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Abstract

In this research, new representations of basic functions are proposed based on the new types of fuzzy partition and a
subnormal generating function. The generalized uniform fuzzy partitions in subnormal case, i.e. in case a generating
function K is not normal (generalized normal case), and simpler form of fuzzy transform (FzT) components based
on these new representations of the generalized uniform fuzzy partitions are indicated. The main properties of a new
uniform fuzzy partition are suggested. New theorems and lemmas are proved.
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1 Introduction

FzT is depending basically on fuzzy set theory. The fuzzy set theory was coined by [37] with a suitable tool for
modelling the uncertainty phenomenon. The following Ruspini condition

n∑
i=1

Ai = 1, for all x ∈ D.

was proposed by [31]. [21] was proposed the Mamdani’s inference rule by a set of linguistic control rules. Thus, the
author has a modified inference rule and introduced a method to create a Takagi-Sugeno model with fuzzy partition
and linear consequent (rules with consequent being equal to linear expressions) from input-output data [33]. The
Takagi-Sugeno fuzzy system computed as:

f (x) =

∑n
i=1 Ai (x) . (ci + dix)∑n

i=1 Ai (x)

where ci, di are real numbers. A satisfactory approximation by a Takagi-Sugeno fuzzy model can be obtained only
by refining the partition of close interval [7]. Based on the above background, FzT has been established by [28].
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The difference between FzT and Takagi-Sugeno fuzzy model revealed that FzT provides much more flexible and a
satisfactory approximation by leaving partition of close interval unchanged [25].

The core idea of FzT is a fuzzy partition of a universe into fuzzy subsets. The first fuzzy partition of FzT
with the Ruspini condition was introduced by [28] and was extensively investigated by [24]. This condition implies
normality of the fuzzy partition. Also, the fuzzy partition with the generalized Ruspini condition (fuzzy r-partition)
was introduced by [32]. This fuzzy partition was achieved by replacing the partition of unity by fuzzy r-partition.
This type of partition was used by [32] and [13] for smoothing or filtering data based on the inverse FzT. Further, a
generalized fuzzy partition appeared in connection with the notion of the FzT, where FzT components are polynomials
of degree m [27]. By [6], different types of fuzzy partitions are taken into consideration such as B-splines, Shepard
kernels, Bernstein basis polynomials and Favard-Szasz-Mirakjan operators. Later, the higher degree FzT based on
B-splines was proposed [20] to improve the quality of the function approximation of two variables.

A generalized fuzzy partition was implicitly introduced by [15] with the purpose of meeting the requirements of
image compression. Also, a generalized fuzzy partition can also be considered in connection with radial membership
functions [22]. Further, necessary and sufficient conditions for modeling the generalized fuzzy partition was provided
by [12]. Recently, a new representation formula for basic functions of FzT and a new fuzzy numerical method based on
block pulse functions for numerical solution of integral equations were presented by [17]. The approximation method
based on the FzT with Shepard-type basic functions for linear Fredholm integral equations was discussed by [39].
New representations of the generalized uniform fuzzy partitions with the normal case to obtain better approximation
solutions for solving Cauchy problems were appeared by [4, 2, 3].

FzT is a soft computing method has been developed by Perfilieva [24] that has many applications, for example, in
differential and integral equations. FzT for solving ordinary Cauchy problems with one variable was initiated by [28].
Generalization of the Euler method has been discussed by [23] for solving ordinary Cauchy problems. The author has
been applied this technique to reef growth and sea level variations models. Further, FzT has been generalized from
the case of constant components to the case of polynomial components by [27]. Later, the first and second degree
FzT based mid-point rule for solving Cauchy problem and uncertain initial value problem have proposed by [19].
Furthermore, an algorithm to obtain the approximate solutions of second order initial value problems was constructed
by [8]. From this idea, FzT for numerical solutions of two point boundary value problems was proposed by [18].

FzT of two variables based on finite differences method was used by [14] for solving a type of partial differential
equations with Dirichlet boundary conditions and initial conditions. Also, the first degree FzT of two variables was
introduced by [11]. By [29], the partial derivatives using the first FzT were approximated and modification of the
Canny edge detector was proposed. Furthermore, the uniform stability result for the vibrations of a telegraph equation
using FzT of two variables was proposed by [10]. The composition of inverse and direct discrete FzT method was
extended to numerical solution of Fredholm integral equations and Volterra Fredholm integral equations [9]. The
general form of the higher order FzT was constructed by [38] for solving differential and integral equations using
any arbitrary basis functions. The FzT has investigated for solving Volterra population growth model using the
approximation for the Caputo derivative [5]. A new numerical method based FzT was demonstrated to solve a class
of delay differential equations by mean of the Picard-like numerical scheme [34]. FzT was considered to approximate
solution of boundary value problems by minimizing the integral squared error in 2-norm [1]. In [35], the dynamical
properties of a two neuron system with respect to FzT and a single delay have been investigated. The conditions
under which quasi-consensus in a multi-agent system with sampled data based on FzT were proposed by [36].

The motivation of the proposed study comes from [4, 2, 30, 3]. In [4], new fuzzy numerical methods to solve
Cauchy problem was considered and the authors showed that the error can be reduced by FzT and NIM with respect
to new generalized uniform fuzzy partitions, namely power of the triangular and raised cosine generalized uniform fuzzy
partitions, where generating functions are normal (see also [30] for another approach). Also, two basic approximation
methods, modified Euler method and Trapezoidal rule, with help of FzT for solving SODEs are analyzed in detail by
[2, 3]. For this purpose, more generally, new generalized uniform fuzzy partitions are proposed in this study, where a
generating function is not normal.

The membership functions in underlying fuzzy partitions are often called basic functions. There has been a growing
interest in investigating the properties of fuzzy partitions. However, the problem arises on how one can effectively
construct the basic function of fuzzy partitions. In this paper, new representations of basic functions are proposed.
This is achieved by introducing new generalized uniform fuzzy partitions, where a generating function is not normal.

The paper is organized as follows. The main part of the paper is Section 3, new representations of basic functions,
including new representations of the generalized uniform fuzzy partitions in generalized normal case, i.e. in case a
generating function K is not normal, and simpler form of FzT components based on these new representations of the
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generalized uniform fuzzy partitions Later, fuzzy partitions models with the Ruspini condition. Concluding remarks
are summarized in Section 4.

2 Basic Concepts

In this section, we give some definitions and introduce the necessary notation following [26], which will be used
throughout the paper. Throughout this section, we deal with an interval [a, b] ⊂ R of real numbers.

Definition 2.1. (generalized uniform fuzzy partition) Let ti ∈ [a, b] , i = 1, . . . , n, be fixed nodes such that a = t1 <
. . . < tn = b, t0 = t1, tn = tn+1, n ≥ 2 and [ti − h, ti + h] ⊆ [a, b]. We say that the fuzzy sets Ai : [a, b] → [0, 1]
constitute a generalized fuzzy partition of [a, b] if the following conditions are fulfilled:

1. (positivity and locality) – Ai (t) > 0 if t ∈ (ti−1, ti+1) and Ai (t) = 0 if t ∈ [a, b] \ (ti−1, ti+1);

2. (continuity) – Ai is continuous on [ti−1, ti+1];

3. (covering) – for t ∈ [a, b] ,
∑n

i=1 Ai(t) > 0.

Fuzzy sets A1, . . . , An are called basic functions. It is important to remark that by conditions of locality and

continuity,
∫ b

a
Ai(t)dt > 0. A generalized uniform fuzzy partition of [a, b] is defined for equidistant nodes, i.e., for all

i = 1, . . . , n− 1, ti = ti+1 + h, where h = (b− a) / (n− 1) and two additional properties are satisfied,

4. Ai (ti − t) = Ai (ti + t) for all t ∈ [0, h] , i = 2, . . . , n− 1;

5. Ai (t) = Ai−1 (t− h) and Ai+1 (t) = Ai (t− h) for all t ∈ [ti, ti+1] , i = 2, . . . , n− 1;
then the fuzzy partition is called h-uniform generalized fuzzy partition.

Definition 2.2. (generating function) A function K : [−1, 1] → [0, 1] is called a generating function if it is assumed
to be even, continuous and K (t) > 0 if t ∈ (−1, 1). The function K : [−1, 1] → R is even if for all t ∈ [0, 1] , K (−t) =
K (t).

The following definition recall the concept of the generalized fuzzy partition which can be easily extended to the
interval [a, b]. We assume that [a, b] is partitioned by A1, . . . , An, according to Definition 2.1.

Definition 2.3. A h-uniform generalized fuzzy partition of interval [a, b], determined by the triplet (K, h, a), can be
defined using generating function K (Definition 2.2). Then, basic functions of a h-uniform generalized fuzzy partition
are shifted copies of K defined by

Ai (t) = K

(
t− ti
h

)
, t ∈ [ti − h, ti + h] ,

for all i = 1, . . . , n. The parameter h is called the bandwidth or the shift of the fuzzy partition and the nodes ti = a+ih
are called the central point of the fuzzy sets A1, . . . , An.

Remark 2.4. A h-uniform fuzzy partition is called Ruspini if the following condition

Ai (t) +Ai+1 (t) = 1, i = 1, . . . , n− 1, (2.1)

holds for any t ∈ [ti, ti+1]. This condition is often called Ruspini condition.

3 New Representations for Basic Functions of FzT

Let us recall the basic facts of an FzT of a continuous real function f as presented by [23, 24]. The first step in
the definition of the FzT of f involves the selection of a fuzzy partition of the domain [a, b] by a finite number n ≥ 2
of fuzzy sets Bk(t), k = 1, . . . , n. In those papers, five axioms specified Bk(t), k = 1, . . . , n, in the fuzzy partition:
normality, locality, continuity, unimodality (monotonicity) and orthogonality (Ruspini condition). A fuzzy partition
is called uniform if the fuzzy sets Bk(t), k = 2, . . . , n − 1, are shifted copies of symmetrized B1 (More details can
be found in [23]). The membership functions Bk(t), k = 1, . . . , n, in a fuzzy partition are called basic functions.
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Later, a generalized fuzzy partition appeared in connection with the notion of a higher-degree FzT [27]. Furthermore,
summarize both these notions in [26]. Three axioms specify Bk(t), k = 1, . . . , n, in the fuzzy partition: positivity
and locality, continuity and covering. Recently, the different conditions for generalized uniform fuzzy partitions was
proposed [12, 26] while another approach was demonstrated by [30] where a function can be reconstructed from its
F-transform components. In the following, we modify the definition h-uniform generalized fuzzy partition.

3.1 Generalized Uniform Fuzzy Partitions with the Generalized Normal Case

Let us recall the h-uniform generalized fuzzy partition of real line can be defined using generating function K.
Then, basic functions of the h-uniform generalized fuzzy partition are shifted copies of K. On the basis of Definition
2.1 can be also defined using a generating function λβK(t) where β = 1/K(0), K(0) ̸= 0, β > 0 and λ > 0 (in general,
not necessarily satisfy normal and Ruspini condition) which is that K(t) assumed to be even, continuous and K (t) > 0
if t ∈ (−1, 1). Therefore, we will modify the basic functions of the h-uniform generalized fuzzy partition are shifted
copies of λβK defined by

Ak (t, t0) = λβK

(
t− t0
h

− k

)
, t ∈ [tk − h, tk + h] , k ∈ Z. (3.1)

The parameter h is bandwidth of the fuzzy partition and t0+kh = tk. The concept of the h-uniform generalized fuzzy
partition can be easily extended to the interval [a, b] as follows.

Definition 3.1. Let t1 < . . . < tn be fixed nodes within [a, b] ⊂ R, such that t1 = a, tn = b and n ≥ 2. We consider
nodes t1, . . . , tn are equidistant, with distance (shift) h = (b− a) / (n− 1). A system of fuzzy sets B1, . . . , Bn :
[a, b] → [0, 1] be a generalized uniform fuzzy partitions of [a, b] if it is defined by

Bk (t) =

{
Ak(t, a), t ∈ [a, b] ,

0, otherwise.
=

{
λβK

(
t−tk
h

)
, t ∈ [a, b] ,

0, otherwise.
(3.2)

where tk = a+ (k − 1)h, β = 1/K(0), K(0) ̸= 0, β > 0 and λ > 0. In the sequel, a generating function denote by K
and basic functions of FzT denote by Bk, k = 1, . . . , n.

Lemma 3.2. If basic functions Bk, k = 1, . . . , n, of a h-uniform generalized fuzzy partition are shifted copies of λβK
defined by (3.2). Then, for each k = 1, . . . , n, Bk(tk) = λ, tk ∈ [tk − h, tk + h].

Proof . By (3.2), we get Bk (tk) = λβK
(
tk−tk

h

)
= λ. □

3.2 Simpler form of F-transform Components Based on Generalized Uniform Fuzzy Partitions with
the Generalized Normal Case

In this subsection, we present the main principles of FzT with respect to new representations of h-uniform gener-
alized fuzzy partition. Further, we will show that FzT components with respect to new representations of h-uniform
generalized fuzzy partition can be simplified and approximated of an original function, say f .

Definition 3.3. Let f be a continuous function on [a, b] and Bk(t), k = 1, . . . , n, be h-uniform generalized fuzzy
partition of [a, b], n ≥ 2. A vector of real numbers F [f ] = (F1, F2, . . . , Fn) given by

Fk =

∫ b

a
f (t)Bk(t) dt∫ b

a
Bk(t) dt

, (3.3)

for k = 1, . . . , n is called the direct FzT of f with respect to Bk.

In the following, we will simplify the representation (3.3).

Lemma 3.4. Let f ∈ C ([a, b]) and according to Definition 3.1, fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, be a h-uniform
generalized fuzzy partition of [a, b] with a generating function K, then representation (3.3) of direct FzT can be
simplified for k = 1, . . . , n as follows

Fk =

∫ 1

−1
f (th+ tk)K(t) dt∫ 1

−1
K(t) dt

=

∫ h

−h
f (t+ tk)K( t

h ) dt∫ h

−h
K( t

h ) dt
. (3.4)
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Proof . By Definition 3.1, we get

Bk (t) = λβK

(
t− tk
h

)
, t ∈ [tk − h, tk + h] ,

for k = 1, . . . , n ,t0 = t1, tn+1 = tn , and substituting u = t−tk
h and then substituting t = s/h. Thus, we get∫ tk+1

tk−1

f (t)Bk(t) dt = λβh

∫ 1

−1

f (th+ tk)K(t) dt = λβ

∫ h

−h

f (t+ tk)K(
t

h
) dt,

∫ tk+1

tk−1

Bk(t) dt = λβh

∫ 1

−1

K(t) dt = λβ

∫ h

−h

K(
t

h
) dt,

and its corresponding results with representation (3.3). □

If λ > 0, the lemma 3.2 still hold by choosing suitable constant λ, satisfying λ = 1/
(∫ 1

−1
βK(t)dt

)
, where∫ 1

−1
βK(t)dt > 0. So, we will restrict ourselves to h-uniform generalized fuzzy partition with 0 < λ = 1/

(∫ 1

−1
βK(t)dt

)
,

where
∫ 1

−1
βK(t)dt ̸= 0. In the following, we will simplify the above given expressions for the coefficients F [f ] =

(F1, F2, . . . , Fn) in the representation (3.3). This fact is very important for applications which are more flexible and
consequently easier to use.

Corollary 3.5. Let the assumptions of Lemma 3.4 be fulfilled and 0 < λ = 1/
(∫ 1

−1
βK(t)dt

)
, where

∫ 1

−1
βK(t)dt ̸= 0.

Then, the coefficients F [f ] = (F1, F2, . . . , Fn) in the expression (3.3) of the FzT component Fk of f as follows:

Fk =
1

h

∫ b

a

f (t)Bk(t) dt =
λβ

h

∫ b

a

f (t)K

(
t− tk
h

)
dt, (3.5)

for k = 1, . . . , n, where interval [a, b] is partitioned by the h-uniform generalized fuzzy partition B1, . . . , Bn.

Proof . Let k ∈ {1, . . . , n} and consider set of fuzzy sets Bk(t) be the h-uniform generalized fuzzy partition of [a, b]
defined by (3.2). Using the proof of Lemma 3.4, we get∫ tk+1

tk−1

Bk(t) dt =

∫ tk+1

tk−1

Ak(t, a), dt =

∫ tk+h

tk−h

λβK

(
t− tk
h

)
dt = hλ

∫ 1

−1

βK (t) dt = h, (3.6)

where 0 < λ = 1/
(∫ 1

−1
βK(t)dt

)
,
∫ 1

−1
βK(t)dt ̸= 0, h is bandwidth of the fuzzy partition and tk = a + (k − 1)h and

then its corresponding in the expression (3.3). □

Lemma 3.6. Let f ∈ C [a, b]. Then for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε be basic functions form
the h-uniform generalized fuzzy partition of [a, b]. Let Fk, k = 1 . . . , n, be the integral FzT components of f with
respect to B1, . . . , Bnε

. Then for each k = 1 . . . , nε − 1 the following estimations hold: |f(t)− Fi| ≤ ε for each
t ∈ [a, b] ∩ [tk, tk+1] and i = k, k + 1.

Proof . see [24]. □

Corollary 3.7. Let the conditions of Lemma 3.6 be fulfilled. Then for each k = 1 . . . , nε−1 the following estimations
hold: |Fk − Fk+1| < ε.

Proof . According to [24, 16], let t ∈ [a, b] ∩ [tk, tk+1]. Then by Lemma 3.6, for any k = 1, . . . , n− 1 we obtain

|f (t)− Fk| < ε/2 and |f (t)− Fk+1| < ε/2.

Thus,

|Fk − Fk+1| ≤ |f (t)− Fk|+ |f (t)− Fk+1| <
ε

2
+

ε

2
= ε.

□

The following theorem estimates the difference between the original function and its direct FzT with respect to
the h-uniform generalized fuzzy partition.
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Theorem 3.8. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 3.4 be fulfilled. Then for k = 1, . . . , n

Fk = λf (tk) +O
(
h2

)
, (3.7)

where 0 < λ = 1/
(∫ 1

−1
βK(t)dt

)
and

∫ 1

−1
βK(t)dt ̸= 0.

Proof . By locality condition of definition of h-uniform generalized fuzzy partition, Corollary 3.5, Lemma 3.2, and
according to [23], using the trapezoid formula with nodes tk−1, tk, tk+1 to the numerical computation of the integral,

we get for k = 1, . . . , n and 0 < λ = 1/
(∫ 1

−1
βK(t)dt

)
Fk =

1

h

∫ tk+1

tk−1

f (t)Bk(t) dt,

=
1

h

h

2
(f (tk−1)Bk(tk−1) + 2f (tk)Bk(tk) + f (tk+1)Bk(tk+1)) +O

(
h2

)
,

= f (tk)Bk(tk) +O
(
h2

)
= λf (tk) +O

(
h2

)
. (3.8)

□

Corollary 3.9. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 3.4 be fulfilled. Let moreover, f be Lipschitz
continuous with respect to t, i.e. there exists a constant L ∈ R, such that for all t ∈ [a, b] and t, t′ ∈ R,

|f(t)− f(t′)| ≤ L|t− t′|. (3.9)

Then for k = 1, . . . , n ∣∣∣∣f (t)− 1

λ
Fk

∣∣∣∣ ≤ Lh+
h2

6λ
M,

where 0 < λ = 1/
(∫ 1

−1
βK(t)dt

)
,
∫ 1

−1
βK(t)dt ̸= 0, M = max

t∈[tk−1, tk+1]
|f ′′ (t)| and |t− tk| < h whenever t ∈ [tk−1, tk+1].

Proof . By the assumption f has continuous second order derivatives on [a, b] and is Lipschitz continuous with respect
to t. Therefore, using the trapezoid rule and let us choose a value of k in the range 1 ≤ k ≤ n and t ∈ [tk−1, tk+1], we

get for 0 < λ = 1/
(∫ 1

−1
βK(t)dt

)
∣∣∣∣f (t)− 1

λ
Fk

∣∣∣∣ =
∣∣∣∣∣f (t)− 1

hλ

∫ tk+1

tk−1

f (t)Bk(t) dt

∣∣∣∣∣
=

∣∣∣∣f (t)− 1

hλ

[
hλf (tk)−

h3

12
(f ′′ (ξk−1) + f ′′ (ξk+1))

]∣∣∣∣
≤ |f (t)− f (tk)|+

h2

12λ
2M

≤ L |t− tk|+
h2

6λ
M ≤ Lh+

h2

6λ
M, (3.10)

where ξk−1 ∈ (tk−1, tk), ξk+1 ∈ (tk, tk+1) and M = max
t∈[tk−1, tk+1]

|f ′′ (t)|. □

Remark 3.10. In view of (3.10), if 0 < λ ≤ 1. Then,
∣∣f (t)− 1

λFk

∣∣ ≤ Lh+ h2

6 M.

Definition 3.11. Let F [f ] = (F1, F2, . . . , Fn) be direct FzT of a function f ∈ C [a, b] with respect to the fuzzy

partition Bk(t), k = 1, . . . , n of [a, b]. Then, the function f̂ defined on [a, b]

f̂ (t) =

∑n
k=1 FkBk(t)∑n
k=1 Bk(t)

, (3.11)

is called the inverse FzT of f .

The following lemma estimates the difference between the original function and its inverse FzT.
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KCm
2
(t) β λ Bk = λβK

(
t−tk
h

)
(1 + cos (πt))

m 1
2m

√
πΓ(m+1)

2Γ(m+ 1
2 )

(√
πΓ(m+1)

2Γ(m+ 1
2 )

)
1
2m

(
1 + cos

(
π t−tk

h

))m
Table 1: Example 3.1

Lemma 3.12. Let the assumptions of Theorem 3.8 and let f̂ (t) be the inverse FzT of f with respect to the fuzzy
partition of [a, b] is given by Definition 3.1 . Then, the following estimation holds for t ∈ [a, b] and k = 1, . . . , n

f̂ (t) = λf (tk) +O
(
h2

)
, (3.12)

where 0 < λ = 1/
(∫ 1

−1
βK(t)dt

)
and

∫ 1

−1
βK(t)dt ̸= 0.

Proof . Let t ∈ [a, b] so that t ∈ [tk, tk+1] for some k = 1, . . . , n. By Theorem 3.8,

f̂ (t)− λf (tk) =

∑n
k=1 FkBk(t)∑n
k=1 Bk(t)

− λf (tk) =

∑n
k=1 FkBk(t)∑n
k=1 Bk(t)

−
∑n

k=1 λf (tk)Bk(t)∑n
k=1 Bk(t)

,

=

∑n
k=1 (Fk − λf (tk))Bk(t)∑n

k=1 Bk(t)
= O

(
h2

)
.

□

Theorem 3.13. Let f ∈ C [a, b]. Thus for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε
be the h-uniform generalized

fuzzy partition of [a, b] defined by (3.2). Then, the following estimations hold
∣∣∣f̂ (t)− f (t)

∣∣∣ < ε for each t ∈ [a, b] ∩
[tk, tk+1].

Proof . From the proof of Lemma 3.12 and then using Lemma (3.6) in the sense that for all k = 1, . . . , n,

∣∣∣f̂ (t)− f (t)
∣∣∣ = ∑n

k=1 |Fk − f (t)|Bk(t)∑n
k=1 Bk(t)

< ε.

□

Remark 3.14. According to Definition (3.1), it is easy to see that the inverse FzT f̂ (tk) = Fk for all k = 1, . . . , n.

On the basis of Definition 3.1, necessary steps of a new method to construct generalized uniform fuzzy partitions
of [−1, 1] for solve case K is not normal in the following.

1. Select the generating function K which is assumed to be even, continuous and K (t) > 0 if t ∈ (−1, 1).

2. Specify the value β = 1/K(0), where K(0) ̸= 0 to get the normal generating function K and then compute the

value λ = 1/
(∫ 1

−1
βK(t)dt

)
, where

∫ 1

−1
βK(t)dt ̸= 0.

3. If conditions β > 0 and λ > 0 holds, then construct generalized uniform fuzzy partitions of [−1, 1] by λβK (t).

Example 3.1. Let K : R → [0, 1] be defined by

K(t) = (1 + cos (πt))
m
.

One can see in Tabel 1 the h-uniform generalized fuzzy partition of [a, b] determined by Definition 3.1.

The following remark need for modified Trapezoidal rule based on FzT and NIM to solve SODEs.

Remark 3.15. In view of Eq. (3.6),
∫ tk+1

tk−1
Bk(t) dt = h. This means that

∫ tk+1

tk
Bk(t) dt =

h
2 .

Important property of the direct FzT as well as inverse FzT is their linearity, namely, given f, g ∈ C [a, b] and

α, β ∈ R, if h = αf + βg, then F [h] = αF [f ] + βF [g] and ĥ = αf̂ + βĝ.
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4 Conclusion

More generally, a generating function K can be also defined by K is not normal and in general, not necessarily
satisfying normal and Ruspini condition. Therefore, the basic functions of the uniform generalized fuzzy partitions
were modified in this paper. In this case, the main principles of FzT with respect to new representations of generalized
uniform fuzzy partition were modified. Also, FzT components were simplified and approximated of an original function
with respect to new representations of generalized uniform fuzzy partition. Necessary steps of a new method to
construct generalized uniform fuzzy partitions were presented for solving case K is not normal. Finally, the procedures
of uniform fuzzy partitions models with the Ruspini condition were proposed.
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