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Abstract

In this article, the problem of pricing discrete double barrier options which only monitored at specific times is inves-
tigated. According to the Black-Scholes framework, the option price would be obtained from recursively solving the
Black-Sholes partial differential equations on the monitoring intervals. In this way, the sine-cosine wavelet approach
is applied in approximating the yielded analytical expression. Finally, an operational matrix form is derived which
is highly comparable with other methods. According to the method of the present paper, the computational time is
nearly fixed against increases in the number of monitoring dates.

Keywords: Barrier Options, Black-Scholes Framework, Sine-Cosine Wavelet
2020 MSC: Primary 91G60; Secondary 65Q20

1 Introduction

Financial derivatives have been developed in the last decades. Options are derivatives which extensively considered
by investors in the markets. They are commonly traded in various types, namely call (put) options and European
(American) options. For example, a European call (put) option is a contract that gives its owner the right to buy
(sell) the underlying asset for a predetermined price, namely exercise price, at a specific time in the future, namely
expiry time. Path-dependent options, especially barrier options, are advanced options that have recently emerged in
the financial markets. Barrier options which are usually traded in two general types, namely single and double, play
an important role in managing risk in the financial markets. In this paper, the problem of pricing a knock-out discrete
double barrier option is investigated which would be useless if the price of the underlying asset touches one of the
two barriers before the expiry time T . Here, the motion of underlying stock is checked only at specific times, namely
monitoring dates 0 = t0 < t1 < · · · < tN = T . Different approaches have been provided in recent decades for pricing
barrier options. Numerical methods based on adaptive mesh models, trinomial trees, and quadrature method are
applied in pricing path-dependent options in [1], [8] and [10] receptively. Fusai et. al. obtained an analytical solution
for a single barrier option with the aid of z-transform [7]. In [4, 5], the Fourier-cosine expansion method is used for
pricing barrier options. Milev and Tagliani presented a numerical method based on the quadrature method for pricing
the double barrier option in [9]. A numerical method for pricing barrier options based on projection methods has been
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presented in [6]. In [11], a numerical method with the aid of Legendre multiwavelet has been proposed. Also, the
method of Lagrange interpolation on Jacobi nodes is implemented in [12]. These approaches are working efficiently for
pricing discrete barrier options and the method of the present paper performs in a high agreement with them. The main
goal of this paper is to present a new effective numerical approach for pricing discrete double barrier options based on
the sine-cosine wavelet method that simultaneously provides easy computer implementation with minimum memory
requirements and very short computational times. This paper is organized as follows. In Section 2 the mathematical
model based on the Black-Scholes framework is presented for pricing discrete double barrier options. An introduction
to the sine-cosine wavelet is provided in section 3. Section 4 is devoted to the utilization of the sine-cosine wavelet
method in approximating the analytical approach expressed in Section 2. In this section, a convenient operational
matrix form has been yielded that significantly controls the computational time even for a large number of monitoring
dates. The accuracy and effectiveness of the presented method are investigated in section 5. In this section, it is shown
that the obtained results are in good agreement with the quadrature method in [10] as a benchmark. Furthermore,
the CPU time of the present method is nearly fixed against increases in the number of monitoring dates.

2 The Pricing Model

In this section, the mathematical model based on the Black-Scholes framework is presented for pricing knock-out
discrete double barrier options, i.e. a call option that becomes useless if the stock price hits lower barrier L or upper
barrier U at the specific monitoring dates 0 = t0 < t1 < · · · < tN = T . If the barriers are not touched by the
underlying asset price in the monitoring dates, the pay-off at the maturity time T is max(ST −E, 0), where E is the
exercise price.

In this manner, assume that the price of the underlying asset, especially a stock, follows the geometric Brownian
motion:

dSt = rSt + σStdBt.

where r, σ, and St are the risk-free rate, the volatility, and the stock price at time t respectively.

According to the well-known Black-Scholes framework, the price of knock-out discretely monitored double barrier
call option as a function of stock price at time to maturity t ∈ (td, td+1), namely P (S, t, d), is obtained from forward
solving the following partial differential equations [3]:

−∂P
∂t

+ rS
∂P
∂S

+
1

2
σ2S2 ∂

2P
∂S2

− rP = 0, (2.1)

with the following initial conditions:

P (S, t0, 0) = (S − E)1(max(E,L)≤S≤U); d = 0

P (S, td, d) = P (S, td, d− 1)1(L≤S≤U); d = 1, 2, ..., N − 1 .

where P (S, td, d− 1) := lim
t→td

P (S, t, d− 1).

In the following two steps, the PDEs in (2.1) would be transformed into the heat equations which have analytical
solution. As a first step, by implementing the change of variable z = ln

(
S
L

)
and denoting C(z, t, d) := P(S, t, d), the

PDEs in (2.1) is converted to:

−Ct + µCz +
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2
Czz = rC (2.2)

C (z, t0, 0) = L(ez − eE
∗
)1(δ≤z≤θ); d = 0

C (z, td, d) = C (z, td, d− 1)1(0≤z≤θ) ; d = 1, 2, ..., N − 1

where E∗ = ln
(
E
L

)
; µ = r − σ2

2 ; θ = ln
(
U
L

)
and δ = max {E∗, 0} . As a second step, the transformations C (z, t, d) :=

eαz+βth(z, t, d) are made where

α = − µ

σ2
; c2 =

σ2

2
; β = αµ+ α2σ

2

2
− r

then the PDEs in (2.2) is reduced to the following heat equations:

−ht+c2hzz = 0

h (z, t0, 0) = Le−αz
(
ez − eE

∗
)
1(δ≤z≤θ); d = 0

h (z, td, d) = h (z, td, d− 1)1(0≤θ≤z); d = 1, ..., N − 1.
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The above heat equations have analytical solution as below, see [13]:

h(z, t, d) =

{
L
∫ θ

δ
k (z − ξ, t) e−αξ

(
eξ − eE

∗)
dξ ; d = 0∫ θ

0
k (z − ξ, t− td)h (ξ, td, d− 1) dξ ; d = 1, 2, ..., N − 1

where

k(z, t) =
1√

4πc2t
e−

z2

4c2t . (2.3)

In the case of discrete barriers, the movement of the stock price is solely checked at dates equally spaced namely
daily, weekly, or monthly. Therefore the following expression for N monitoring dates is assumed:

td = dτ where τ =
T

N
.

Hence by focusing on monitoring dates td, the following recursive expressions for fd (z) := h(z, td+1, d), will be
obtained:

fd(z) =

∫ θ

0

k(z − ξ, τ)fd−1 (ξ) dξ; d = 1, 2, 3, ..., N − 1 (2.4)

where f0 (ξ) = Le−αz
(
ez − eE

∗)
1(δ≤ξ≤θ). According to the results have been obtained above, the price of the Knock-

out Discrete Double Barrier Option on a stock of price S at time to maturity T would be evaluated as:

P (S, T,N − 1) = eαz+βT fN−1 (z) (2.5)

where z = log
(
S
L

)
and fN−1 is obtained from (2.4).

3 sine-cosine Wavelet

In this section, a brief introduction to sine-cosine wavelet, or CASW for short, is presented. Let m ∈ Z and
CASWm(t) = cos(2mπt) + sin (2mπt), then CASW ψn,m(t) for any non-negative integer k are defined on [0, 1) as
follows:

ψn,m(t) =

{
2

k
2CASWm

(
2kt− n

)
n
2k

≤ t < n+1
2k

0 o.w

where n = 1, 2, ..., 2k−1. Hence the functions {ψn,m(t);n = 1, ...,∞,m ∈ Z} constitute an orthonormal basis functions
for L2[0, 1], see for more details [14]. Therefore any function f(t) ∈ L2[0, 1] could be expanded as:

f(t) =

∞∑
n=1

∑
m∈Z

am,nψn,m(t)

where am,n = ⟨f, ψn,m⟩ =
1∫
0

f(t)ψn,m(t)dt. Also, consider the functions ψ̃n,m(t) =
√
θ
−1
ψn,m(t/θ). Then {ψ̃n,m(t);n =

1, ...,∞,m ∈ Z} is an orthonormal basis for L2[0, θ] and any function f(t) ∈ L2[0, θ] could be expanded as:

f(t) =

∞∑
n=1

∑
m∈Z

am,nψ̃n,m(t)

where am,n =
〈
f, ψ̃n,m

〉
=

1∫
0

f(t)ψ̃n,m(t)dt. Now, let the operator PJ,M is defined for tow integers J andM as follows:

PJ,M (f) =

2J∑
n=1

M∑
m=−M

am,nψ̃n,m(t) = a⃗′M,JΨJ,M ∀f ∈ L2[0, θ] (3.1)

where

a⃗M,J =
[
a−M,1, a−M,2, ..., a−M,2J , a−M+1,1, a−M+1,2, ..., a−M+1,2J , ..., aM,1, aM,2, ..., aM,2J

]
(3.2)

ΨJ,M =
[
ψ̃−M,1, ψ̃−M,2, ..., ψ̃−M,2J , ψ̃−M+1,1, ψ̃−M+1,2, ..., ψ̃−M+1,2J , ..., ψ̃M,1, ψ̃M,2, ..., ψ̃M,2J

]
(3.3)
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Because the operator PJ,M is defined as a linear combinantion of the functions ψ̃n,m(t), then it is clear that PJ,M

is an orthogonal projection operator from L2[0, θ] to XJ,M , i.e:

PJ,M : L2[0, θ] → XJ,M

where XJ,M is defined as XJ,M := span
{
ψ̃n,m(t);n = 1, ..., 2J ,m = −M, ...,M

}
. It is important to note that the

PJ,M (f) would be used as an approximation to the function f(t) ∈ L2[0, θ].

4 Pricing by Sine-Cosine Wavelet

As mentioned in section 2, the pricing problem would be done through a formula in (2.5) and a recursive expression
in (2.4). Here the implementation of CASW to obtain a numerical approach for pricing the option according to (2.4)
and (3.1) is provided. In this manner, consider the compact operator K : L2([0, θ]) → L2([0, θ]) as follows:

K (f) (z) :=

∫ θ

0

κ(z − ξ, τ)f(ξ)dξ. (4.1)

where κ is defined in (2.3). With attention to the definition of operator K, recursive expression in (2.4) can be rewritten
as below:

fd = Kfd−1 d = 1, 2, 3, ..., N − 1 (4.2)

Now, let f̃d,J = PJ,MK
(
f̃d−1,J

)
= (PJ,MK)

d
(f0) , d = 1, 2, 3, ..., N − 1 where (PJ,MK)(f) := PJ,M (K(f)). Since

f̃d,J ∈ XJ,M , it could be written as follows:

f̃d,J =

(2M+1)2J∑
i=0

ad,iψi(z) = Ψ′
J,M (x)Fd,

where Fd = [ad,1, ad,2, · · · , ad,(2M+1)2J ]
′ and ψi(x) is the ith element of ΨJ,M . By the recursive expression in (4.2),

the following expression for f̃d,J would be obtained:

f̃d,J = (PJK)d−1
(
f̃1,J

)
. (4.3)

Because XJ is a finite-dimensional linear space, so the linear operator PJK on XJ is corresponded to matrix K of
size (2M + 1)2J × (2M + 1)2J whose elements are as below:

kij =

∫ θ

0

∫ θ

0

ψi(η)ψj(ξ)κ(η − ξ, τ)dξdη .

Consequently, the following matrix operator form would be written for (4.3):

f̃d,J = Ψ′
J,MK

d−1F1. (4.4)

where the elements of the vector F1 = [a1,1, a1,2, · · · , a1,(2M+1)2J ] are calculated as below:

a1,i =

∫ θ

0

∫ θ

δ

ψi(η)κ(η − ξ, τ)f0(ξ)dξdη , i = 1, 2, ..., (2M + 1)2J .

Therefore, the approximated price of the knock-out discrete double barrier option on a stock of price S at the time
to maturity T can be evaluated as follows:

P (S, T,N − 1) ≃ eαz+βT f̃N−1,J (z) (4.5)

where z = log
(
S
L

)
and f̃N−1,J from (4.4). Notice that the matrix form of relation (4.4) implies that the computational

time of the presented algorithm is almost fixed and does not depend on the number of monitoring dates. In the
following, it is proven that the approximated price is convergent in L2[0, θ]:
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Firstly, from the fact that the continuous projection operators PJ,M converge pointwise to identity operator I, then
the operator (PJ,MK) is also a compact and converges in operator,s norm to K, i.e:

lim
J→∞

∥(PJ,MK)−K∥ = 0. (4.6)

see for more details [2].

Secondly, according to some properties of the operator,s norm in L2[0, θ], especially triangular inequality, the
following expressions are obtained:

∥fd − f̃d,J∥ = ∥Kfd−1 − (PJ,MK)f̃d−1,J∥ = ∥Kfd−1 −Kf̃d−1,J +Kf̃d−1,J − (PJ,MK)f̃d−1,J∥
≤ ∥Kfd−1 −Kf̃d−1,J∥+ ∥Kf̃d−1,J − (PJ,MK)f̃d−1,J∥
≤ ∥K∥∥fd−1 − f̃d−1,J∥+ ∥K − PJ,MK∥∥f̃d−1,J∥.

(4.7)

Hence by using the expression in (4.6) and the induction on d = 1, 2, ..., N − 1, the following relation is obtained:

lim
J→∞

∥fd − f̃d,J∥ = 0. (4.8)

Therefore the approximating approach in (4.5) is convergent. Furthermore, by assuming N = (2M + 1)2J , the
complexity of our algorithm becomes O(N 2) that dose not depend on number of monitoring dates.

5 Numerical Result

In this section, the price of the knock-out discrete double barrier option is evaluated according to (4.5) with
(2M + 1)2J CASW basis functions for diffident values of time to maturity T , risk-free rate r, volatility σ, exercise
price E, stock price S, lower and upper barriers L, U . In this manner, two examples are provided in which the
accuracy and efficiency of the present paper are investigated. In examples (1 2), quadrature method QUAD −K200
in [10] is considered as a benchmark. In example (1), it is shown that the CPU time of the present method is nearly
fixed against increases in the number of monitoring dates. In example (2), the method of CASW is also compared
to the common trinomial method and adaptive mesh model(AMM-8) in [8] and [1] respectively. Therefore, tables (1)
and (2) show the accuracy and effectiveness of the presented paper in comparison with the mentioned methods. The
source code of this method was written in Matlab 2015 on a 3.2 GHz Intel Core i5 PC with 8 GB RAM.

Example 1. In this example, the price of the knock-out discrete double barrier option for different values of stock
price S = 95, 100, 105 , 107, 110 and different Numbers of monitoring date N = 5, 25 is evaluated. The parameters
are considered as r = 0.05, σ = 0.25, E = 100, T = 0.5, L = 95 and U = 110. In table (1), The numerical results of the
presented paper are compared with the quadrature method QUAD−K200 in [10] for various numbers of monitoring
dates. Table (1) shows the accuracy of the presented method. Furthermore, it is shown that the CPU time of the
method is almost constant and does not depend on the number of monitoring dates.

N S
CASW

(M = 1, J = 6)
∥Error∥ CASW

(M = 1, J = 7)
∥Error∥ Benchmark

95 0.176305 1.800e-03 0.175404 9.0600e-04 0.174498
100 0.232373 1.3500e-04 0.232526 1.8000e-05 0.232508

5 105 0.225881 1.8000e-04 0.226143 8.2000e-05 0.226061
107 0.20748 7.5700e-04 0.206866 1.4300e-04 0.206723
110 0.16912 1.700e-03 0.168259 8.6600e-04 0.167393

CPU time 0.21 s 0.81 s
95 0.020119 5.9100e-04 0.019824 2.9600e-04 0.019528
100 0.04288 7.7000e-05 0.04296 3.0000e-06 0.042957

25 105 0.040819 9.7000e-05 0.040947 3.1000e-05 0.040916
107 0.033305 2.9900e-04 0.033061 5.5000e-05 0.033006
110 0.01925 5.6200e-04 0.018971 2.8300e-04 0.018688

CPU time 0.21 s 0.81 s

Table 1: Double barrier option pricing with parameters: T = 0.5, r = 0.05, σ = 0.25, E = 100, L = 95 and U = 110.
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Example 2. In this example, the price of the knock-out discrete double barrier option on the stock of price S = 100
for different values of lower barrier L = 80, 90, 95 , 99, 99.9 is evaluated. The other parameters are considered as
r = 0.05, σ = 0.25, E = 100, T = 0.5, and U = 120. In table (2), The numerical results of the presented paper
are compared with the trinomial method and adaptive mesh model(AMM-8) in [8] and [1] for various numbers of
monitoring date N = 5, 25, 125. Table (2) shows the accuracy and effectiveness of the presented method.

N L
CASW

(M = 1, J = 10)
Trinomial AMM-8 Benchmark

80 2.4499 2.4439 2.4499 2.4499
90 2.2028 2.2717 2.2027 2.2028

5 95 1.6831 1.6926 1.6830 1.6831
99 1.0811 0.3153 1.0811 1.0811
99.9 0.9432 - 0.9433 -

80 1.9420 1.9490 1.4419 1.9420
90 1.5354 1.5630 1.5353 1.5354

25 95 0.8668 0.8823 0.8668 0.8668
99 0.2931 0.3153 0.2932 0.2931
99.9 0.2023 - 0.2024 0.2023

80 1.6808 1.7477 1.6807 1.6808
90 1.2028 1.2370 1.2028 1.2029

125 95 0.5531 0.5699 0.5531 0.5532
99 0.1042 0.1201 0.1043 0.1042
99.9 0.0513 - 0.0513 0.0513

Table 2: Double barrier option pricing with parameters: T = 0.5, r = 0.05, σ = 0.25, E = 100, S = 100 and U = 120.

6 Conclusion and remarks

In this paper, an orthogonal projection method based on sine-cosine wavelets basis functions for pricing discrete
double barrier options is implemented. In this way, a matrix form (4.4) for approximating the problem is obtained.
Finally, the accuracy and effectiveness of this method are investigated in two examples.
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