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Abstract

In this article, we suggest introducing the Riemann-Liouville time fractional derivative to a fractional equation (FPDE)
involving a fractional Laplacian. Our work is divided into two parts. In the first part, the existence and uniqueness of
time fractional linear equations are demonstrated, and the Galerkin approach is proposed to deal with them. In the
second part, we investigate the existence results of the time fractional semilinear equation. To solve This problem,
the Leray-Schauder degree method has been used with some conditions on the semilinear term.
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1 Introduction

In the last decade, we note that there has been a noticeable interest for researchers in the field of fractional
differential equations because they are an effective tool for modelling many phenomena and important applications in
various fields such as viscoelasticity, electrodynamics, physics, furthermore other fields of engineering and science (see
[8, 9, 11, 12]) and the references therein. Consequently, during the 19th and 20th centuries, fractional calculus theory
and applications greatly increased.

The main objective of our research is to study the existence and uniqueness of time-fractional that introduced
fractional Laplacian. In the first part, we are interested in studying the following fractional linear problem

Find µ : [0, T ]× Ω → R
RLDδ

0,tµ(t, x) + (−∆)δµ(t, x) = h(t, x) on [0, T ]× Ω

µ = 0 on [0, T ]× Rn/Ω

(g1−δ ∗ µ)(0) = w on Rn/Ω,

(1.1)

and we suggest the Galerkin method to study the existence and uniqueness for this problem. In the second Part, we
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interested in studying the folowing fractinal semilinear problem
Find µ : [0, T ]× Ω → R
RLDδ

0,tµ+ (−∆)δµ+ h(µ) = 0 on [0, T ]× Ω

µ = 0 on [0, T ]× Rn/Ω

(g1−δ ∗ µ)(0, .) = w on Rn/Ω.

(1.2)

In order to study the existence of a solution to this problem, we suggest the topological method to deal with
it. Recently, the Leray-Schauder degree technique is well-known and worthy of consideration introduced by Leray
and Schauder in the early 1930s, where this last needs weakly compact assumptions rather than strongly compact
assumptions. The main arguments are to demonstrate a priori estimations, which are a frequent way to demonstrate
existence results (see [1, 2, 14, 15, 17]. This method is a valuable topological tool for studying nonlinear partial
differential equations, and it may also be used in fractional instances. It also has the advantage of providing information
on the number of possible solutions, continuous families of solutions, and solution stability.

In fact, when we replace the nonlocal fractional Laplacian with local classical Laplacian, we can see our problems
in [6] when the authors studied the existence and uniqueness of time-fractional diffusion problems. And in [13] the
authors were interested in the time-fractional semilinear problem, to deal with it, they applied a Galerkin method.
Basically, we can show that our problems are the generalizations of the problems mentioned above. Because in their
problem they found the solution in a classical Sobolev space, and we found the solution in fractional Sobolev space.
On the other hand, our problem is interesting by his nonlocal property.

Let us start by defining the term fractional Laplacian as an integral in the sens of the Cauchy principle value in
the real space for all z ∈ S ,∀δ ∈ (0, 1), as follows

(−∆)δz(x) = P (n, δ)p.v.

∫
Rn

z(x)− z(y)

|x− y|n+2δ
dy, x ∈ Rn,

with P (n, δ) = π−(2δ+n/2)Γ(δ + n/2)

Γ(−δ)
, and S is the Schwartz space. This nonlocal operator have according to spectral

theory an eigenvalues. These values a finite threat and form a diverging sequence (see[3])

0 < λδ1(Ω) ≤ λδ2(Ω) ≤ λδ3(Ω) ≤ · · · → +∞.

In recent years, many authors have been working with this nonlocal operator of fractional Laplacian. We suggest
some works, for example. In (2021), E. Abada et all [1] came up with the idea of their work from [10] and replaced
the local operator with the nonlocal operator, we also refer to [2, 4, 7, 16], and the references therein. On the other
hand, the authors in [6] wrote the Riemann-Liouville time fractional derivatives RLDδ

0,t as follow

▷ For z ∈ L2(0, T ;E), if g1−δ ∗ z ∈ H1(0, T ;E) then

RLDδ
0,tz =

d

dt
{g1−δ ∗ z},

▷ the adjoint of Riemann-Liouville derivatives denoted by RLDδ
t,T and define as follow

RLDδ
t,T ϕ(t) =

∫ T

t

g1−δ(y − t)
d

dt
ϕ(y)dy, for all t ∈ [0, T ].

with g1−δ denoting the kernel of order 1− δ, and the convolution of g1−δ ∗ z defined by

g1−δ ∗ z(t) =
∫ t

0

g1−δ(t− y)z(y)dy, a.e. t ∈ [0, T ], and gδ(t) =
1

Γ(δ)
tδ−1 ∈ L1

loc([0,+∞]).

The arrangement of our article is as follows; in the coming Section, we mention some characteristics and results
that we will use in our research to reach our goal. In Section 03, we propose the Galerkin method to prove the existence
and uniqueness of the linear equation of time-fractional, which we introduced on the fractional Laplacian. In Section
04, under some assumption, we prove the existence solution of the semilinear equation for time-fractional, and we use
topological methods to deal with it. In conclusion, we end with an epilogue where we will mention some future works
in it.
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2 Preliminaries

In this section, we will define some characteristics and results which we will use to reach our goal in our work. Let
(E, ∥.∥) be a real Banach space, and T be a positive number, and Ω subset of Rn with Lipschitz boundary.

Proposition 2.1. (see [1]) Let Ω be a Lipschitz bounded open subset of Rn and 0 < δ < 1 such that n > 2δ. Let
µ : Ω → R be a measurable function compactly supported. Then, there exists a positive constant Cemb > 0 depending
on n, δ and Ω such that

∥µ∥L2(Ω) ≤ Cemb∥µ∥Hδ
0 (Ω). (2.1)

Theorem 2.2. [6] If p ∈ L2(0, T ;E) and q ∈ L1(0, T ) then

q ∗ p ∈ L2(0, T ;E) and ∥q ∗ p∥L2(0,T ;E) ≤ ∥q∥L1(0,T )∥p∥L2(0,T ;E). (2.2)

Theorem 2.3. [6] Let (H, (., .)) be real Hilbert space, µ ∈ L2(0, T ;H) and δ ∈ (0, 1). Then∫ T

0

(µ(t), gδ ∗ µ(t)) dt ≥ 0.

Proposition 2.4. [6] Let δ ∈ (0, 1) and v ∈ L2(0, δ;E). If v admits a derivative of order δ in L2(0, T ;E), then

v = (g1−δ ∗ v)(0)gδ + gδ ∗ RLDδ
0,tv in L1(0, T ;E). (2.3)

Proposition 2.5. [6] Let δ ∈ (0, 1), v ∈ L2(0, T ;E) and ϕ ∈ H1(0, T ). Assume that v admits a derivative of order δ
in L2(0, T , E). Then ∫ T

0

RLDδ
0,tv(t)ϕ(t)dt = −

∫ T

0

v(t)RLDδ
t,T ϕ(t)dt+ [g1−δ ∗ vϕ]T0 in E, (2.4)

▷ if ϕ ∈ C∞
c (0, T ) then

∥∥ ∫ T

0

v(t)RLDδ
t,T ϕ(t)dt

∥∥ ≤
√
T g2−δ(T )∥v∥L2(0,T ;E)∥ϕ

′
∥L∞(0,T ). (2.5)

Remark 2.6. We remark that from the Proposition 2.5, we can define the fractional derivative in the sense of
distributions. and we sees the followinf linear map

D(0, T ) → E (2.6)

ϕ 7→ −
∫ T

0

v(t)RLDδ
t,T ϕ(t)dt. (2.7)

The equation (2.7) is a distribution of order (at most) 1. Denote by D′
(0, T ;E) the set of distributions with values in

E.

The following definition defines the weak derivation

Definition 2.7. Let δ ∈ (0, 1) and v ∈ L2(0, T ;E). Then the weak derivative of order δ of v is the vactor valued
distribution, denoted by RLDδ

0,t, and defined, for all ϕ ∈ D(0, T ), as follows

〈
RLDδ

0,tv, ϕ
〉
= −

∫ T

0

v(t)RLDδ
t,T ϕ(t)dt.

If we want to emphasize the duality occurring in the baracket above, we will write
〈
RLDδ

0,tv, ϕ
〉
D′ (0,T ;E),D(0,T )

,

instead of
〈
RLDδ

0,tv, ϕ
〉
.
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Proposition 2.8. [6] Let δ ∈ (0, 1), E be a real Banach space and µ ∈ L2(0, T , E′
). We assume that µ admits a

derivative of order δ in L2(0, T , E′
). Then, for each w in E, ⟨µ,w⟩E′ ,E admits a derivative o order δ in L2(0, T ) and〈

RLDδ
0,tµ,w

〉
E′ ,E

= RLDδ
0,t{⟨µ,w⟩E′ ,E}, in L2(0, T ). (2.8)

Corollary 2.9. [13] For E be a real Banach space densely and continuously embedded into a real Hilbert space H.
Assume that v ∈ 0W

s
2,2(0, T ;E,E

′
), then, for every τ ∈ [0, T ],

1

2
g1−δ ∗ ∥v(.)∥2H(t) ≤

∫ τ

0

〈
RLDδ

0,tv(x), v(x)
〉
dx. (2.9)

Theorem 2.10. [13] Let E be a real Banach space densely and continuously embedded into a real Hilbert space H,
δ ∈ (0, 1) and p ≥ 2 be such that s > 1/p

′
. Assum v ∈W s

p,p′ (0, T , E,E
′
), and (g1−δ ∗ v)(0) ∈ E. Then∫ T

0

〈
RLDδ

0,tv(t), v(t)− (g1−δ ∗ v)(0)gδ(t)
〉
E,E′dt ≥ 0.

Definition 2.11. Let T > 0 and δ ∈ (0, 1), we mention by

Hδ(0, T ;Hδ
0 (Ω), H

−δ(Ω)) = {µ ∈ L2(0, T ;Hδ
0 (Ω)) whose

RLDδ
0,tµ ∈ L2(0, T ;H−δ(Ω))},

where RLDδ
0,tµ is weak fractional derivative.

▷ We put (just a notation)

Hδ
0 (Ω) = Y and H−δ(Ω) = Y

′
.

▷ Throughout this research, we have assumed that δ > 1/2 and n > 2δ. ▷ Also in this work, we assume Ω be a
Lipschitz bounded open subset of Rn.

3 Galerkin method for Time-fractional linear equation

In this Section, we consider the following linear problem
Find µ ∈ Hδ(0, T ;Y, Y

′
)

RLDδ
0,tµ+ (−∆)δµ = h in L2(0, T ;Y

′
)

(g1−δ ∗ µ)(0) = w in L2(Ω),

(3.1)

and we use the Galerkin method to prove the existence and uniqueness of weak solotion for these problem.

Lemma 3.1. The problem (3.1) has unique weak solution, µ ∈ Hδ(0, T ;Y, Y
′
).

Proof .

Part 01. Existence of a weak solution This Part is divided into fourth Step.

First, we take the space En the vector space generated by φ1, . . . , φn, that is means En = vect{φ1, . . . , φn} and
(φk)k≤1 forms an Hilbertian basis of L2(Ω).

▷ we remark that ((λδk)
−1/2φk) is a Hilbertian basic of Y , where λδk ∈ (0,+∞) is kth eigenvalues of the operator

(−∆)δ, k = 1, 2, . . .

Secondly, Let us decompose the initial condition w. Since Y is a Hilbert space the we writing w by

w =
∑
k≥1

akφk in Y, (3.2)

and we have En a space of finite dimension then

wn =

n∑
k=1

akφk. in En, (3.3)
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the following property true that wn → w in Y . Finally, we define our approximated problem For every integer n ≥ 1,
as the following form

Find µn ∈ L2(0, T ;En) such that RLDδ
0,tµn ∈ L2(0, T ;Y

′
)〈

RLDδ
0,tµn, φ

〉
Y

′
,Y

+ P (n, δ)
∫∫

R2n

(µn(x)− µn(y))(φ(x)− φ(y))

|x− y|n+2δ
dydx = ⟨h, φ⟩Y ′

,Y

in L2(0, T ), ∀φ ∈ En

(g1−δ ∗ µn)(0) = wn.

(3.4)

Step 01: Solvability of the approximated problem. We suppose that The following decomposition

µn(t) =
∑n

k=1 yk(t)φk, hk = ⟨h(t), φk⟩Y ′ ,Y , when we substitute in the problem 3.4, we get an equivalent equation
for it and defined as follow 

RLDδ
0,tyk(t) + λδkyk(t) = hk in L2(0, T )

∀k = 1, . . . , n

(g1−δ ∗ yk)(0) = ak.

(3.5)

The local result for (3.5) in L2(0, τ), for ı smal positive is solvable (see [5, chap 5]). We will now prove that there
is a global result for (3.5), we know that if it is blow up then the global solution does not exist, and for that we prove
by Contradiction. Let us assume that Tm is finite. Then, for every ı ∈ (0, T ), we have by (3.5), Proposition 2.4 and
(2.2)

yk(t) + λδkgδ ∗ yk(t) = akgδ + gδ ∗ hk in L2(0, ı). (3.6)

We multiply (3.6) by yk and integrate on 0, ı. Since λδk ≥ 0 and δ > 1/2, we get By Theorem 2.3∫ ı

0

|yk(t)|2dt ≤
∫ ı

0

akgδyk(t)dt+

∫ ı

0

gδ ∗ hkyk(t)dt,

From Cauchy-Schwarz inequality, we arrived

∥yk∥2L2(0,ı) ≤ |ak|∥gδ∥L2(0,Tm)∥yk∥L2(0,ı) + ∥gδ ∗ hk∥L2(0,Tm)∥yk∥L2(0,ı). (3.7)

We deduced that yk bounded in L2(0, τ) as τ approaches Tm. That contradiction with the condition of blow up,
so that Tm = +∞. Our conclude here is for every time T ≥ 0 the (3.4) has only one solution.

Step 02: Priori estimates. In the present Step, we will prove that µn is bounded in L2(0, T ;Y ) and RLDδ
0,tµn

is bounded in L2(0, T ;Y
′
). For that we use gδ ∈ L2(0, T ), we have∫ T

0

〈
RLDδ

0,tµn, µn − gδwn

〉
Y ′ ,Y

dt+ P (n, δ)

∫ T

0

∫∫
R2n

(µn(x)− µn(y))
(
(µn(x)− µn(y)− gδ(wn(x)− wn(y)))

)
|x− y|n+2δ

dydxdt

=

∫ T

0

⟨h, µn − gδwn⟩ dxdt,

Hence, by the Theorem 2.10, we get

P (n, δ)

∫ T

0

∫∫
R2n

|µn(x)− µn(y)|2

|x− y|n+2δ
dydxdt

≤ P (n, δ)

∫ T

0

∫∫
R2n

(µn(x)− µn(y))(wn(x)− wn(y))

|x− y|n+2δ
gδdydxdt+

∫ T

0

∫
Ω

hµndxdt−
∫ T

0

∫
Ω

hwngδdxdt.

Then, using Cauchy-Schwarz inequality, we get

P (n, δ)∥µn∥2L2(0,T ;Y ) ≤P (n, δ)
∫ T

0

∥µn∥Y ∥wn∥Y gδdt+
∫ T

0

∥h∥Y ′∥µn∥ydt+
∫ T

0

∥h∥Y ′∥wn∥Y gδdt

≤
[
P (n, δ)∥wn∥Y ∥gδ∥L2(0,T ) + ∥h∥L2(0,T ;Y ′ )

]
∥µn∥L2(0,T ;Y ) + ∥wn∥Y ∥gδ∥L2(0,T )∥h∥L2(0,T ;Y ′ ),
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we observe that wn → w in Y , we obtain the desired estimate

∥µn∥L2(0,T ;Y ) ≤ K1. (3.8)

where the constant K1 is independent of n.

▷ Our next goal is to prove that RLDδ
0,tµn is bounded in L2(0, T ;Y

′
). Indeed, we have∣∣∣∣ 〈RLDδ

0,tµn, φ
〉
Y

′
,Y

∣∣∣∣ ≤ P (n, δ)

∣∣∣∣ ∫∫
R2n

(µn(x)− µn(y))(φ(x)− φ(y))

|x− y|n+2δ
dydx

∣∣∣∣+∣∣∣∣ ⟨h, φ⟩Y ′
,Y

∣∣∣∣ ∀φ ∈ Y.

Moreover, from Cauchy-Schwarz inequality obtain∣∣∣∣ 〈RLDδ
0,tµn, φ

〉
Y ′ ,Y

∣∣∣∣ ≤ P (n, δ)∥µn∥Y ∥φ∥Y + ∥h∥Y ′∥φ∥Y ,

then, we find ∫ T

0

∥RLDδ
0,tµn∥2Y ′ dt ≤ 2P 2(n, δ)

∫ T

0

∥µn∥2Y dt+ 2

∫ T

0

∥h∥2
Y

′ dt

In Finally, we get to
∥RLDδ

0,tµn∥L2((0,T ;Y ′ )) ≤ k2, (3.9)

where k2 =
(
2P 2(n, δ)k21 + 2∥h∥2

L2(0,T ,Y ′ )

)1/2

. Therefore, we have from (3.8) and (3.9) that there exists µ ∈ L2(0, T ;Y )

such that

µn ⇀ µ in L2(0, T ;Y )− weak

and

RLDδ
0,tµn ⇀

RLDδ
0,tµ in L2(0, T ;Y

′
)− weak

Step 03: Passage to the limit. Our aim in this Step is to return from the approximation problem to the exact
problem. we have

RLDδ
0,tµn + (−∆)δµn = h, (3.10)

multiplying equation (3.10) by ψ ∈ D(0, T ) and integre on 0, T , and we multiply it again by φk and integre, for k ≥ 1
be fixed and n ≥ k, we get to〈∫ T

0

RLDδ
0,tµn(t)ψ(t)dt, φk

〉
Y

′
,Y

+

∫
Rn

∫ T

0

(−∆)δµnψdtφkdx =

∫
Ω

∫ T

0

h(t)ψ(t)dtφkdx

and thus, we derive from Proposition 2.5, and passing to the limit in n, we arrive to

RLDδ
0,tµ+ (−∆)δµ− h = 0 in D

′
(0, T ;Y

′
).

We observe that µ ∈W δ
2,2(0, T ;Y, Y

′
) and

RLDδ
0,tµ+ (−∆)δµ− h = 0 in L2(0, T ;Y

′
).

This result we concluded because (−∆)δµ and h belong to L2(0, T ;Y
′
).

Step 04: Initial condition. Let ψ ∈ Hδ
0 (0, T ), ψ(T ) = 0, we have∫ T

0

〈
RLDδ

0,tµ, φk

〉
ψ(t)dt+

∫ T

0

∫
Rn

(−∆)δµφkdxψ(t)dt =

∫ T

0

⟨h, φk⟩ψ(t)dt.

Moreover, from the Proposition 2.8, and Proposition 2.5, we find

−
∫ T

0

⟨µ, φk⟩RLDδ
t,T ψ(t)dt+ ⟨(g1−δ ∗ µ)(0), φk⟩ψ(0) +

∫ T

0

∫
Rn

(−∆)δµφkdxψ(t)dt =

∫ T

0

⟨h, φk⟩ψ(t)dt. (3.11)
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In other to, we have∫ T

0

〈
RLDδ

0,tµn, φk

〉
ψ(t)dt+

∫ T

0

∫
Rn

(−∆)δµnφkdxψ(t)dt =

∫ T

0

⟨h, φk⟩ψ(t)dt,

then, thanks to Proposition 2.5 and Proposition 2.8, we get to

−
∫ T

0

⟨µn, φk⟩RLDδ
t,T ψ(t)dt+ ⟨wn, φk⟩ψ(0) +

∫ T

0

∫
Rn

(−∆)δµnφkdxψ(t)dt =

∫ T

0

⟨h, φk⟩ψ(t)dt.

Therefore, when passing to the limit, we find

−
∫ T

0

⟨µ, φk⟩RLDδ
t,T ψ(t)dt+ ⟨w,φk⟩ψ(0) +

∫ T

0

∫
Rn

(−∆)δµφkdxψ(t)dt =

∫ T

0

⟨h, φk⟩ψ(t)dt. (3.12)

In conclusion, from the uniqueness of the limit, we obtain equation (3.11) equal equation (3.12). In the end , our
result is

(g1−δ ∗ µ)(0) = w a.e. in Ω.

Which implies that completes the proof of the existence result.

Part 02. Uniqueness of the solution Let µ and µ̈ two solution the problem (3.1), then we have{
RLDδ

0,tµ+ (−∆)δµ = h

(g1−δ ∗ µ)(0) = w,
(3.13)

and {
RLDδ

0,tµ̂+ (−∆)δµ̂ = h

(g1−δ ∗ µ̂)(0) = w.
(3.14)

Taking the deference between equations (3.13) and (3.14), we get to{
RLDδ

0,t(µ− µ̂) + (−∆)δ(µ− µ̂) = 0

(g1−δ ∗ (µ− µ̂))(0) = 0.
(3.15)

Moreover, from the initial condition we have (µ − µ̂) ∈ 0W
δ
2,2(0, T ;Y, Y

′
). Then multiplier equation (3.15) by

(µ− µ̂) and integre on (0, s) , s ∈ (0, T ], we derive∫ s

0

〈
RLDδ

0,t(µ− µ̂), (µ− µ̂)
〉
dt+

∫ s

0

∫
Rn

(−∆)δ(µ− µ̂)(µ− µ̂)dxdt = 0. (3.16)

Therefore, from to Corollary 2.9, we get

g1−δ ∗ ∥(µ− µ̂)(.)∥2L2(Ω)(s) +

∫ s

0

∥µ− µ̂∥2Y ≤ 0,

and thus ∫ s

0

g1−δ(s− t)∥(µ− µ̂)(t)∥2L2(Ω)dt ≤ 0.

But we have g1−δ is decreasing map, then

g1−δ(T )

∫ s

0

∥(µ− µ̂)(t)∥2L2(Ω)dt ≤ 0.

Finally, we conclude that (µ− µ̂)(t) = 0. So that the problem (3.1) has a unique solution. □
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4 Topological degree for a time-fractional semilinear equation

In this section, we are interesting to prove the existence of weak solution the following fractional semilinear problem
Find µ ∈ Hδ(0, T ;Y, Y

′
),

RLDδ
0,tµ+ (−∆)δµ+ h(µ) = 0 in L2(0, T ;Y

′
)

(g1−δ ∗ µ)(0, .) = w in L2(Ω),

(4.1)

where h : R → R is Lipschitz continuous map satisfy, for some positive conctant r , h satisfying the following assump-
tions

(c1) Growth assumption:

|h(µ)| ≤ r + r|µ|, ∀µ ∈ R.

(c2) Sing assumption:

h(µ)µ ≥ −r

and we propose the Leray-Schauder degree theory to prove it.

▷ the following theorem give the existence of solution

Theorem 4.1. Thanks to hypothesis (c1) and (c2) the problem (4.1) has a weak solution µ ∈ Hδ(0, T ;Y, Y
′
).

4.1 New formulation of problem (4.1)

In this subsection, we will present a fixed point problem which equivalent to problem (4.1).
First, we will define the following homotopy H by

H : [0, 1]× L2(0, T ;L2(Ω)) → L2(0, T ;Y )

(τ, µ) 7→ H(τ, µ) = µ,

where µ is a weak solution to the following linear problem
Find µ : [0, T ]× Ω → R such that
RLDδ

0,tµ+ (−∆)δµ+ τh(µ) = 0 on [0, T ]× Ω

µ = 0 on[0, T ]× Rn/Ω

(g1−β ∗ µ)(0, .) = τw on Rn/Ω.

(4.2)

Lemma 4.2. We show in the Section 03 for the problem (4.2) is uniquely solution µ ∈ Hδ(0, T ;Y, Y
′
).

After that, we observe that problem (4.1) is equivalent to the fixed point problem{
µ ∈ L2(0, T ;L2(Ω)),

H(1, µ) = µ.
(4.3)

Our goal here in this section is prove that and we using the Leray-Schauder degree to prove the problem (4.1) has
weak solution.

4.2 several auxiliary Lemmas

In this subsection, we present several auxiliary Lemmas about the conditions of the Leray-Schauder degree method.

Lemma 4.3. (Priori estimate). Thanks to assumptions (c1), (c2) there exists R > 0, for every µ ∈ L2(0, T , L2(Ω))
such that {

H(τ, µ) = µ

τ ∈ [0, 1], µ ∈ L2(0, T , L2(Ω))
⇒ ∥µ∥L2(0,T ,L2(Ω)) < R.
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Proof . Let H(τ, µ) = µ, for all τ ∈ [0, 1], that is meansFind µ ∈ L2(0, T ;Y ) such that RLDδ
0,tµ ∈ L2(0, T ;Y

′
)∫ T

0

〈
RLDδ

0,tµ, φ
〉
Y

′
,Y
dt+ P (n, δ)

∫ T
0

∫∫
R2n

(µ(x)− µ(y))(φ(x)− φ(y))

|x− y|n+2δ
dydxdt+ τ

∫ T
0

∫
Ω
h(µ)φdxdt = 0, ∀φ ∈ Y.

Taking φ = µ− τwgδ, we derive∫ T

0

〈RLDδ
0,tµ, µ− τwgδ

〉
Y

′
,Y
dt+ P (n, δ)

∫ T

0

∫∫
R2n

(µ(x)− µ(y)) ((µ(x)− µ(y))− τgδ(w(x)− w(y)))

|x− y|n+2δ
dydxdt

+ τ

∫ T

0

∫
Ω

h(µ)(µ− τwgδ)dxdt = 0.

In fact, from the Theorem 2.10, we have the first integral above is positive. Hence, we get

P (n, δ)

∫ T

0

∫∫
R2n

|µ(x)− µ(y)|2

|x− y|n+2δ
dxdt ≤

∣∣∣∣ ∫ T

0

∫
Ω

−h(µ)µdxdt
∣∣∣∣+ ∣∣∣∣ ∫ T

0

∫
Ω

h(µ)wgδdxdt

∣∣∣∣
+

∣∣∣∣P (n, δ)

∫ T

0

∫∫
R2n

(µ(x)− µ(y))(w(x)− w(y))

|x− y|n+2δ
gδdydxdt

∣∣∣∣.
Under the assumption (c2), we obtain

P (n, δ)

∫ T

0

∫∫
R2n

|µ(x)− µ(y)|2

|x− y|n+2δ
dxdt

≤ r|Ω|T +

∣∣∣∣ ∫ T

0

∫
Ω

h(µ)wgδdxdt

∣∣∣∣+ P (n, δ)

∣∣∣∣ ∫ T

0

∫∫
R2n

(µ(x)− µ(y))(w(x)− w(y))

|x− y|n+2δ
gδdydxdt

∣∣∣∣.
Then

∥µ∥2L2(0,T ;H1=0(Ω)) ≤ r|Ω|T + I1 + I2. (4.4)

when

I1 =

∣∣∣∣ ∫ T

0

∫
Ω

h(µ)wgδdxdt

∣∣∣∣,
and

I2 = P (n, δ)

∣∣∣∣ ∫ T

0

∫∫
R2n

(µ(x)− µ(y))(w(x)− w(y))

|x− y|n+2δ
gδdydxdt

∣∣∣∣.
We get from the assumption (c1), and using the Cauchy-Schwarz inequality and Proposition 2.1, of

� I1 ≤ r

∫ T

0

∫
Ω

|w||gδ|dxdt+ r

∫ T

0

∫
Ω

|µ||w||gδ|dxdt

≤ rCemb

√
T |Ω|∥w∥Y ∥gδ∥L2(0,T ) + rC2

emb∥w∥Y ∥gδ∥L2(0,T )∥µ∥L2(0,T ;Y ).

Hence, using Hölder inequality on I2, we get to

I2 ≤ P (n, δ)∥w∥Y ∥gδ∥L2(0,T )∥µ∥L2(0,T ;Y ).

Finally, when we return to (4.4), we get

P (n, δ)∥µ∥2L2(0,T ;Y ) ≤
[(
rC2

emb + C(n, δ)
)
∥w∥Y ∥gδ∥L2(0,T )

]
∥µ∥L2(0,T ;Y ) + rCemb

√
T |Ω|∥gδ∥L2(0,T )∥w∥Y + r|Ω|T ,

The solvability of above inequality, which is solved by solving a second-degree equation, we get to

∥µ∥L2(0,T ;L2(Ω)) ≤ L = R,

hence, we get
∥µ∥L2(0,T ;L2(Ω)) < R+ 1. (4.5)

from (4.5) our result is that, there are no solution of the equation H(τ, µ) = µ on the edge of BR+1 = {µ ∈
L2(0, T ;L2(Ω)) : ∥µ∥L2(0,T ;L2(Ω)) < R+ 1}, and this is for each τ ∈ [0, 1]. □
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Lemma 4.4. Thanks to assumption (c1), the homotopy {H(τ, µ); τ ∈ [0, 1], µ ∈ BR+1} is relatively compact in
L2(0, T ;L2(Ω)).

Proof . Let (τn, µn)n∈N ⊂ [0, 1]×B(0, R+ 1), we have∫ T

0

〈RLDδ
0,tµn, µn − τnwgδ

〉
Y

′
,Y
dt+ P (n, δ)

∫ T

0

∫∫
R2n

(µn(x)− µn(y))
(
(µn(x)− µn(y))− τngδ(w(x)− w(y))

)
|x− y|n+2δ

dydxdt

+ τn

∫ T

0

∫
Ω

h(µn)(µn − τnwgδ)dxdt = 0.

By Theorem 2.10 , we get

P (n, δ)

∫ T

0

∫∫
R2n

|µn(x)− µn(y)|2

|x− y|n+2δ
dydxdt ≤

∣∣∣∣P (n, δ)

∫ T

0

∫∫
R2n

(µn(x)− µn(y))(w(x)− w(y))

|x− y|n+2δ
gδdydxdt

∣∣∣∣+ ∣∣∣∣ ∫ T

0

∫
Ω

h(µn)µndxdt

∣∣∣∣
+

∣∣∣∣ ∫ T

0

∫
Ω

h(µn)wgδdxdt

∣∣∣∣.
Then, we put

∥µ∥2L2(0,T ;Y ) ≤ I
′

1 + I
′

2 + I
′

3. (4.6)

When

I
′

1 = P (n, δ)

∣∣∣∣ ∫ T

0

∫∫
R2n

(µn(x)− µn(y))(w(x)− w(y))

|x− y|n+2δ
gδdydxdt

∣∣∣∣,
and I

′

2 =

∣∣∣∣ ∫ T
0

∫
Ω
h(µn)µndxdt

∣∣∣∣, with I
′

3 =

∣∣∣∣ ∫ T
0

∫
Ω
h(µn)wgδdxdt

∣∣∣∣. Thanks to hypothesis (c1) and Cauchy-Schwarz

inequality and Proposition 2.1, we obtain

� I
′

2 ≤ r

∫ T

0

∫
Ω

|µn|dxdt+ r

∫ T

0

∫
Ω

|µn||µn|dxdt

≤ rCemb

[√
T |Ω|+ ∥µn∥L2(0,T ;L2(Ω))

]
∥µn∥L2(0,T ;Y ),

and

� I
′

3 ≤ r

∫ T

0

∫
Ω

|wn||gδ|dxdt+ r

∫ T

0

∫
Ω

|µn||w||gδ|dxdt

≤ rCemb

[√
T |Ω|+ ∥µn∥L2(0,T ;L2(Ω))

]
∥w∥Y ∥gδ∥L2(0,T .

Hence, applying the Hölder inequality to I
′

1, we find

� I
′

1 ≤ P (n, δ)∥w∥Y ∥gδ∥L2(0,δ)∥µn∥L2(0,T ;Y ).

Then, when we return to (4.2), we derive

P (n, δ)∥µn∥2L2(0,T ;Y ) ≤
[
rCemb

(√
T |Ω|+ ∥µn∥L2(0,T ;L2(Ω))

)
+ P (n, δ)∥w∥Y ∥gδ∥L2(0,T )

]
∥µn∥L2(0,T ;Y )

+ rCemb

(√
T |Ω|+ ∥µn∥L2(0,T ;L2(Ω))

)
∥w∥Y ∥gδ∥L2(Ω).

Finally, we get to
∥µn∥L2(0,T ;Y ) ≤ M̂1,

where the constant M̂1 is independent of n.

▷ We proceed now to prove that RLDδ
0,tµn is bounded in L2(0, T ;Y

′
). Indeed, we have∣∣∣∣ 〈RLDδ

0,tµn, φ
〉
Y

′
,Y

∣∣∣∣ ≤ P (n, δ)

∣∣∣∣ ∫∫
R2n

(µn(x)− µn(y))(φ(x)− φ(y))

|x− y|n+2δ
dydx

∣∣∣∣+ ∫
Ω

|h(µn)||φ|dx ∀φ ∈ Y.
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Moreover, from Cauchy-Schwarz inequality, Proposition 2.1 and assumption (c1), we obtain∣∣∣∣ 〈RLDδ
0,tµn, φ

〉
Y ′ ,Y

∣∣∣∣ ≤ P (n, δ)∥µn∥Y ∥φ∥Y + rCemb

√
Ω∥φ∥Y + rCemb∥µn∥L2(Ω)∥φ∥Y .

Then, we find ∫ T

0

∥RLDδ
0,tµn∥2Y ′ dt ≤ 2P 2(n, δ)

∫ T

0

∥µn∥2Y dt+ 4r2C2
emb

(
|Ω|T +

∫ T

0

∥µn∥
2
L2(Ω)dt

)
In Finally, we get to

∥RLDδ
0,tµn∥L2((0,T ;Y ′ )) ≤ M̂2, (4.7)

where M̂2 =

(
2P 2(n, δ)M̂2

1+4r2C2
emb

(
T |Ω|+ (R+ 1)2

))1/2

. In conclusion, we get to (µn)n∈N is bounded in L2(0, T ;Y )

and (RLDδ
0,tµn)n∈N is bounded in L2(0, T ;Y

′
). Therefore, according to Aubin-Simon theorem we conclude that the

homotopy {H(τ, µ); τ ∈ [0, 1], µ ∈ BR+1} is relatively compact in L2(0, T ;L2(Ω)). □

Lemma 4.5. Thanks to hypothesis (c1), H : [0, 1]× L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω)) is continuous.

Proof . Let {(τn, µn)}n∈N ⊂ [0, 1]×L2(0, T ;L2(Ω)) which converge to (τ, µ) in [0, 1]×L2(0, T ;L2(Ω)) when n→ +∞.
Our goal will to prove that H(τn, µn) → H(τ, µ) in L2(0, T ;L2(Ω)), we pose for every n ∈ N that H(τn, µn) = µn and
H(τn, µn) = µn, we have∫ T

0

〈RLDδ
0,tµn, φ

〉
Y

′
,Y
dt+ P (n, δ)

∫ T

0

∫∫
R2n

(µn(x)− µn(y))(φ(x)− φ(y))

|x− y|n+2δ
dydxdt+ τn

∫ T

0

∫
Ω

h(µn)φdxdt = 0 ∀φ ∈ Y,

(4.8)

and∫ T

0

〈
RLDδ

0,tµ, φ
〉
Y ′ ,Y

dt+ P (n, δ)

∫ T

0

∫∫
R2n

(µ(x)− µ(y))(φ(x)− φ(y))

|x− y|n+2δ
dydxdt+ τ

∫ T

0

∫
Ω

h(µ)φdxdt = 0 ∀φ ∈ Y.

(4.9)

Taking the subtraction between the two equations (4.8) and (4.9), we find∫ T

0

〈RLDδ
0,t(µn − µ), φ

〉
Y

′
,Y
dtP (n, δ)

∫ T

0

∫∫
R2n

(
(µn(x)− µn(y))− (µ(x)− µ(y))

)
(φ(x)− φ(y))

|x− y|n+2δ
dydxdt

+

∫ T

0

∫
Ω

(τh(µ)− τnh(µn))φdxdt = 0 ∀φ ∈ Y,

Then, taking φ = (µn − µ)− (τn − τ)wgδ and by the Theorem 2.10, we obtain

P (n, δ)

∫ T

0

∥µn − µ∥2Y dt ≤P (n, δ)

∫ T

0

∫∫
R2n

(
(µn(x)− µn(y))− (µ(x)− µ(y))

)(
τn − τ)(w(x)− w(y))

)
|x− y|n+2δ

gδdydxdt

+

∫ T

0

∫
Ω

(τh(µ)− τnh(µn))(µn − µ)dxdt+

∫ T

0

∫
Ω

(τh(µ)− τnh(µn))(τn − τ)wgδdxdt.

Using Cauchy-Schwarz inequality, we obtain

P (n, δ)∥µn − µ∥2L2(0,T ;Y ) ≤
[
P (n, δ)∥gδ∥L2(0,T )|τn − τ |∥w∥Y + ∥τh(µ)− τnh(µn)∥L2(0,T ;Y

′
)

]
∥µn − µ∥L2(0,T ;Y )

+ ∥τh(µ)− τnh(µn)∥L2(0,T ;Y
′
)|τn − τ |∥w∥Y ∥gδ∥L2(0,T ).

From h Lipschitz map, produces that h(µn) → h(µ) in L2(0, T ;L2(Ω)) and we have τn → τ in [0, 1] when n→ +∞,
and by Poincaré inequality, we get

∥µn − µ∥L2(0,T ;L2(Ω)) → 0 when n→ +∞.

So, H is continuous from [0, 1]× L2(0, T ;L2(Ω)) into L2(0, T ;L2(Ω)). □

Proof .[Proof of Theorem 4.1] We have from the previous lemmas 4.3, 4.4 and 4.5 the degree d(Id−H(τ, .), B(0, R+
1), 0) is well define, and from the homotopy invariance property, we have d(Id − H(1, .), B(0, R + 1), 0) = d(Id −
H(0, .), B(0, R + 1), 0) = d(Id, B(0, R + 1), 0) = 1 ̸= 0, therefore µ−H(1, µ) = 0 ⇒ µ = H(1, µ). Our goal is that we
prove the existence of weak solution to problem (4.1), µ ∈ Hδ(0, T ;Y, Y

′
). □
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Conclusion

In this research, we studied theoretical results for linear and semilinear time fractional equations. Some future
research, we will take another time fractional problem and we will replace the non-local operator with a new class of
fractional derivative and include the numerical study.
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