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Abstract

The goal of this research article is to study some fixed point results in dislocated quasi metric spaces. These results
are proved for certain generalized contraction conditions involving linear and rational expressions. Our results extend
and generalize some of the well-known fixed point results of the literature available in fixed point theory. Suitable
examples of the established results are also given.
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1 Introduction

Fixed point theory is one of the most progressive and fascinating research areas in nonlinear analysis. Several
researchers have put forward many results related to fixed point theory in different spaces. Fixed point theory deals
with existence and uniqueness of fixed point. The first crucial result was given by Banach in 1922 for a contraction
mapping in a complete metric space known as Banach contraction principle. It has numerous applications in different
branches of mathematics such as differential and integral equation, numerical analysis etc. Dass and Gupta[3] gave a
generalization of Banach contraction principle in a metric space for some rational type contraction conditions.

Hitzler and Seda [4] introduced the notion of dislocated metric space, a generalization of metrics where the distance
of a point from itself need not be zero. This concept was not new as it was studied in the context of domain theory
[9] under the name of metric domains. Zeyada et al. [13] presented the notion of dislocated quasi metric space and
generalized the results of Hitzler and Seda [4] in this space. These metrics play an important role in topology and
in other branches of science particularly in logic programming and electronic engineering. Recently, different types of
contraction mappings and generalization of Banach contraction principle in these spaces is studied by Isufati [6], Aage
and Salunke [1], Kohli et al. [8], Zoto et al. [14] and many more authors.
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2 Preliminaries

The objective of this section is to introduce some basic definitions with examples and results which will further be
needed to understand next section.

Definition 2.1 ([13]). Let X be a nonempty set and let τ : X ×X → [0,∞) be a function satisfying the following
conditions:

(τ1) τ(x, x) = 0;

(τ2) τ(x, y) = τ(y, x) = 0, implies that x = y;

(τ3) τ(x, y) = τ(y, x) for all x, y ∈ X;

(τ4) τ(x, y) ≤ τ(x, z) + τ(z, y) for all x, y, z ∈ X.

If τ satisfies the conditions from (τ1) to (τ4),then τ is called a metric on X. If it satisfies the conditions (τ1), (τ2)
and (τ4), it is called a quasi-metric on X. If τ satisfies conditions (τ2), (τ3), (τ4), it is called a dislocated metric (or
simply τ -metric) on X and if τ satisfies only (τ2) and (τ4) then it is called a dislocated quasi-metric (or simply τq-
metric) on X.

Nonempty set X together with τq-metric τ ,i.e. (X, τ) is called a dislocated quasi-metric space. By definition
every metric on X is a dislocated metric on X, however the converse is not necessarily true as illustrated in following
example.

Example 2.2 ([11]). Let X = [0,∞) and define the distance function τ : X ×X → [0,∞) by

τ(x, y) = max{x, y},∀x, y ∈ X

.

Example 2.3 ([11]). Let X = [0, 1], we define the distance function τ : X ×X → [0,∞) by

τ(x, y) = |x|,∀x, y ∈ X

.

From example 2.3, we note that a dislocated quasi metric on X need not be dislocated metric on X.

Definition 2.4 ([13]). Let {xn} be a sequence in dislocated quasi metric space (X, τ) then

1. {xn} is known as τq-convergent to x ∈ X if limn→∞ τ(xn, x) = limn→∞ τ(x, xn) = 0.
In this case x is called τq-limit of {xn} and we write xn → x.

2. {xn} is known as Cauchy sequence in (X, τ) if for given ϵ > 0, ∃n0 ∈ N such that

∀m,n ≥ n0, τ(xm, xn) < ϵ or τ(xn, xm) < ϵ

that is, limm,n→∞ τ(xm, xn) = limm,n→∞ τ(xn, xm) = 0.
In above definition, if we replace τ(xm, xn) < ϵ or τ(xn, xm) < ϵ by max{τ(xm, xn), τ(xn, xm)} < ϵ, the sequence
{xn} in τq-metric space (X, τ) is called ’bi’ Cauchy.

3. A τq-metric space (X, τ) is called complete if every Cauchy sequence is a τq- convergent sequence.

Proposition 2.5 ([13]). Every convergent sequence in a τq- metric space is ‘bi’ Cauchy.

Lemma 2.6 ([13]). Every subsequence of τq- convergent sequence to a point a0 is τq- convergent to a0.

Lemma 2.7 ([13]). τq- limits in τq- metric spaces are unique.

Definition 2.8 ([13]). Let (X, τ) be a τq-metric space. A function f : X → X is called a contraction if there exists
0 ≤ α < 1 such that

τ(f(x), f(y)) ≤ ατ(x, y),∀x, y ∈ X

.
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Lemma 2.9. Let {an} be a sequence in a τq-metric space (X, τ) such that

τ(an, an+1) ≤ hτ(an−1, an),

where, 0 ≤ h < 1 and n = 0, 1, 2, 3, . . . . Then {an} is a Cauchy sequence in (X, τ).

Proof .Let n > m ≥ 1, we have

τ(am, an) ≤ τ(am, am+1) + τ(am+1, am+2) + · · · · · ·+ τ(an−1, an)

≤ (hm + hm+1 + · · ·+ hn−1)τ(a0, a1)

= hm(1 + h+ h2 + · · ·+ hn−m−1)τ(a0, a1)

≤ hm

1− h
τ(a0, a1).

Since 0 ≤ h < 1, hm → 0 as m → ∞. Therefore, {an} is a Cauchy sequence in (X, τ).

Definition 2.10 ([2]). Let (X, d) be a metric space, a self mapping T : X → X is called a generalized contraction
if and only if for every x, y ∈ X, there exist α1, α2, α3, α4 such that sup{α1 + α2 + α3 + 2α4 : x, y ∈ X} < 1 and

d(Tx, Ty) ≤ α1d(x, y) + α2d(x, Tx) + α3d(y, Ty) + α4[d(x, Ty) + d(y, Tx)]. (2.1)

Ćirić [2] proved a unique fixed point theorem for a self mapping which satisfies condition (2.1) in context of metric
spaces.

3 Main Results

In this section we establish some fixed point theorems for single and pair of continuous self mappings under different
contraction conditions using linear and rational expression in dislocated quasi metric spaces. Our results extend and
generalize some well-known existing results in the literature in τq-metric space. Our results generalize that of Lj.B.Ciric
[2] .

Theorem 3.1. Let (X, τ) be a complete τq-metric space and T : X → X be a continuous function satisfying the
following condition:

τ(Tx, Ty) ≤ a1τ(x, y)+a2[τ(x, Tx)+τ(y, Ty)]+a3[τ(x, Ty)+τ(y, Tx)]+a4

[
τ(x, y)τ(x, Ty)

τ(x, y) + τ(y, Ty)

]
+a5

[
τ(x, Ty)τ(y, Ty)

τ(x, y) + τ(y, Ty)

]
(3.1)

where a1, a2, a3, a4, a5 ≥ 0 with a1 + 2a2 + 4a3 + a4 + a5 < 1 for all x, y ∈ X, then T has a unique fixed point.

Proof . Define a sequence {xn} in X using Picard’s iteration as follows:

Let x0 be any arbitrary element in X,x1 = T (x0), x2 = T (x1), · · · , xn+1 = T (xn), · · · . Assume that xn+1 ̸= xn for
any n, because if for any n, xn+1 = xn, then xn is a fixed point and there is no need to go further. From (3.1), we
have

τ(xn+1, xn+2) =τ(Txn, Txn+1)

≤a1τ(xn, xn+1) + a2[τ(xn, Txn) + τ(xn+1, Txn+1)] + a3[τ(xn, Txn+1) + τ(xn+1, Txn)]

+ a4

[
τ(xn, xn+1)τ(xn, Txn+1)

τ(xn, xn+1) + τ(xn+1, Txn+1)

]
+ a5

[
τ(xn, Txn+1)τ(xn+1, Txn+1)

τ(xn, xn+1) + τ(xn+1, Txn+1)

]
≤a1τ(xn, xn+1) + a2τ(xn, xn+1) + a2τ(xn+1, xn+2) + a3[τ(xn, xn+1) + τ(xn+1, xn+2)

+ τ(xn+1, xn+2) + τ(xn, xn+1)] + a4τ(xn, xn+1) + a5τ(xn+1, xn+2)

≤ [a1 + a2 + 2a3 + a4]

[1− (a2 + 2a3 + a5)]
τ(xn, xn+1.

Let k = [a1+a2+2a3+a4]
[1−(a2+2a3+a5)]

. Observe that 0 ≤ k < 1 since a1 + 2a2 + 4a3 + a4 + a5 < 1. Therefore, τ(xn+1, xn+2) ≤
kτ(xn, xn+1). Similarly, τ(xn, xn+1) ≤ kτ(xn−1, xn), so we get τ(xn+1, xn+2) ≤ k2τ(xn−1, xn). Proceeding like this,



248 Mittal, Kumar, Ansari, Vyas

we get τ(xn+1, xn+2) ≤ kn+1τ(x0, x1). Since 0 ≤ k < 1 ⇒ kn+1 → 0 as n → ∞. By Lemma 2.9, {xn} is a Cauchy
sequence in complete τq-metric space X. So there is a point p ∈ X such that p is the τq-limit of {xn}, that is xn → p.
Since T is continuous, limn→∞ Txn = Tp implies that limn→∞ xn+1 = Tp. Thus, Tp = p. Hence p is a fixed point of
T .

Uniqueness: If p ∈ X is a fixed point of T then by condition (3.1), we have

τ(p, p) =τ(Tp, Tp)

≤a1τ(p, p) + a2[τ(p, p) + τ(p, p)] + a3[τ(p, p) + τ(p, p)] + a4

[
τ(p, p)τ(p, p)

τ(p, p) + τ(p, p)

]
+ a5

[
τ(p, p)τ(p, p)

τ(p, p) + τ(p, p)

]
≤(a1 + 2a2 + 2a3 +

a4
2

+
a5
2
)τ(p, p).

Since 0 ≤ (a1 + 2a2 + 2a3 +
a4

2 + a5

2 ) < 1 and τ(p, p) ≥ 0, we have, τ(p, p) = 0. Thus, τ(p, p) = 0, if p is a fixed
point of T . Suppose that p and q are two fixed points of T (p ̸= q), that is, p = Tp and q = Tq. We have,

τ(p, q) =τ(Tp, Tq)

≤a1τ(p, q) + a2[τ(p, Tp) + τ(q, T q)] + a3[τ(p, Tq) + τ(q, Tp)] + a4

[
τ(p, q)τ(p, Tq)

τ(p, q) + τ(q, T q)

]
+ a5

[
τ(p, Tq)τ(q, T q)

τ(p, q) + τ(q, T q)

]
≤[a1 + a3 + a4]τ(p, q) + a3τ(q, p). (3.2)

Similarly,

τ(q, p) ≤ [a1 + a3 + a4]τ(q, p) + a3τ(p, q). (3.3)

Subtract (3.3) from (3.2)

|τ(p, q)− τ(q, p)| ≤ |(a1 + a3 + a4)− a3||τ(p, q)− τ(q, p)|
≤ |a1 + a4||τ(p, q)− τ(q, p)|

Since |a1 + a4| < 1, we have |τ(p, q)− τ(q, p)| = 0. This implies that τ(p, q) = τ(q, p). Putting τ(p, q) = τ(q, p) in
(3.2), we get τ(p, q) ≤ [a1 + 2a3 + a4]τ(p, q). Since 0 ≤ a1 + 2a3 + a4 < 1, we have τ(p, q) = 0. Similarly, τ(q, p) = 0.
Hence p = q. □

Example 3.2. Let X = [0, 1] and complete τq-metric is defined by τ(x, y) = |x| for all x, y ∈ X and define the
continuous self mapping T : X → X by Tx = x

2 .
Suppose a1 = 1

3 , a2 = 1
10 , a3 = 1

12 , a4 = 1
15 , a5 = 1

20 . Then T satisfies all the conditions of Theorem 3.1, and x = 0 is
the unique fixed point of T in X.

Theorem 3.3. Let (X, τ) be a complete τq-metric space and T : X → X be a continuous function satisfying the
following condition:

τ(Tx, Ty) ≤ b1τ(x, y) + b2[τ(x, Tx) + τ(y, Ty)]

[
τ(x, Ty)

τ(x, y) + τ(y, Ty)

]
+b3[τ(x, Ty) + τ(y, Tx)]

[
τ(x, Ty)

τ(x, y) + τ(y, Ty) + τ(x, Ty)

]
, (3.4)

where b1, b2, b3 ≥ 0 with b1 + 2b2 + 4b3 < 1 for all x, y ∈ X. Then T has a unique fixed point.

Proof . Define a sequence {xn} in X using Picard’s iteration as follows:

Let x0 be any arbitrary element in X,x1 = T (x0), x2 = T (x1), · · · , xn+1 = T (xn), · · · . Assume that xn+1 ̸= xn for
any n, because if for any n, xn+1 = xn, then xn is a fixed point and there is no need to go further. From (3.4), we
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have

τ(xn+1, xn+2) =τ(Txn, Txn+1)

≤b1τ(xn, xn+1) + b2[τ(xn, Txn) + τ(xn+1, Txn+1)]

[
τ(xn, Txn+1)

τ(xn, xn+1) + τ(xn+1, Txn+1)

]
+ b3[τ(xn, Txn+1) + τ(xn+1, Txn)]

[
τ(xn, Txn+1)

τ(xn, xn+1) + τ(xn+1, Txn+1) + τ(xn, Txn+1)

]
≤b1τ(xn, xn+1) + b2[τ(xn, xn+1) + τ(xn+1, xn+2)] + b3[τ(xn, xn+2) + τ(xn+1, xn+1)]

≤b1τ(xn, xn+1) + b2τ(xn, xn+1) + b2τ(xn+1, xn+2) + b3τ(xn, xn+1)

+ b3τ(xn+1, xn+2) + b3τ(xn+1, xn+2) + b3τ(xn, xn+1)

≤ [b1 + b2 + 2b3]

[1− (b2 + 2b3)]
τ(xn, xn+1).

Let k = [b1+b2+2b3]
[1−(b2+2b3)]

. Observe that 0 ≤ k < 1 since b1 + 2b2 + 4b3 < 1. Therefore, τ(xn+1, xn+2) ≤ kτ(xn, xn+1).

Similarly, τ(xn, xn+1) ≤ kτ(xn−1, xn), so we get τ(xn+1, xn+2) ≤ k2τ(xn−1, xn).

Proceeding like this, we get τ(xn+1, xn+2) ≤ kn+1τ(x0, x1). Since 0 ≤ k < 1 ⇒ kn+1 → 0 as n → ∞. By Lemma
2.9, {xn} is a Cauchy sequence in complete τq-metric space X. So there is a point p ∈ X such that p is the τq-limit
of {xn}, that is xn → p. Since T is continuous, we have limn→∞ Txn = Tp. This implies limn→∞ xn+1 = Tp. Thus,
Tp = p. Hence p is a fixed point of T .

Uniqueness: If p ∈ X is a fixed point of T then by condition (3.4), we have

τ(p, p) =τ(Tp, Tp)

≤b1τ(p, p) + b2[τ(p, Tp) + τ(p, Tp)]

[
τ(p, Tp)

τ(p, p) + τ(p, Tp)

]
+ b3[τ(p, Tp) + τ(p, Tp)]

[
τ(p, Tp)

τ(p, p) + τ(p, Tp) + τ(p, Tp)

]
≤
(
b1 + b2 +

2

3
b3

)
τ(p, p).

Since 0 ≤ (b1 + b2 +
2
3b3) < 1 and τ(p, p) ≥ 0, we have, τ(p, p) = 0. Thus, τ(p, p) = 0, if p is a fixed point of T .

Suppose that p and q are two fixed points of T (p ̸= q), that is, p = Tp and q = Tq. We have,

τ(p, q) =τ(Tp, Tq)

≤b1τ(p, q) + b2[τ(p, Tp) + τ(q, T q)]

[
τ(p, Tq)

τ(p, q) + τ(q, T q)

]
+ b3[τ(p, Tq) + τ(q, Tp)]

[
τ(p, Tq)

τ(p, q) + τ(q, T q) + τ(p, Tq)

]
≤[b1 +

b3
2
]τ(p, q) +

b3
2
τ(q, p). (3.5)

Similarly,

τ(q, p) ≤ [b1 +
b3
2 ]τ(q, p) +

b3
2 τ(p, q). (3.6)

Subtract (3.6) from (3.5), we get

|τ(p, q)− τ(q, p)| ≤ |b1||τ(p, q)− τ(q, p)|

Since |b1| < 1, we have |τ(p, q)− τ(q, p)| = 0. This implies that τ(p, q) = τ(q, p). Putting τ(p, q) = τ(q, p) in (3.5),
we get τ(p, q) ≤ [b1 + b3]τ(p, q). Since 0 ≤ b1 + b3 < 1, we have τ(p, q) = 0. Similarly, τ(q, p) = 0. Hence p = q. □

Example 3.4. Let X = [0, 1] with a complete τq-metric defined by τ(x, y) = |x| for all x, y ∈ X and let T : X → X
such that Tx = x

2 be a continuous self mapping. Suppose b1 = 21
50 , b2 = 1

10 , b3 = 1
12 . Then T satisfies all the conditions

of Theorem 3.2, and x = 0 is the unique fixed point of T in X.
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Theorem 3.5. Let (X, τ) be a complete τq-metric space and let A and B be two continuous self mapping A,B :
X → X satisfying the following condition:

τ(Ax,By) ≤c1τ(x, y) + c2[τ(x,Ax) + τ(y,By)]

[
τ(x,By)

τ(x, y) + τ(y,By)

]
+ c3[τ(x,By) + τ(y,Ax)]

[
τ(x,By)

τ(x, y) + τ(y,By) + τ(x,Ax)

]
, (3.7)

where c1, c2, c3 ≥ 0 with c1 + 2c2 + 4c3 < 1 for all x, y ∈ X. Then A,B has a unique common fixed point.

Proof . Let x0 ∈ X be arbitrary, we define a sequence {xn} in X as follows:

x1 = A(x0), x2 = B(x1), x3 = A(x2),· · · , x2n = B(x2n−1), x2n+1 = A(x2n),· · · for all n ∈ N . We will show that
{xn} is a Cauchy sequence in X. From (3.7) we have,

τ(x2n+1, x2n+2) =τ(Ax2n, Bx2n+1)

≤c1τ(x2n, x2n+1) + c2[τ(x2n, Ax2n) + τ(x2n+1, Bx2n+1)]

[
τ(x2n, Bx2n+1)

τ(x2n, x2n+1) + τ(x2n+1, Bx2n+1)

]
+ c3[τ(x2n, Bx2n+1) + τ(x2n+1, Ax2n)]

[
τ(x2n, Bx2n+1)

τ(x2n, x2n+1) + τ(x2n+1, Bx2n+1) + τ(x2n, Ax2n)

]
≤c1τ(x2n, x2n+1) + c2[τ(x2n, x2n+1) + τ(x2n+1, x2n+2)]

+ c3[τ(x2n, x2n+1) + τ(x2n+1, x2n+2) + τ(x2n+1, x2n+2) + τ(x2n, x2n+1)]

≤ [c1 + c2 + 2c3]

[1− (c2 + 2c3)]
τ(x2n, x2n+1).

Let k = [c1+c2+2c3]
[1−(c2+2c3)]

. Observe that 0 ≤ k < 1 since c1+2c2+4c3 < 1. Therefore, τ(x2n+1, x2n+2) ≤ kτ(x2n, x2n+1).

Similarly, τ(x2n, x2n+1) ≤ kτ(x2n−1, x2n). Proceeding like this, we get τ(x2n+1, x2n+2) ≤ k2n+1τ(x0, x1). Since
0 ≤ k < 1, we have, k2n+1 → 0 as n → ∞.

By Lemma 2.9, {xn} is a Cauchy sequence in complete τq-metric space X. So there is a point p ∈ X such that p is
the τq-limit of {xn}, that is xn → p. Also, the subsequences {A(x2n)} → p and {B(x2n−1)} → p. Since A,B : X → X
are continuous, we get A(p) = p and B(p) = p. Thus, p is a fixed point A and B.

Uniqueness of common fixed point: Let p ∈ X be a fixed point of A and B then by condition (3.7), we have

τ(p, p) =τ(Ap,Bp)

≤c1τ(p, p) + c2[τ(p,Ap) + τ(p,Bp)]

[
τ(p,Bp)

τ(p, p) + τ(p,Bp)

]
+ c3[τ(p,Bp) + τ(p,Ap)]

[
τ(p,Bp)

τ(p, p) + τ(p,Bp) + τ(p,Ap)

]
≤
(
c1 + c2 +

2

3
c3

)
τ(p, p).

Since 0 ≤ (c1 + c2 +
2
3c3) < 1 and τ(p, p) ≥ 0, we have, τ(p, p) = 0. Thus, τ(p, p) = 0, if p is a fixed point of T .

Now let p and q be two fixed points of A and B (p ̸= q), then we have

τ(p, q) =τ(Ap,Bq)

≤c1τ(p, q) + c2[τ(p,Ap) + τ(q,Bq)]

[
τ(p,Bq)

τ(p, q) + τ(q,Bq)

]
+ c3[τ(p,Bq) + τ(q, Ap)]

[
τ(p,Bq)

τ(p, q) + τ(q,Bq) + τ(p,Ap)

]
≤[c1 + c3]τ(p, q) + c3τ(q, p). (3.8)

Similarly,

τ(q, p) ≤ [c1 + c3]τ(q, p) + c3τ(p, q). (3.9)

Subtract (3.9) from (3.8), we get

|τ(p, q)− τ(q, p)| ≤ |(c1 + c3)− c3||τ(p, q)− τ(q, p)|
≤ |c1||τ(p, q)− τ(q, p)|.
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Since |c1| < 1, we have |τ(p, q) − τ(q, p)| = 0. Hence, τ(p, q) = τ(q, p). Putting τ(p, q) = τ(q, p) in (3.8), we get
τ(p, q) ≤ [c1 + 2c3]τ(p, q). Since 0 ≤ c1 + 2c3 < 1, we have τ(p, q) = 0. Similarly, τ(q, p) = 0. Hence p = q. □

Example 3.6. LetX = [0, 1] with a complete τq-metric defined by τ(x, y) = |x|, for all x, y ∈ X and let A,B : X → X
be continuous self mappings defined by Ax = x

5 and Tx = 0 for all x ∈ X. Suppose that c1 = 21
50 , c2 = 1

10 , c3 = 1
12 .

Then A and B satisfy all the conditions of Theorem 3.3, so x = 0 is the unique common fixed point of A and B in X.
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