine, and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406.
[11] N.T. Chung, Multiplicity results for a class of $p(x)$-Kirchhoff type equations with combined nonlinearities, Electron. J. Qual. Theory Differ. Equ. 42 (2012), 1-13.
[12] F.J.S.A. Corrêa and R.G. Nascimento, On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition, Math. Model. Comput. 49 (2009), no. 3-4, 598-604.
[13] G. Dai and D. Liu, Infinitely many positive solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl. $\mathbf{3 5 9}$ (2009), no. 2, 704-710.
[14] G. Dai and R. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), no. 1, 275-284.
[15] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
[16] G.C.G. dos Santos, J.R.S. Silva, S.C.Q. Arruda, and L.S. Tavares, Existence and multiplicity results for critical anisotropic Kirchhoff-type problems with nonlocal nonlinearities, Complex Var. Elliptic Equ. 67 (2022), no. 4, 822-842.
[17] X.L. Fan, Anisotropic variable exponent Sobolev spaces and $\vec{p}(\cdot)$-Laplacian equations, Complex Var. Elliptic Equ. 56 (2011), no. 7-9, 623-642.
[18] X.L. Fan, On nonlocal $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal. 72 (2010), no. 7-8, 3314-3323.
[19] J.R. Graef, S. Heidarkhani, and L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), no. 3-4, 877-889.
[20] G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
[21] B. Kone, S. Ouaro, and S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Differ. Equ. 144 (2009), 1-11.
[22] D. Liu, On a p-Kirchhof equation via fountain theorem and dual fountain theorem, Nonlinear Anal. 72 (2010), no. 1, 302-308.
[23] M. Mihăilescu and G. Morosanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Appl. Anal. 89 (2010), no. 2, 257-271.
[24] M. Mihăilescu, P. Pucci, and V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), no. 1, 687-698.
[25] A. Ourraoui, Multiplicity of solutions for $\vec{p}(\cdot)$-Laplacian elliptic Kirchhoff type equations, Appl. Math. E-Notes. 20 (2020), 124-132.
[26] J. Rákosník, Some remarks to anisotropic Sobolev spaces I, Beiträge Anal. 13 (1979), 55-68.
[27] J. Rákosník, Some remarks to anisotropic Sobolev spaces II, Beiträge Anal. 15 (1981), 127-140.
[28] A. Razani and G. M. Figueiredo, Degenerated and competing anisotropic (p, q)-Laplacians with weights, Appl. Anal. 102 (2023), no. 16, 4471-4488.
[29] A. Razani and G.M. Figueiredo, A positive solution for an anisotropic (p, q)-Laplacian, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), no. 6, 1629-1643.
[30] A. Razani and G.M. Figueiredo, Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Meth. Appl. Sci. 45 (2022), no. 12, 7591-7606
[31] A. Razani, Nonstandard competing anisotropic (p, q)-Laplacians with convolution, Bound. Value Probl. 2022 (2022), 87.
[32] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Glob. Optim. 46 (2010), no. 4, 543-549.
[33] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, Berlin. 1748, 2000.
[34] T. Soltani and A. Razani, Solutions for an anisotropic elliptic problem involving nonlinear terms, Q. Math. (2023), 1-20. https://doi.org/10.2989/16073606.2023.2190045
[35] R. Stanway, J.L. Sproston, and A.K. El-Wahed, Applications of electro-rheological fluids in vibration control: A survey, Smart Mater. Struct. 5 (1996), no. 4, 464-482.
[36] V.V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR-Izvestiya 29 (1987), no. 1, 33-66.

[^0]: *Corresponding author
 Email addresses: ahmedmath2001@gmail.com (Ahmed AHMED), saad2012bouh@gmail.com (Mohamed Saad Bouh ELEMINE VALL)

