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Abstract

In this research, the scattering properties of magneto-acoustic waves in plasma and the presence of Coulomb exchange
effects and quantum effects have been investigated. A set of quantum fluid equations and Maxwell’s equations (Con-
sisting of Bohm potential, Fermi pressure, and exchange correlation) have been used to obtain a generalized dispersion
relation. In semiconductor quantum plasma, scattering effects are due to charge separation between electrons and
holes, quantum repulsion, nonlinearities due to large amplitude electrostatic potential, quantum degeneracy pressure,
and exchange-correlation interaction. Therefore results show that the quantum corrections lead to changes in the
scattering relationship and scattering properties of wave modes. In addition, it was shown that the corrections related
to thermal effects are more important than quantum and magnetic field effects, and the results show that quantum
effects are negligible compared to thermal and magnetic effects, and the contribution of exchange-correlation interac-
tion also becomes significant with the increase of the external magnetic field. These results may be necessary for very
small electronic devices or solid-density plasmas and the understanding of numerous collective phenomena in quantum
plasmas.
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1 Introduction

Since the field of quantum plasma is considered one of the most widely used scientific fields, many researchers are
researching and studying it today. For the first time in 1960, the discussion about quantum plasma was raised by
Pence in physical regimes with high density and low temperature. Studies were also conducted in the last decade in
the field of quantum semiconductor plasma, but the research related to understanding the behavior and characteristics
of waves in these plasmas is limited. Among the models used to study the properties of diffusion in quantum plasma
systems is the quantum hydrodynamic model [27, 28]. Linear characteristics of longitudinal electro-kinetic waves in
quantum semiconductor plasma have been investigated and analyzed using this model [21]. In dense quantum plasma
systems that contain a large number of electrons, the interaction between electrons can be separated into two parts,
one of which is caused by the electrostatic potential (Hartree’s theorem), and the other is known as the electron

∗Corresponding author
Email addresses: z.kiamehr@tafreshu.ac.ir (Zeynab Kiamehr ), z.kiyamehr70@gmail.com (Zohreh Kiamehr)

Received: May 2023 Accepted: November 2023

http://dx.doi.org/10.22075/ijnaa.2023.30599.4439


52 Kiamehr, Kiamehr

exchange-correlation. The electron exchange-correlation is a complex function of electron density and is obtained
through density approximation [8, 11]. Jung et al. have investigated the effect of electron exchange potential in
quantum plasma. Also, the effect of electron exchange potential on the emission of surface Plasmon’s in semiconfined
quantum plasma has been investigated [6, 26]. Among the important challenges of this study, we can point out
that: Despite investigating the effect of quantum exchange potential on the propagation characteristics of electrostatic
waves in quantum plasma [2], this effect on the propagation of magneto-acoustic waves in the quantum semiconductor
plasma has not been investigated so far. For this reason, in this article, we intend to study this effect and for this
purpose, we use the quantum hydrodynamic2 model (self-consistent Hartree equations or Wigner-Poisson equations)
which includes an additional term due to the exchange interaction potential [15, 19].

One class of fundamental plasma waves is low-frequency oscillations in the presence of a magnetic field. These
fluctuations include waves such as magneto acoustic and Alfven and create a section called magneto hydrodynamic
region in the diagram of plasma waves [17, 24, 29]. The existence of these waves has been proven in various plasma
environments and researched under different physical regimes. The dispersion relations related to these waves show
well the coupling between acoustic and compression waves (caused by the conduction related to the electric field). The
existence of these waves has been proven in various plasma environments and has been studied under different physical
regimes [4, 31]. In the research conducted so far in studying the said waves, the plasma environment and its constituent
parts are mostly considered classical or relativistic [3, 10, 13, 18]. On the other hand, it has been more than a decade
that considering the quantum aspects of the components that make up the plasma has revealed the emergence of new
characteristics for some plasma and wave environments and the instabilities in them [9, 14]. Taniuti and Washimi
investigated the instability of nonlinear hydro magnetic waves in cold plasma based on a nonlinear dispersion equation
[30]. Mushtaq et.al using the QMHD model, Qamar studied the magnetic waves in the electron-ion Fermi plasma. In
the linear approximation, the effect of quantum corrections for fast and slow magnetic waves is discussed and it is
found that the results obtained for quantum plasmas are significantly different from classical e-i plasmas [25]. Hussain
et al studied nonlinear magneto-acoustic waves in a homogeneous and non-collision magnetic quantum plasma and
in his research investigated the effects of plasma density and magnetic field intensity on individual magneto acoustic
structures in quantum plasma [16]. Bhakta et al after investigating small-amplitude quantum magneto hydrodynamic
waves and linear instabilities in dense quantum plasma, analyzed fast, slow, and medium QMHD wave modes [5].

The researches that have been done so far about these waves have mostly been done in classical or relativis-
tic regimes. Some cases have been studied to study linear waves in quantum plasma using the quantum magneto
hydrodynamics model, taking into account the quantum Boehm potential without investigating the effect of the ex-
changecorrelation of plasma particles. Investigations show that previous studies lack a case in which the effects of
exchange-correlation and quantum aspects of all plasma components have been studied at the same time, and the
most important novelty of the present work can be considered the addition of these relationships together. Therefore
first, taking into consideration the quantum aspects of a hot and magnetic plasma environment, the set of equations
governing the environment is investigated. Then, while obtaining a kind of generalized scattering relation, the prop-
agation of magnetoacoustic waves is studied. In the end, after making numerical estimates and examining special
cases, the conclusion of the research is presented. Considering the limit states, the results of the present work are
exactly similar to the results of other researchers, and this can be a self-confirmation of the obtained results. On the
other hand, the results obtained for the investigation of nonlinear waves in semiconductor plasma can be strategic and
efficient for researchers in the field of Nonlinear Dynamical Systems.

2 Assumptions and analytical calculations

It is assumed that the plasma environment consists of electrons and holes and the governing equations of the
environment are affected by the forces related to thermal, quantum, and electromagnetic aspects. In addition, it is
assumed that the plasma environment is under the influence of the external magnetic field B0 (aligned with the zaxis)
[11]. In order to analyze the electrodynamic behavior of the considered environment and waves, we recall the first
equations below:

∇× E = −∂B
∂t

, and ∇ · E = 4ΠΣα=e,hqα(nho − ne0) (2.1)

∇×B = ϵ0µ0
∂E

∂t
− 4ΠΣα=e,hqα(nhoVhx − ne0Vex), and ∇ ·B = 0. (2.2)

Using the spatial derivative of Maxwell’s third equation (Faraday’s Law) and the time derivative of Maxwell’s
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fourth equation (generalized Ampere’s Law) we have:

∇×∇× E = ∇× (−∂B
∂t

) ⇒ ∇(∇ · E)−∇2E = ∇× (−∂B
∂t

) (2.3)

∇× (−∂B
∂t

) = ϵ0µ0
∂2E

∂t2
− ∂

∂t
(4ΠΣα=e,hqα(nhoVhx − ne0Vex) ) (2.4)

Considering the Fourier transform for time and space operators (first-order disturbance coefficients corresponding
to exp i(ky − ωt ) , then ∂

∂t = −iω, and ∇ = ik), combining the above two equations, the following relationship is
obtained:

−→
k (

−→
k ·

−→
E ) + k2

−→
E =

iω

ϵ0c2
(4ΠΣα=e,hqα(nhoVhx − ne0Vex) ) +

ω2

c2
−→
E . (2.5)

Assuming that the electromagnetic waves are transverse and assuming that the oscillating electric field effective
on the charge carriers of the environment are along the x-axis, the relationship will be as follows:

ϵ0(ω
2 − c2k2)Ex = −iωΣα=e,hqα(nhoVhx − ne0Vex). (2.6)

In the next calculations, we will use the modified Euler equation to place the velocity components of holes and
electrons. We assume that in the said equation, the forces affecting the movement are Lorentz forces, classical pressure
gradient, Boehm’s quantum, and the exchange-correlation potential:

mαniα
∂Viα
∂t

= qαniα(E + Viα ×B0)−
1

3
V 2
Fiαmα∇niα − ℏ2

4mα
∇[

1
√
niα

∇2√niα]− 2
4
3 q2α

3

√
3

π
3
√
niα∇niα. (2.7)

This equation is the equation of motion of semiconductor plasma components (electrons and holes), where the
index α refers to electrons (e) or holes (h), [22]. qα, mα, and niα are the charge, mass, and equilibrium density of
the αth plasma component, respectively. The first term on the right side of equation (2.7) refers to the Lorentz force
due to the electrostatic potential plus the effect of the external magnetic field. The second term is the force due to
the Fermi pressure, where it is assumed that the semiconductor plasma components obey the Fermi state equation.

Therefore, the term related to the Fermi pressure is defined as Pα = (
mαV 2

Fiα

3n2
i0

)n3iα, where V
2
Fiα = 2KBTFα

mα
is the Fermi

velocity of the αth component of the plasma. The third term describes the phenomenon of quantum tunneling through

the Bohm potential such that Vqα = −( ℏ2

2mα
)
∇2√niα√

niα
, and µα = eℏ

2mα
represents the Bohr magneton. The last sentence

also refers to the quantum potential exchange-correlation [12].

It is assumed that the plasma is anisotropic and exposed to the external magnetic field B0. Also, assuming that
the range of fluctuations is small, we can analyze the system by linearizing the equations governing the environment.
To analyze the dispersion of the system, we use first-order disturbance coefficients corresponding to exp i(ky − ωt ).
Therefore, with the Fourier transform, the disturbed magnetic field is obtained from relation (2.1) as B = −(kEω )ẑ.
According to the continuity equation, the disorder densities of plasma particles take the following form:

∂niα
∂t

+ n0α∇ · Viα = 0 ⇒ niα =
noαk
ω

ŷ · V1α. (2.8)

By applying the Fourier transform to Euler’s Eq. (2.7), we will have:

−iωmαn0αV1α = qαn0α(Ex + V1α ×B0)−
i

3
V 2
Fiαmαn1αkŷ −

iℏ2

4mα
k3n1αŷ − i2

4
3 q2α

3

√
3

π
n

4
3
1αŷ. (2.9)

From the combination of relations (2.8) and (2.9) with a few mathematical operations, we will have:

−iωV1α =
qα
mα

(Ex + V1α ×B0) + ψα(k · V1α)k. (2.10)

In the last relation, the quantity ψα = − i
ω [

ℏ2k2

4mα
+ γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α

π ] is defined, and in the following, the

required speed components of the particles are obtained from relation (2.10) for electrons and holes as follows:{
Vαx = iqα

mαω (Ex + Vαy ×B0)

Vαy = iqα
mαω (−VαxB0

) + k2

ω2 [
ℏ2k2

4m2
α
+ γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α

π ]vαy
⇒ Vαy = ∓ iωcα

ω(1− τα)
Vαx. (2.11)
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From the combination of the above relationships, Vαx is obtained as follows:

Vαx = ± iqα
mαω

Ex(
1− τα

1− τα − ω2
cα

ω2

), ωcα =
q2αB

2
0

m2
α

(2.12)

where

τα =
k2

ω2
[
ℏ2k2

4m2
α

+
γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α
π

]. (2.13)

With the assumption of ω ≪ ωcα and the definition of cyclotron frequency, the relation (2.12) can be written as
follows:

Vαx = ± iqα
mαω

Ex
ω2

ω2
cα

(1− τα). (2.14)

By placing the obtained velocities (2.14) for electrons and holes in the relation (2.6), the general dispersion relation
is obtained as follows:

ω2 − c2k2 =
iqαn0αω

ϵ0
[
iqα
mαω

(
1− τα

1− τα − ω2
cα

ω2

) +
ik2

ωB2
0

(
γαKBTFα

mαqα
+

2
4
3 q3α
mα

3

√
3n1α
π

) +
iℏ2k4

4m2
αωqαB

2
0

]. (2.15)

The obtained equation, according to the definition of Alfven speed V 2
Aα = Σα=e,h

B2
0

mαn0α
and plasma frequency

ω2
pα =

n0αq2α
ϵ0mα

and with a little mathematical operation, is converted as follows:

ω2
pα(1− τα) = [ω2 − c2k2(1 +

ℏ2k2

4m2
α
+ γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α

π

V 2
Aα

)][(1− τα)−
ω2
cα

ω2
]. (2.16)

In the next step, by inserting the representative expression τα in relation (2.16), it is obtained:

ω4 − ω2(ω2
cα + c2k2ω2

pα + δc2k2 + ϵ) + δc2k2ω2
cα + ϵ(δc2k2 + ω2

pα) = 0. (2.17)

In order to shorten the above relationship, the following parameters are defined:

δ = 1 + (

ℏ2k2

4m2
α
+ γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α

π

V 2
Aα

), andϵ = k2(
ℏ2k2

4m2
α

+
γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α
π

). (2.18)

Considering the complexity of the obtained expression, we use a suitable approximation for simplification, for this

purpose we ignore the expression (1− τα) compared to
ω2

cα

ω2 .

[ω2 − c2k2(1 +

ℏ2k2

4m2
α
+ γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α

π

V 2
Aα

)] = −
ω2
pα

ω2
cα

[ω2 − k2(
ℏ2k2

4m2
α

+
γαKBTFα

mα
+

2
4
3 q2α
mα

3

√
3n1α
π

)]. (2.19)

To present a better form Eq. (2.19), we use the definition of acoustic velocity V 2
sα = Σα=e,h

γαKBTFα

mα
, and

ω2
pα

ω2
cα

= c2

V 2
Aα

, finally the relationship is rewritten as follows:

ω2(c2 + V 2
Aα) = c2k2(V 2

sα + V 2
Aα +

ℏ2k2

4m2
α

+
2

4
3 q2α
mα

3

√
3n1α
π

). (2.20)

The obtained expression expresses the sputtering relationship in plasma, which is obtained in a general state by
considering quantum, thermal, and magnetic field effects. The last two attacks on the right side of the equation show
well the effect caused by the quantum Boehm potential and the exchange-correlation potential on the scattering of
waves in the plasma medium. In addition, in the next section, it will be shown that the special cases of this equation
will lead to what results.
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3 Discussion and review

In this section, in order to have a better understanding of the obtained results, we examine the special cases in
equation (2.20).

1. Cold quantum and magnetic plasma state

In this case and in the absence of temperature effects, i.e. Σα=e,hTFα → 0, equation 20 becomes as follows:

ω2(c2 + V 2
Aα) = c2k2(V 2

Aα +
ℏ2k2

4m2
α

+
2

4
3 q2α
mα

3

√
3n1α
π

). (3.1)

This relationship can be called the modified Alfven wave representative and is affected by quantum effects.

2. Classical plasma

In the absence of quantum effects (ℏ → 0), equation (2.20) is rewritten as follows:

ω2(c2 + V 2
Aα) = c2k2(V 2

sα + V 2
Aα +

2
4
3 q2α
mα

3

√
3n1α
π

). (3.2)

As we know, this relationship is related to a non-scattering magneto-acoustic wave in which
2

4
3 q2α
mα

3

√
3n1α

π is collected,

this wave is propagated perpendicular to the magnetic field in the classical environment [20, 23]. As can be seen from
the relationship, the phase speed of this magnetosonic mode is greater than the Alfven speed, which is why it is usually
called a fast hydromagnetic wave.

3. Classical plasma state in the absence of magnetic field

In the absence of quantum and magnetic effects (ℏ → 0, and B0 → 0), equation (2.20) becomes as follows:

ω2 = k2(V 2
sα +

2
4
3 q2α
mα

3

√
3n1α
π

). (3.3)

This relationship is the scattering relationship of the acoustic wave, in which case the magnetoacoustic wave
becomes a normal acoustic wave. From the results and discussion presented so far, the effects of considering thermal,
quantum and magnetic field aspects on the scattering relationship and especially the effect of quantum considerations
on the scattering of waves are obvious.

4 Conclusion

In this article, the propagation of magneto acoustic waves in a semiconductor quantum plasma environment was
investigated. For this purpose, a set of quantum fluid equations, including Maxwell’s equations, fluid equations
of motion, and continuity, were used to obtain a generalized dispersion relation for the desired waves. The relations
obtained (Eq. (2.20)) show a more complex form than the classical state and include effects arising from the application
of quantum forces. Due to the complexity of the relationship obtained, the special modes of wave propagation were
discussed separately and compared with the classical mode. Previous results in this field are also retrieved. In
semiconductor quantum plasma, scattering effects are due to charge separation between electrons and holes, quantum
repulsion, nonlinearities due to large amplitude electrostatic potential, quantum degeneracy pressure, and correlation
7 exchange interaction. Also, according to the result related to the scattering of waves, it is also affected by the
quantum aspects of plasma. On the contrary, the examination of more specific modes showed that they have the
same scattering state in the waves as the classical mode. In addition, the external magnetic field also increases
the frequency of magneto-acoustic waves in the quantum semiconductor plasma under investigation. Consciously,
the examination of the limit states showed that the resulting generalized relation in special states will represent the
modified quantum Alfven wave, the modified classical Alfven wave, and the ordinary acoustic wave, respectively.
Propagation under different angles of the magneto-acoustic waves with respect to the external magnetic field can be a
problem of interest, but is beyond the scope of the present research and is left for future work. The present results may
be useful for understanding the scattering properties of magneto-acoustic wave oscillations that may be propagated
at the plasmavacuum interface in electron-hole semiconductor plasmas or in solid density plasma with a numerical
density of nj0 = 1026m3 and a magnetic field strength B0 = 1− 2T [1, 7].
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