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Abstract

In this study, at first a new polynomial rank transmutation is proposed. Then, a new cubic rank transmutation is
introduced by simplifying the set of transmutation parameters in order to improve its usefulness in statistical modeling.
The probability density function, moment generating function, survival and hazard rate functions of cubic rank
transmuted distribution are examined. Moreover, existence of stochastic, hazard rate and likelihood ratio orderings
are investigated with respect to the baseline distribution. The processes of estimating of the parameters with maximum
likelihood and EM algorithm are mentioned. The modeling performance of the distribution is showed by considering
real data sets obtained from different areas.
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1 Introduction

In this study, we inspire the quadratic rank transmutation map (QRTM) proposed by [24]. The mapping is given as

u→ u+ λu (1− u) (1.1)

where u ∈ [0, 1] and λ ∈ [−1, 1]. Using this transmutation many distributions have been derived and still continue to
be derived. Beside this, there are also some studies on the modifications of the QRTM. Some of the pioneering works
on proposing modified QRTM can be given as follows: [8] proposed a new Weibull distribution by using exponentiated
QRTM. [3] generated a new distribution family by considering exponentiated distribution as the baseline distribution.
[17] studied a new distribution by taking the baseline distribution as exponentiated exponential distribution. [9]
introduced transmuted exponentiated modified Weibull distribution, and [4] introduced transmuted exponentiated
Lomax distribution. The last three studies can be seen as a special case of [3]. [15] introduced a new transmutation
map by adding extra two parameters to get more flexible distribution. Then, [16] introduced a new Lindley distribution
by using this new transmutation map approach. [7] introduced a kind of generalization of QRTM by considering sum of
k- dimensional vector of transmutation parameters. There are two similar studies which are the generalized transmuted
G family by [20] and generalized transmuted Weibull distribution by [21]. Also, by taking into account recent works,
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[23] introduced a new distribution named as transmuted generalized Gamma distribution. They use QRTM to generate
this distribution family.

In this study, a new polynomial rank transmutation is proposed additionally to [25]. Since the parameter set is still
complex, a new cubic rank transmutation is introduced in the light of the idea behind QRTM. In our study, since an
extra transmutation parameter is added, the distribution has become more flexible. Statistical and reliability properties
of the cubic rank transmuted distribution are examined in general. In particular, we examine some mathematical and
statistical properties by taking the baseline distribution as exponential distribution. In order to demonstrate the
usefulness of the gained flexibility of the distribution family, illustrative examples are given on the real data sets in
the application section.

2 Motivation

[25] proposed polynomial rank transmutation map to demonstrate Skew-kurtotic transmutations. Figure 3 of [25]
indicates that admissible parameter region. However this region is quite complex structure, the points on Figure 5 of
them show some special cases related to family of order statistics up to 3-sized sample. Under the leadership of this
idea, we propose a new polynomial rank transmutation to get simpler structure of parameter region. Let G(u) stand
for the polynomial rank transmutation defined on [0, 1]. Then, we have

G(u) = u+ λ1u (1− u) + λ2u
2 (1− u) (2.1)

with G(0) = 0 and G(1) = 1. Note that, λ1 and λ2 are the transmutation parameters. Parameter region will be
defined with following discussion. Since G should be non-decreasing, non-negativity of the first derivative of G with
respect to u is examined. Thus, the shape of the parameter region is determined. By calling this derivative with g,
we have

g (u, λ1, λ2) = −3λ2u
2 − 2u (λ1 − λ2) + (1 + λ1) . (2.2)

Non-negativity of g (u, λ1, λ2) at the end-points, namely the inequalities g (0, λ1, λ2) = 1+λ1 ≥ 0 and g (1, λ1, λ2) =
1− λ1 − λ2 ≥ 0 both requires that

λ1 ≥ −1 λ1 + λ2 ≤ 1. (2.3)

From these two inequalities, it is clear that λ2 ≤ 2. When the eq. (2.2) is taken into account, g (u, λ1, λ2) is a
concave function for λ2 ∈ (0, 2]. As long as the inequality (2.3) is valid, g (u, λ1, λ2) will take non-negative values. For
λ2 ≤ 0, we will investigate the sufficient conditions on non-negativity of g (u, λ1, λ2). In this case, g (u, λ1, λ2) has a
minimum point since it is a convex function. If this minimum point is within (0, 1), the value at that point of the
function g (u, λ1, λ2) must be positive. Accordingly, the minimum point is obtained by taking the derivative of the eq.
(2.2) and equating them to zero as follows:

g′ (u, λ1, λ2) = −6λ2u− 2 (λ1 − λ2) = 0 ⇒ u∗ =
− (λ1 − λ2)

3λ2
. (2.4)

Then, the value of g (u, λ1, λ2) at u
∗ must satisfy

g

(
− (λ1 − λ2)

3λ2
, λ1, λ2

)
=
λ21 + λ1λ2 + λ2 (3 + λ2)

3λ2
≥ 0. (2.5)

Hence, it is necessary to say that the value of the numerator in (2.5) is non-positive. If this statement given by
the numerator is considered as a second order polynomial of λ1, the roots are given by

λ11,2 =
−λ2 ±

√
−3λ2 (λ2 + 4)

2
. (2.6)

Here, we can say that the condition −4 ≤ λ2 must also occur in order for the roots to be real valued. Thus, under
the condition −4 ≤ λ2 < 0, we have bounds for λ1 as follows:

−λ2 −
√
−3λ2 (λ2 + 4)

2
≤ λ1 ≤

−λ2 +
√
−3λ2 (λ2 + 4)

2
. (2.7)
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For these bounds, the numerator in (2.5) has a negative sign. This leads to the following conclusion: The range
of λ1 is as in (2.7) for λ2 ∈ [−4, 0). However, the minimum value of the lower bound in (2.7) can be −1, while the
maximum value of the upper bound can be 3. From this we can say that the range of λ1 is [−1, 3]. Thus, combining
this results, the parameter region for (λ1, λ2) appears as shown in the Figure 1.
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Figure 1: Valid parameter set (ellipsoid and triangle on the right-side )

By considering this parameter set of (λ1, λ2), many well defined distributions are generated from the eq. (2.1)
with the baseline distribution F . Now, let’s get a map of the integer values of the pair (λ2, λ1) to see the known
distributions tabulated in Table 1.

Table 1: Some generated distributions according to special cases for the parameter values

λ2 λ1 Some Generated Distributions λ2 λ1 Some Generated Distributions
−4 2 4F 3 − 6F 2 + 3F −1 0 F 3 − F 2 + F
−3 0 3F 3 − 3F 2 + F −1 1 F 3 − 2F 2 + 2F
−3 1 3F 3 − 4F 2 + 2F −1 2 F 3 − 3F 2 + 3F*
−3 2 3F 3 − 5F 2 + 3F 0 −1 F 2*
−3 3 3F 3 − 6F 2 + 4F 0 0 F*
−2 0 2F 3 − 2F 2 + F 0 1 2F − F 2*
−2 1 2F 3 − 3F 2 + 2F 1 −1 2F 2 − F 3*
−2 2 2F 3 − 4F 2 + 3F 1 0 F 2 + F − F 3*
−1 −1 F 3* 2 −1 3F 2 − 2F 3*

The distributions specified by the star in Table 1 are described below how they correspond to some known failure
distributions.

Let Xr:n be the rth order statistic in a sample of size n. By noting that, for λ1 = −1, λ2 = −1 generated
distribution indicates the failure distribution of the lifetime of three-component parallel system, namely, this dis-
tribution indicates the distribution of the random variable X3:3 = max {X1, X2, X3} where X1, X2 and X3 are in-
dependent and identically distributed as F . Similarly, for λ1 = 2, λ2 = −1 generated distribution indicates the
distribution of the random variable X1:3 = min {X1, X2, X3}. For λ1 = −1, λ2 = 1 generated distribution indicates
the distribution of max {X1,min {X2, X3}}. For λ1 = 0, λ2 = 1 generated distribution indicates the distribution
of min {X1,max {X2, X3}}. For λ1 = −1, λ2 = 2 generated distribution indicates the failure distribution of the
lifetime of the three-out- of- two system, namely, this distribution indicates the distribution of the random variable
X2:3 = max {min {X1, X2} ,min {X1, X3} ,min {X2, X3}}. On the other hand, for λ1 = −1, λ2 = 0 generated distri-
bution indicates the failure distribution of the lifetime of the two-component parallel system, namely distribution of
X2:2 = max {X1, X2}. For λ1 = 1, λ2 = 0 generated distribution indicates the failure distribution of the lifetime of
the two-component series system, namely distribution of X1:2 = min {X1, X2}.

In this case, in addition to the known distributions introduced by the quadratic transmutation, more informative
distribution functions occur. However, the set of the transformation parameters of the proposed cubic transmutation
is still complicated. In order to eliminate of this complexity, by referring to the concept of reliability evaluation of
coherent system by using signature (see, [10, 11]), we come up with an idea inspired by both works of [24] and [29] as
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follows:
Pr (X2:2 ≤ t) = Pr (max {X1, X2} ≤ t) = F 2 (t)

and
Pr (X1:2 ≤ t) = Pr (min {X1, X2} ≤ t) = 2F (t)− F 2 (t)

where F (t) indicates the failure distribution of the component lifetime, namely, Pr (X1 ≤ t) = F (t). Hence there
exists a stochastic ordering relation such as X1:2≺stX≺stX2:2. In this case, these three failure distributions can be
ordered as F 2 (t) ≤ F (t) ≤ 2F (t) − F 2 (t). From the latter inequality, we can say that F (t) is represented by a
convex combination of 2F (t) − F 2 (t) and F 2 (t) where the value of the combination parameter is 1

2 . On the other
hand, it is possible to obtain many distributions besides F . Let G stand for the distribution obtained by this convex
combination. Then, for δ ∈ [0, 1], we have

G (t) =δ
(
2F (t)− F 2 (t)

)
+ (1− δ)

(
F 2 (t)

)
=2δF (t) + (1− 2δ)F 2 (t) . (2.8)

Here, the combination parameter is reparametrized by taking δ = 1+λ
2 to attain quadratic rank transmutation.

Now, the new parameter λ takes the values in [−1, 1]. As can be seen immediately, λ = 0 corresponds to δ = 1
2 . In

eq. (2.8), substituting δ by λ, we have
G (t) = (1 + λ)F (t)− λF 2 (t) . (2.9)

The above expression is the quadratic rank transmutation proposed by [24]. Now, we concentrate on 3-component
systems with similar thinking. Let X1, X2 and X3 be independent random variables distributed as F . Let Xr:3 denote
rth order statistic of (X1, X2, X3) with corresponding distribution Fr:3. Then we have

F3:3 (t) = Pr (X3:3 ≤ t) = Pr (max {X1, X2, X3} ≤ t) = F 3 (t) (2.10)

F2:3 (t) = Pr (X2:3 ≤ t)

= Pr (max {min {X1, X2} ,min {X1, X3} ,min {X2, X3}} ≤ t)

= 3F 2 (t)− 2F 3 (t)

(2.11)

F1:3 (t) = Pr (X1:3 ≤ t) = Pr (min {X1, X2, X3} ≤ t)

= 3F (t)− 3F 2 (t) + F 3 (t) .
(2.12)

According to [29], the properties F3:3 ≤ F2:3 ≤ F1:3 and F = 1
3F3:3 +

1
3F2:3 +

1
3F1:3. are hold. In other words, F

can be represented by a convex combination of F1:3, F2:3 and F3:3. On the other hand, there is also an ordering for F
such that F3:3 ≤ F ≤ F1:3. If F2:3 is also included in this ordering, we have for F ≥ 1

2 , F3:3 ≤ F ≤ F2:3 ≤ F1:3 and for
F < 1

2 , F3:3 ≤ F2:3 ≤ F ≤ F1:3. Hence, we can suggest a convex combination to cover both ordering situations. Our
aim is to determine exactly where F is. In this case, we can write the following convex combination obtained by F1:3

and F2:3, called as G∗.
G∗ = δ1F1:3 + (1− δ1)F2:3 (2.13)

where δ1 ∈ [0, 1] . Now, let’s write a convex combination between G∗ and F3:3. Denoting this convex combination by
G, we have

G = δ2G
∗ + (1− δ2)F3:3 (2.14)

where δ2 ∈ [0, 1]. Combining with the equations (2.13) and (2.14), we obtain G as

G = δ2δ1F1:3 + δ2 (1− δ1)F2:3 + (1− δ2)F3:3. (2.15)

If the notation F is used for the representation of Fr:3, and rearranging with respect to polynomial degree of F ,
the following expression is obtained:

G = δ2δ1
(
3F − 3F 2 + F 3

)
+ δ2 (1− δ1)

(
3F 2 − 2F 3

)
+ (1− δ2)F

3

= 3δ1δ2F + 3δ2 (1− 2δ1)F
2 + (1− 3δ2 + 3δ1δ2)F

3.
(2.16)
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Undoubtedly, G is a distribution function. However, reparameterization is made on the model in order to achieve
the similar structure of the quadratic rank transmutation. Now, by taking w1 = δ1δ2 and w2 = δ2 − δ1δ2, eq. (2.16)
can be rewritten as follows:

G = 3w1F + 3 (w2 − w1)F
2 + (1− 3w2)F

3 (2.17)

where w1, w2 ∈ [0, 1]. In eq. (2.17), by the reparametrizating as w1 = 1+λ1

3 and w2 = 1+λ2

3 , we have

G = (1 + λ1)F + (λ2 − λ1)F
2 − λ2F

3 (2.18)

where λ1, λ2 ∈ [−1, 2]. Since δ2 = w1 + w2, the parameter set is also constrained by the condition λ1 + λ2 ≤ 1.
Consequently, the parameter set of λ1 and λ2 is presented in a simpler form than the parameter region given in Figure
1. This transmutation defined in eq. (2.18) is called as cubic rank transmutation and transformed distribution G is
named as CRT-F.

As can be seen immediately, CRT-F defines a quadratic rank transmuted distribution at λ2 = 0, and λ1 = λ2 = 0
gives the baseline distribution F . For this reason, CRT-F can be seen as a generalized form of QRT. The parameter
set of λ1 and λ2, which is defined as {(λ1, λ2) : λ1, λ2 ∈ [−1, 2] , λ1 + λ2 ≤ 1} can be figure out in Figure 2.
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Figure 2: Region of the parameter set of CRT-F

Now, referring to the integer values of λ1 and λ2, we can determine the generated distribution functions by the
Table 2.

Table 2: Identifications of CRT-F distribution for special values of transmutation parameters

λ1 λ2 CRT-F Identification
-1 -1 F 3 Distribution of T3:3

-1 0 F 2 Distribution of T2:2

-1 1 2F 2 − F 3 Distribution of max {X1,min {X2, X3}}
-1 2 3F 2 − 2F 3 Distribution of T2:3

0 -1 F 3 − F 2 + F
1
3
F1:3 + 2

3
F3:3

0 0 F Baseline Distribution
0 1 F 2 + F − F 3 Distribution of min {X1,max {X2, X3}}
1 -1 F 3 − 2F 2 + 2F

2
3
F1:3 + 1

3
F3:3

1 0 2F − F 2 Distribution of T1:2

2 -1 F 3 − 3F 2 + 3F Distribution of T1:3

Identifications given in Table 2 show that Table 1 of [25] is included by CRT-F according to special choices of
transmutation parameters. Note that, by taking into account the parameter set of (2.18), the distribution family
CRT-F is different as compared with the families proposed by [12] and [22].
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2.1 Probability Density Function of CRT Random Variable

The pdf of the CRT random variable can be obtained from using the equations (2.18) and (2.15) as follows:

g (t) = f (t)
[
(1 + λ1) + 2 (λ2 − λ1)F (t)− 3λ2F

2 (t)
]

= (1 + λ1) f (t) + (λ2 − λ1) f2:2 (t)− λ2f3:3(t)

=

(
1 + λ1

3

)
f1:3 (t) +

(
1 + λ2

3

)
f2:3 (t) +

(
1− λ1 − λ2

3

)
f3:3 (t)

(2.19)

2.2 Moment Generating Function of CRT Random Variable

The mgf of the CRT random variable can be obtained by using the eq. (2.19) as

MT (v) = (1 + λ1)MX (v) + (λ2 − λ1)MX2:2
(v)− λ2MX3:3

(v)

=

(
1 + λ1

3

)
MX1:3

(v) +

(
1 + λ2

3

)
MX2:3

(v) +

(
1− λ1 − λ2

3

)
MX3:3

(v)
(2.20)

and kth raw moments of CRT random variable can be obtained as

E
[
T k
]
= (1 + λ1)E

[
Xk
]
+ (λ2 − λ1)E

[
Xk

2:2

]
− λ2E

[
Xk

3:3

]
. (2.21)

2.3 Survival Function of CRT Random Variable

The survival function obtained from (2.18) is given by

Ḡ (t) = (1 + λ1) F̄ (t) + (λ2 − λ1) F̄ (t) (1 + F (t))− λ2F̄ (t)
(
1 + F (t) + F 2 (t)

)
= F̄ (t)

[
1− λ1F (t)− λ2F

2 (t)
] (2.22)

2.4 Hazard Rate Function of CRT Random Variable

One of the important characteristics of the life distributions is hazard rate or failure rate function. Using the
equations (2.19) and (2.22) the hazard rate of CRT-F is

rG (t) = rF (t)

[
1 +

λ1 + (2λ2 − λ1)F (t)− 2λ2F
2 (t)

1− λ1F (t)− λ2F 2 (t)

]
= rF (t)

[
3 +

−2 + λ1 + (λ1 + 2λ2)F (t)

1− λ1F (t)− λ2F 2 (t)

]
= rF (t)

[
1 + F̄ (t)

λ1 + 2λ2F (t)

1− λ1F (t)− λ2F 2 (t)

] (2.23)

with rG (0) = (1 + λ1) rF (0) and rG (∞) = rF (∞). Following proposition and theorem provide monotonicity proper-
ties of the hazard rate function of CRT random variable.

Proposition 2.1. The following requirements relate to the monotonicity property of rG (t) according to the baseline
hazard rate.

(a) If rF (t) increases in t with d
dtf(t) ≥ 0, and λ1, λ2 ≥ 0, rG (t) increases in t.

(b) If rF (t) increases in t with d
dtf(t) ≥ 0, and λ2 < 0 and λ1 ≥ 2

√
−λ2, rG (t) increases in t.

(c) If rF (t) increases in t with d
dtf(t) ≤ 0, and λ2 ≥ 0 and λ1 ≤ −2λ2, rG (t) increases in t.

(d) If rF (t) increases in t with d
dtf(t) ≤ 0, and λ2 ≤ 0 and λ1 ≤ −2

√
−λ2, rG (t) increases in t.

(e) If rF (t) decreases in t, and −0.5 ≤ λ2 ≤ 0 and −2λ2 ≤ λ1 ≤
√
−2λ2, rG (t) decreases in t.
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Proof . From 2.22 hazard rate function of G (t) can be written as

rG (t) = rF (t) +
d

dt

[
− log

(
1− λ1F (t)− λ2F

2 (t)
)]
. (2.24)

The first derivation of rG (t) depends on the derivation of hazard rate function of the baseline distribution and the
second derivation of − log

(
1− λ1F (t)− λ2F

2 (t)
)
. Hence, the second derivative of the right hand side statement in

(2.24) is given by

f ′ (t)
λ1 + 2λ2F (t)

1− λ1F (t)− λ2F 2 (t)
+ f2 (t)

2λ2
(
1− λ1F (t)− λ2F

2 (t)
)
+ (λ1 + 2λ2F (t))

2

(1− λ1F (t)− λ2F 2 (t))
2 (2.25)

(a) Positivity of (2.25) is provided. Hence G is also an IHR (Increasing hazard rate) distribution. Monotonicity is
satisfied.

(b) Positivity of first summand in (2.25) is satisfied with λ1 ≥ −2λ2. Besides, the fact that positivity of the

second summand depends on positivity of the expression 2λ2
(
1− λ1u− λ2u

2
)
+ (λ1 + 2λ2u)

2
where u ∈ [0, 1].

Expanding this statement as 2λ22u
2 +2λ1λ2u+ λ21 +2λ2, then this statement is a convex function of u on (0, 1).

In this case, positivity of the value of the function at the minimum point is sufficient for the second summand to

be positive. This function reaches the minimum value of 2λ2 +
λ2
1

2 at u∗ = − λ1

2λ2
. Therefore, it is ensured that

the minimum value is positive as long as the condition λ21 ≥ −4λ2 is satisfied. Combining this condition with
λ1 ≥ −2λ2, the result should not be λ1 < 0. Hence, λ1 ∈

[
2
√
−λ2, 2

]
is provided.

(c) Proof is similar to (b)

(d) Proof is similar to (b)

(e) Negativity of first summand in (2.25) is satisfied with λ1 ≥ −2λ2. Furthermore, negativity of the second
summand depends on negativity of the endpoints of the function ρ (u) = 2λ22u

2 + 2λ1λ2u+ λ21 + 2λ2, u ∈ [0, 1]
since ρ (u) is a convex function of u. Here, both ρ (0) = λ21+2λ2 ≤ 0 and ρ (1) = 2λ22+2λ1λ2+λ

2
1+2λ2 ≤ 0 must be

satisfied. This results yields that first condition is λ1 ≤
√
−2λ2 and the second is 0 ≤ λ1 ≤ −λ2+

√
−λ2 (2 + λ2).

By combining these conditions with λ1 ≥ −2λ2, bounds for λ1 can be achieved as max {0,−2λ2} ≤ λ1 ≤
min

{√
−2λ2,−λ2 +

√
−λ2 (2 + λ2)

}
and then −2λ2 ≤ λ1 ≤

√
−2λ2 is provided.

□

The following theorem relates to the monotonicity of the hazard rate according to λ1 and λ2.

Theorem 2.2. rG(t; Θ) is a nondecreasing function in λ1 and λ2. Here Θ is a parameter set and defined by{(
θ˜, λ1, λ2) :∈ Rk, λ1, λ2 ∈ [−1, 2] , λ1 + λ2 ≤ 1

}
.

Proof . From the last equality in (2.23) the sign of ∂rG(t;Θ)
∂λj

is related to the sign of ∂
∂λj

ψ (λ1, λ2) for j = 1, 2 where

ψ (λ1, λ2) =
(

λ1+2λ2u
1−λ1u−λ2u2

)
. Hence, we have the following expressions:

∂

∂λ1
ψ (λ1, λ2) =

1 + λ2u
2

(1− λ1u− λ2u2)
2 ≥ 0

and
∂

∂λ2
ψ (λ1, λ2) =

u (2− λ2u)

(1− λ1u− λ2u2)
2 ≥ 0.

□

Following theorem is about stochastic, hazard rate and likelihood ratio orderings between CRT random variable,
T and the baseline random variable, X.

Theorem 2.3. Following orderings hold by T and X according to transmutation parameters λ1 and λ2.

(a) λ2 ≤ 0 and λ1 + λ2 ∈ [0, 1] or λ2 > 0 and λ1 > 0⇒ T is stochastically smaller than X , i.e., T≤stX,
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(b) λ2 ≤ 0 and λ1 ≤ 0 or λ2 > 0 and λ1 + λ2 ∈ [−2, 0) ⇒ X is stochastically smaller than T , i.e., X≤stT ,

(c) λ2 ≤ 0 and λ1 ≥ −2λ2 or λ2 > 0 and λ1 > 0⇒ T is smaller than X in the hazard rate order, i.e., T≤hrX,

(d) λ2 ≤ 0 and λ1 ≤ 0 or λ2 > 0 and λ1 < −2λ2⇒ X≤hrT ,

(e) λ2 ≤ 0 and λ1 ≤ λ2 or λ2 ∈
(
0, 12

]
and λ1 < −2λ2⇒ X is smaller than T in the likelihood ratio order, i.e.,

X≤lrT ,

(f) λ2 ≥ 0 and λ1 ≥ λ2 or λ2 < 0 and λ1 > −2λ2⇒ T≤lrX.

Proof .

(a) From the equation (2.22) the sign of λ1+λ2u indicates this ordering is valid or not. Hence, for λ2 ≤ 0 positivity
of λ1+λ2u which depends on λ1+λ2 ≥ 0 guarantiates F̄ ≥ Ḡ. For λ2 > 0, positivity of λ1+λ2u implies λ1 > 0.
This case quarantiates also F̄ ≥ Ḡ.

(b) For λ2 ≤ 0 negativity of λ1 + λ2u which depends on λ1 ≤ 0 guarantiates F̄ ≤ Ḡ. For λ2 > 0, negativity of
λ1 + λ2u implies λ1 + λ2 < 0. This case quarantiates also F̄ ≤ Ḡ.

(c) From the equation (2.24), the sign of λ1 + 2λ2u indicates this ordering is valid or not. For λ2 ≤ 0 positivity of
λ1 + 2λ2u which depends on λ1 ≥ −2λ2 i.e. λ1 + λ2 ∈ [−λ2, 1] guarantiates rG ≥ rF . For λ2 > 0, positivity of
λ1 + 2λ2u implies λ1 > 0. This case quarantiates also rG ≥ rF .

(d) Proof is similar to (c).

(e) From the equation (2.19), monotonicity of g(t)
f(t) can be determined by checking of the sign of λ2−λ1− 3λ2u. For

λ2 ≤ 0 positivity of λ2 − λ1 − 3λ2u which depends on λ2 ≥ λ1 guarantiates that g(t)
f(t) is an increasing function

in t . Similarly, for the case λ2 > 0, λ1 < −2λ2 guarantiates increasingness of g(t)
f(t) .

(f) Proof is similar to (e).

□

3 Generating a Random Number from CRT Distribution

In order to generate a random number from CRT-F, let us recall that CRT-F is represented by a mixed distribution
as in eq. (2.15). Here mixing components are lifetime distribution of 3-out-of-3-system, lifetime distribution of 2-out-
of-3-system and lifetime distribution of 1-out-of-3-system, respectively. Mixing weights are respectively 1+λ1

3 , 1+λ2

3

and 1−(λ1+λ2)
3 where λ1, λ2 ∈ [−1, 2] and λ1 + λ2 ∈ [−2, 1]. According to this, we have the following steps to generate

a random number from CRT-F:

Step 1: Three random numbers X1, X2, X3 are independently generated from the baseline distribution F .

Step 2: The random number U is generated from the uniform distribution on (0, 1).

Step 3: If U ≤ 1+λ1

3 , a random number T from G is min {X1, X2, X3}.

Step 4: If U ≤ 2+λ1+λ2

3 , T is max {min {X1, X2} ,min {X1, X3} ,min {X2, X3}}, otherwise T is max {X1, X2, X3}.

Following section is considered the special case of the baseline distribution as an exponential distribution. Pdf,
mgf, raw moments, expected value, variance, skewness and kurtosis are examined. Some reliability characteristics of
CRT-E distribution such as survival, hazard rate and mean residual life functions are discussed. Maximum likelihood
estimation process and Expectation-Maximization (EM) algorithm are proposed for the estimations of the parameters
of the CRT-E distribution.
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4 Special Case: Exponential Baseline

In this section, we assume that the baseline distribution for cubic transformation is exponential distribution. A
brief description of this special distribution, the graphs of the pdf and the hazard rate are given.

4.1 Pdf of CRT-E Random Variable

Let us take the baseline distribution as F (t) = 1 − e−θt, t > 0, θ > 0. Then, using (2.19) we have the pdf of
CRT-E distribution as follows:

g (t;λ1, λ2, θ) = θe−θt
[
1− λ1 − λ2 + 2 (λ1 + 2λ2) e

−θt − 3λ2e
−2θt

]
= (1− λ1 − λ2) θe

−θt + (λ1 + 2λ2) 2θe
−2θt + (−λ2) 3θe−3θt

= (1− λ1 − λ2) fExp(θ) (t) + (λ1 + 2λ2) fExp(2θ) (t) + (−λ2) fExp(3θ) (t)

(4.1)

where, θ > 0, λ1, λ2 ∈ [−1, 2] , λ1 + λ2 ≤ 1. The latter impression above says that the pdf can be expressed as the
arbitrary sums of the exponential pdfs with the parameters θ, 2θ and 3θ. A random variable T having the above pdf
is called as CRT-E random variable. Figure 3 illustrates some of the possible shapes of the pdf of a CRT-E random
variable for the selected values of the parameters λ1 and λ2 for θ = 1.
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Figure 3: Some possible shapes of pdf of CRT-E random variable for θ = 1

4.2 Moment Generating Function and Raw Moments of CRT-E Random Variable

Using the form of the pdf given in (4.1), we have the moment generating function and kth raw moments respectively
as follows:

MT (v) = (1− λ1 − λ2)
θ

θ − v
+ (λ1 + 2λ2)

2θ

2θ − v
− λ2

3θ

3θ − v
, v < θ

E
[
T k
]
= Γ (k + 1)

[
(1− λ1 − λ2)

1

θk
+ (λ1 + 2λ2)

1

2kθk
− λ2

1

3kθk

]
(4.2)
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4.3 Expected Value, Variance, Skewness and Kurtosis of of CRT-E Random Variable

First moment can be obtained by using (4.2) as

E [T ] =

[
(1− λ1 − λ2)

1

θ
+ (λ1 + 2λ2)

1

2θ
− λ2

1

3θ

]
=

1

θ
− λ1

1

2θ
− λ2

1

3θ
.

When λ1 < − 2
3λ2, CRT-E random variable has more long life expectancy than the exponential random variable.

The variance of CRT-E random variable can be obtained as

V ar (T ) =
1

θ2
− 4(1 + λ2)

2
+ 12 (1 + λ1)λ2 + 9(1 + λ1)

2 − 13

36θ2
.

Furthermore, by using some algebraic operations, V ar(T ) lies in an interval [ 1
9θ2 ,

53
36θ2 ]. Now, the skewness co-

efficient of the CRT-E will be compared with the exponential distribution. The coefficient of the skewness of the
exponential distribution is γ = 2, and the skewness coefficient of the CRT-E is obtained as follows:

γ
CRT−E

=
2
(
216− 27λ31 − 114λ2 − 60λ22 − 8λ32 − 27λ21 (3 + 2λ2)− 9λ1

(
9 + 16λ2 + 4λ22

))
[−9λ21 − 6λ1 (3 + 2λ2)− 4 (−9 + 5λ2 + λ22)]

3
2

The lower and upper bounds for γCRT−E can be obtained as 1.3610 ≤ γCRT−E ≤ 4.0549 by taking into account
critical points (λ1, λ2) = (−0.5697,−1) and (λ1, λ2) = (1.8809,−1). According to this bound, CRT-E is a positively
skewed distribution. CRT-E is both positive and negative skewed relative to exponential distribution. The coefficient
of the kurtosis of CRT-E can be given as

κCRT−E = −6

[
1

2
+

(
810λ21 + 1176λ1λ2 + 1620λ1 + 392λ22 + 1960λ2 − 2592

)
(9λ21 + 6λ1 (3 + 2λ2) + 4 (−9 + 5λ2 + λ22))

2

]
.

Accordingly, lower bound is κCRT−E = 6.0017 for (λ1, λ2) = (−0.4108,−1) and upper bound is κCRT−E = 33.1793
for (λ1, λ2) = (1.9209,−1). Since the kurtosis coefficient of the exponential distribution is 9, the CRT-E distribution
exhibits sometimes a tinner tailed distribution, and sometimes a fatter tailed distribution according to exponential
distribution.

4.4 Survival, Hazard Rate and Mean Residual Life Functions of CRT-E Random Variable

From the equation (2.22), the survival function of the CRT-E random variable is obtained as

Ḡ (t) = e−θt
[
1− λ1 − λ2 + (λ1 + 2λ2) e

−θt − λ2e
−2θt

]
where, θ > 0, λ1, λ2 ∈ [−1, 2] , λ1 + λ2 ≤ 1. Using the equation (2.23) the hazard rate of CRT-E is given by

rG (t) = θ

[
3− 2 (1− λ1 − λ2) + (λ1 + 2λ2) e

−θt

(1− λ1 − λ2 + (λ1 + 2λ2) e−θt − λ2e−2θt)

]
.

Figure 4 indicates some possible shapes of the hazard rate function of the CRT-E random variable with respect
to some values of the parameters λ1 and λ2 for θ = 1.
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Figure 4: Some possible shapes of the hazard rate of CRT-E random variable for θ = 1

Other important characteristic of the lifetime random variable is the mean residual life function (mrl) which is
defined by

m(t) = E [T − t |T > t ] =

∞∫
t

Ḡ(z)dz

Ḡ(t)
=

∞∫
t

zg(z)dz

Ḡ(t)
− t.

The mrl function for the CRT-E random variable is given as

m(t) =
1

θ

[
1 +

−3 (λ1 + 2λ2) e
−θt + 4λ2e

−2θt

6 [1− λ1 − λ2 + (λ1 + 2λ2) e−θt − λ2e−2θt]

]
.

with limt→∞m(t) = 1
θ .

4.5 MLE of the Parameters of the CRT-E Distribution

Let t1, t2, ..., tn be a random sample of size n from CRT-E distribution. Log-likelihood function of CRT-E can be
written with respect to the parameter set (λ1, λ2, θ) as follows:

ℓ (λ1, λ2, θ) =

n∑
j=1

log (g (tj ;λ1, λ2, θ))

= n log (θ)− θ

n∑
j=1

tj +

n∑
j=1

log
(
1− λ1 − λ2 + 2 (λ1 + 2λ2) e

−θtj − 3λ2e
−2θtj

)
We have to maximize ℓ with the constraints λ1 + λ2 ≤ 1 and λ1, λ2 ∈ [−1, 2]. Accordingly, partial derivatives of ℓ

on λ1, λ2 and θ can be given by

∂ℓ (λ1, λ2, θ)

∂λ1
= −

n∑
j=1

(
1− 2e−θtj

1− λ1 − λ2 + 2 (λ1 + 2λ2) e−θtj − 3λ2e−2θtj

)
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∂ℓ (λ1, λ2, θ)

∂λ2
= −

n∑
j=1

( (
1− e−θtj

) (
1− 3e−θtj

)
1− λ1 − λ2 + 2 (λ1 + 2λ2) e−θtj − 3λ2e−2θtj

)

∂ℓ (λ1, λ2, θ)

∂θ
=
n

θ
− 3

n∑
j=1

tj + 2

n∑
j=1

tj

(
1− λ1 − λ2 + (λ1 + 2λ2) e

−θtj

1− λ1 − λ2 + 2 (λ1 + 2λ2) e−θtj − 3λ2e−2θtj

)
.

The maximum likelihood estimations of (θ, λ1, λ2) is obtained by equating these equations to zero, and solving this
nonlinear system of equations. It is usually more convenient to use constrained nonlinear optimization algorithms to
maximize the log-likelihood function numerically.

4.6 EM Algorithm for the Estimations of the Parameters of the CRT-E Distribution

According to equation (2.19), pdf of CRT-E random variable can be written as

g (t; θ, ρ1, ρ2, ρ3) = ρ1f1 (t; θ) + ρ2f2 (t; θ) + ρ3f3(t; θ) (4.3)

where ρi’s are positive and ρ1 + ρ2 + ρ3 = 1, and f1 (t; θ) = 3F 2(t; θ)f (t; θ), f2 (t; θ) = 6F (t; θ) (1− F (t; θ)) f (t; θ),

f3 (t; θ) = 3(1− F (t; θ))
2
f (t; θ).

The constrained log likelihood function can be written with respect to the parameter set (ρ1, ρ2, ρ3, θ) as follows:

ℓ (ρ1, ρ2, ρ3, θ) =

n∑
j=1

log (ρ1f1 (tj ; θ) + ρ2f2 (tj ; θ) + ρ3f3(tj ; θ))− ε (ρ1 + ρ2 + ρ3 − 1) .

Accordingly, equating the partial derivatives of ℓ on ρ1, ρ2, ρ3, ε and θ to zero, we have

∂ℓ (ρ1, ρ2, ρ3, θ, ε)

∂ρ1
= 0 ⇒

n∑
j=1

(
f1 (tj ; θ)

g (t; θ, ρ1, ρ2, ρ3)

)
= ε

∂ℓ (ρ1, ρ2, ρ3, θ, ε)

∂ρ2
= 0 ⇒

n∑
j=1

(
f2 (tj ; θ)

g (t; θ, ρ1, ρ2, ρ3)

)
= ε

∂ℓ (ρ1, ρ2, ρ3, θ, ε)

∂ρ3
= 0 ⇒

n∑
j=1

(
f3 (tj ; θ)

g (t; θ, ρ1, ρ2, ρ3)

)
= ε

∂ℓ (ρ1, ρ2, ρ3, θ, ε)

∂ε
= 0 ⇒ ρ1 + ρ2 + ρ3 = 1

∂ℓ (ρ1, ρ2, ρ3, θ, ε)

∂θ
=

n∑
j=1


ρ1f1(tj ;θ)

∂ log f1(tj ;θ)
∂θ

g(t;θ,ρ1,ρ2,ρ3)
+

ρ2f2(tj ;θ)
∂ log f2(tj ;θ)

∂θ

g(t;θ,ρ1,ρ2,ρ3)
+

ρ3f3(tj ;θ)
∂ log f3(tj ;θ)

∂θ

g(t;θ,ρ1,ρ2,ρ3)

 = 0.

The first three equations respectively are multiplied by ρm,(m = 1, 2, 3) and then ε = n is obtained by summing

up them. The probability that the jth observation comes from the mth component is denoted by
ρmfm(tj ;θ)

g(t;θ,ρ1,ρ2,ρ3)
=

P (m |tj ) = Pmj and taking into account fourth equation above we have

ρ̂m =
1

n

n∑
j=1

P (m |tj ), m = 1, 2, ρ̂3 = 1− (ρ̂1 + ρ̂2) .

In this case, the fifth equation becomes as follows:

∂ℓ

∂θ
=

n∑
j=1

(
∂ log f1 (tj ; θ)

∂θ
P1j +

∂ log f2 (tj ; θ)

∂θ
P2j +

∂ log f3 (tj ; θ)

∂θ
P3j

)
= 0. (4.4)
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Now, we find the respective derivative expressions as follows:

∂ log f1 (tj ; θ)

∂θ
=

1

θ
− 3tj +

2tj
1− e−θtj

,
∂ log f2 (tj ; θ)

∂θ
=

1

θ
− 3tj +

tj
1− e−θtj

∂ log f3 (tj ; θ)

∂θ
=

1

θ
− 3tj

If these equations are written in the expression (4.4), we get the following equation

1

θ
− 3t̄+

2

n

n∑
j=1

tj
1− e−θtj

P1j +
1

n

n∑
j=1

tj
1− e−θtj

P2j = 0. (4.5)

Iterative procedure starts with setting initials ρ
(0)
1 , ρ

(0)
2 and θ(0). P

(0)
mj is calculated according to the given initials.

Then, new ρ
(1)
1 and ρ

(1)
2 are calculated. θ(1) is solved from the eq. (4.5) by using P

(0)
mj . Thus, ℓ(1) (ρ1, ρ2, ρ3, θ)

is obtained. According to the iteratively obtained parameter set (ρ1, ρ2, ρ3, θ)
(1)

, P
(1)
mj is calculated. Using the new

recurrence value for the parameter set, ℓ(2) (ρ1, ρ2, ρ3, θ) is obtained. These operations will continue until the difference

ℓ(k) − ℓ(k−1) is smaller than the desired value ζ > 0. Thus, cubic transmutation parameters are estimates as λ̂m =
3ρ̂m − 1, m = 1, 2 and λ̂3 = 1− λ̂1 − λ̂2.

5 Real Data Applications

In this section, modeling success of the CRT-E distribution is considered primarily by exponential distribution and
quadratic transmuted exponential distribution (Data Set 1). In addition, a comparison is made with the appropriate
distributions obtained by considering the application section of Matlab distribution fitting (Data Set 2). Moreover,
modeling examples in the literature are compared with CRT-E for both data sets. In order to see the modeling
performance of the CRT-E, we use the results of Kolmogorov Simirnov goodness-of -fit test and the Akaike Information
Criterion (AIC) which is calculated by using ML estimates of the model parameters.

Data Set 1. (Coal mine accidents data) The data set contains the time intervals (in days) between coal mine accidents
caused death of 10 or more men which is given by 378, 96, 59, 108, 54, 275, 498, 228, 217, 19, 156, 36, 124, 61, 188,
217, 78, 49, 271, 120, 329, 47, 15, 50, 1, 233, 113, 17, 131, 208, 275, 330, 129, 31, 120, 13, 28, 32, 1205, 182, 517,
20, 312, 1630, 215, 203, 189, 22, 23, 644, 255, 1613, 66, 171, 29, 11, 176, 345, 61, 151, 467, 195, 54, 291, 145, 217,
137, 55, 20, 78, 361, 871, 224, 326, 4, 75, 7, 4, 93, 81, 99, 312, 48, 566, 1312, 369, 364, 18, 15, 59, 286, 326, 354,
123, 390, 348, 338, 37, 1357, 72, 315, 114, 275, 58, 457, 72, 745, 336, 19. Firstly, this data set was obtained by [14].
There were lots of models on this data set such as [1] and [13]. They suggested to use Exponential-Geometric (EG)
(K-S= 0.0761) and Exponential-Poisson (EP) (K-S= 0.0625) distributions, respectively. On the other hand, [28] have
proposed two-component mixed exponential distribution (2MED) (K-S=0.0578) for modeling this data set. According
to Table 3, CRT-E distribution has the best fit amongst the other distributions (including the EG, EP and 2MED).

Table 3: ML estimates, K-S statistics and AIC values for Exponential, T-E and CRT-E Distributions (Coal Mine
Accidents Data)

Model
Parameter
Estimations

K-S (p value) -2LL AIC

Exponential θ̂ = 0.0042 0.0906 (0.3129) 1413.6 1415.6
Transmuted-
Exponential

θ̂ = 0.0028
λ̂ = 0.6722

0.0627 (0.7603) 1408.2 1412.2

CRT-E
θ̂ = 0.0019
λ̂1 = 1.7548
λ̂2 = −1.0000

0.0574 (0.8449) 1405.3 1411.3

Data Set 2. (Wheaton river flood data) The data consist of the exceedances of flood peaks (in m3/s) of the Wheaton
River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for the years 1958–1984, rounded
to one decimal place: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5,
14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 14.1, 9.9, 10.4, 10.7,
30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7,
27.5, 2.5, 27.0, 1.9, 2.8. Firstly, these data were analyzed by [6]. Later on, Beta-Pareto (BP) distribution was applied
to these data by [2]. [5] proposed Kumaraswamy Pareto (Kw-P) distribution. [18] made a comparison between Pareto
(P) and Transmuted Pareto (TP) distribution. They showed that better model is the transmuted Pareto distribution.
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[26] have proposed Weibull-Pareto (WP) distribution and made a comparison with Beta Exponentiated Pareto (BEP)
distribution. [19] have proposed a different type of Weibull-Pareto (NWP) distribution. Exponential Modified Discrete
Lindley (EMDL) distribution (K-S=0.1162, AIC=507.6) has been applied to these data by [27]. We fit data to CRT-E,
Transmuted-Exponential distributions and additionally Dagum and Weibull distributions. According to the model
selection criteria (AIC) tabulated in Table 4, CRT-E takes the first place amongst 5 proposed models.

Table 4: ML estimates, K-S statistics and AIC values for Dagum, Weibull, Exponential, T-E and CRT-E Distributions
(Wheaton River Flood Data)

Model
Parameter
Estimations

K-S (p value) -2LL AIC

Dagum
θ̂ = 30.2023
α̂ = 4.7939
k̂ = 0.1265

0.1107 (0.317) 502.3845 508.39

Weibull
θ̂ = 11.6322
β̂ = 0.9012

0.105 (0.377) 502.996 507

Exponential θ̂ = 0.0819 0.1422 (0.098) 504.26 506.26
Transmuted-
Exponential

θ̂ = 0.0755
λ̂ = 0.1668

0.131 (0.155) 503.93 507.93

CRT-E
θ̂ = 0.0945
λ̂1 = 0.3856
λ̂2 = −1.0000

0.074 (0.610) 497.75 503.75

6 Conclusion

In this article, we propose a new version of polynomial rank transmutation. Since the parameter set is still
complex, a new cubic rank transmutation is introduced in the light of the idea behind QRTM technique. We obtain
the probability density and hazard functions of the CRT-F. We derive explicit expressions for the moments and
the moment generating function. The new distribution has an increasing, a decreasing, and non-monotonic hazard
rate function for lifetime data. Some orderings such as stochastic, hazard rate and likelihood ratio orderings are
investigated between the distribution and its baseline distribution. A simple algorithm is given to generate a random
number from CRT-F. Furthermore, we consider that exponential distribution is the baseline distribution. We obtain
the corresponding analytical shapes of the probability density and hazard functions of the CRT-E. We derive explicit
expressions for the moments and the moment generating function. Some discussions on expected value, variance, the
coefficients of skewness and kurtosis of CRT-E with respect to exponential distribution are given. The method of MLE
and EM algorithm to estimate parameters of CRT-E are also discussed. The usefulness of the new model is illustrated
by two applications of real data using MLE. Based on goodness-of-fit measure and AIC, we conclude that the CRT-E
distribution provides best fits to the coal mine accidents data and Wheaton river flood data compared with other
alternatives. We conclude that the proposed cubic transmuted distribution family may attract wider applications in
the analysis of real data.
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