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Abstract

We study in this paper the existence and uniqueness of solutions to initial value problems for semilinear differential
equations involving ¢-Caputo differential derivatives of an arbitrary I € (0, 1), using the fixed theorem. We do analyse
further the M-L-U-H stability and the M-L-U-H-R stability. Then we conclude with an example to illustrate the
result.
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1 Introduction

Recently, it has been proven that differential equations involving fractional derivatives have captured the interest
of many mathematicians. This is because they can represent various phenomena in several scientific fields (the
nonlinear oscillation of earthquakes, the fluid-dynamic traffic model, flow in porous, ...) and have proven to be effective
models in areas such as physics, mechanics, biology, chemistry, control theory, and other domains. for example, see
[10] 221 16l 18], [19]-[31], 37, [39], 40, [48].

It is common to research the existence and uniqueness of solutions, as well as techniques for explicit and numerical
solutions that are exact and stable. Commonly used techniques to demonstrate the existence and uniqueness of
solutions include the fixed point theorem, upper-lower solutions, iterative approach, and numerical method.

In the study of fractional differential equations, Ulam-Hyers stability is a crucial concept that relates to the stability
of solutions concerning changes in the initial data ([2] B, 12 20, 211, 24, 25, [52]).

Furthermore, Mittag-Leffler-Ulam-Hyers stability, generalized Mittag-Leffler-Ulam-Hyers stability, Mittag-LefHler-
Ulam-Hyers—Rassias stability, and generalized Mittag-Leffler—Ulam—Hyers—Rassias stability are the four types of sta-
bilities of the mild solution of the fractional evolution equation in Banach space that Wang and Zhou presented in
[53].

There are two famous ways to define fractional integrals and derivatives: the Riemann-Liouville and the Caputo.
In a paper by Almeida [7], he presents a generalized version of these derivatives by considering the Caputo fractional
derivative of a function with respect to another function called 1. He studied some useful properties of this new
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definition of the fractional derivative. The advantage of this definition is that it allows for greater model accuracy by
choosing an appropriate ¥ function. For more information on ¢-Caputo and Caputo fractional derivatives, please refer
to the following papers: [Il [7]-[9] [46]. Motivated by [49, [55] we consider the following evolution problem -Caputo
fractional semilinear differential equation:

{CDé’i”x(b) = Ay (0) + e, x(0), Rx(1)), ¢ € A, W)
X(O) = Xo

with —2( generates an analytic compact semigroup (V' (¢)),>o of uniformly bounded linear operators on a Banach space
X, b Ax X, x X, = X is a given function and CDlo’ff is the y-Caputo fractional derivative of order [ € (0,1),
v >0, zp € X. This derivative gives a more general framework to the results in the literature. The term Rx(¢) which
may be interpreted as a control on the system is defined by: Rx(:) = [y J(z, 7)x(7)dr, where J € C(S,RT), with
S={(,m1)eR?*:0< 7 <<V}

The theory that the nonlinear components meet Lipschitz criteria or linear growth requirements was used to treat
fractional differential equations in various previous publications. It can be difficult to verify these prerequisites at
times.

In our research, we examined the existence and uniqueness of a mild solution for a fractional semilinear differential
equation under certain unusual situations. We specifically looked at cases where the nonlinear term satisfies only
a few local growth requirements (see conditions (Cz) and (Cs)). These conditions are much weaker than Lipschitz’s
circumstances and linear growth conditions.

2 Preliminaries

We proceed by setting A = [0,v]. We denote by X a Banach space with norm ||.|| and —A : D() — X is the
infinitesimal generator of a compact analytic semigroup of uniformly bounded linear operators (V(¢)),>o. This means
there exists M > 1 such that

V)l < My.

To define the fractional power ¥ for 0 < o < 1 as a closed linear operator on its domain D(2A¥) with inverse 2A~%,
we assume that 0 € p(2(). we will present some basic properties in the theorem below.

Theorem 2.1. [43]

1. X, = D(2®) is a Banach space with the norm || x|/, = [|[A®x]| for each x € D(A®).
2. V(1) : X - X, for each ¢ > 0.

3. APV (1)x = V(1)A®x for each x € D(A*) and ¢ > 0.

4. For every ¢ > 0, A°V (1) is bounded on X and there exist C, > 0 such that

M
© [
2oV ()] < 2.

5. A% is bounded linear operator for 0 < p < 1, there exists Cy, such that ||2A~%| < C,,.
6. If < p <~, then D(AY) — D(AP).

Remark 2.2. [34] The restriction V,,(¢) of V(1) to X, is exactly the part of V(¢) in X,,. Let x € X, (V(¢)).,>0 is a
strongly continuous semigroup on X, and ||V,,(¢)|| < |V ()] for all « > 0.

Lemma 2.3. [34] (V,,(¢)).>0 is an immediately compact semigroup in X,,, hence it is immediately norm continuous.

The Banach space C(A, X,,) is denoted by C,, with p € (0,v) it supnorm:
Ixlloe = supllxll,, forxeCy
LEA

We will also provide the required data and resources on -fractional derivatives and -fractional integrals,
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Definition 2.4. [8] Let [ > 0, x € L'(A,R) and ¢ € C"(A,R) such that ¢/(¢) > 0 for all « € A. The ¢-Riemann
Liouville fractional integral of order [ of the function x is given by

O RGBS 21)

Definition 2.5. [8] Let [ > 0, x € C""'(A,R) and ¢ € C"(D,R) such that ¢’(:) > 0 for all ¢ € A. The -Caputo
fractional derivative of order [ of the function x is given by

1 ‘ / n—Il—1
D) = gy | VI = e (), (2:2)

where

= (Fae) X n=ln

and [I] denotes the integer part of the real number [.

Proposition 2.6. [§] Let [ > 0, y € C" (A, R), then we have the following propositions
L “DglIgfx(1) = x(1)-
=1 x% (0)

2. IpVODLY X (1) = x (1) — 3 = (w(1) — (0))~.

3. Ié’f’ is linear and bounded from C(A,R) to C(A,R).

Definition 2.7. [22] Let x, ¢ : [0,00) — R be real valued functions such that ¢(¢) is continuous and ¢'(¢) > 0 on
[0,00). The generalized Laplace transform of x is denoted by

Lolx(R)} () = / " e H WO O) g () () di. (2.3)

for all k.

Definition 2.8. [22] Let x and o be two functions that are piecewise continuous on A and 1(¢) of exponential order.
We define the generalized convolution of x and ¢ by

(0 (2) = / (W) (B @) +(0) — w(R))) ¥ (R)d.

Theorem 2.9. [22] Let [ > 0 and x be a piecewise continuous function on A and (k) of exponential order. Then

_ Iyfx(x)

- (2.4)

LoAT0E X (K) Hp)

Theorem 2.10. [5,[48] Let x1, x2 be two integrable functions and % be a continuous function on A. Allow ¢ € C(A,R)
be an increasing function to the extent that ¢'(¢) > 0 for ¢« € A. Suppose that

1. x1 and x2 are nonnegative.
2. h is nonnegative and nondecreasing. In case

x1(1) < x2(e) + A(e) /OYw(L) — () ()xa(s)ds,
subsequently
‘o (AOTE)” wl—1,
a0+ [ 52 0 v s
for all © € A.

Corollary 2.11. Under the hypotheses of theorem let 2 be nondecreasing function on A. Then we have
x1(8) < x2 () E[A(OT (D) (4 () = 9(0))], €A

where
Q’LU
E = E _—
(@) et F(wl+1)’

is the Mittag-Leffler function with one parameter for all p € C and [ > 0.
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3 Representation of mild solution

In this part, we will first define the term ”mild solution” for the problem (1.1)) and demonstrate the following
theorem and foundational lemma. To ensure that, we make the following assumptions.

(C1) V(k), k> 0 is a compact analytic semigroup and lim+ V (k) = I (the identity operator).
K—0

(C2) there exists v € [p, 1] such that the function i : A x X, x &, — X, satisfies the following properties:

(a) for all (x,s) € X, x &, the function A(., x,<) is strongly measurable.
(b) for all ¢ € A, the function A(e,.) : X, x X, = X, is continuous.
(c) for all o > 0, 3 a functionn I, € L>(A, (0, 00)) such that

sup{[|Aa(e, x, O, = lIxll, <o, llsll, <57vo} < Lo(r), v € A,

and there exists a constant £ > 0 such that

1 [
Jim_int o [ 6(0) = () () ) < 6 < .
where j* := max{J(:,k) : (¢,k) € S}.
(C3) h:AxX,xX, = X is continuous function and there exist functions; ¢;(¢) and £2(¢) such that
[15(e, x2(e), Rx2 (1)) = Ale xa (1), Rxa (D), < G0) Ix2 = xall, +€2(0) [Rxe = Rxallg
L €A, x2,x1 € Xy, denote Ié’f’é(L) = igg{féﬁbﬂl,ll wfg}

According to the definition and the proposition it is necessary to rewrite the Cauchy problem in the
equivalent integral equation

1 ’ -1,/
x(1) = xo + 0] /O (W () = ()™ () (Ax () + h(s, x(K), Rx (%)) dr. (3.1)

Lemma 3.1. If (3.1) holds, then we have

x(1) = /OO ¢’z(Q)V((¢(L)—¢(0))lQ)Xod9+l/L /Oo 0®1(0) (W (1) =w(k)) M (K)V (1 (1) =1 (0)) 0) (s, x (K), Rx (k)))dedr,
0 0 JO

(3.2)
where

0= gt (1) 20, = 23 (e T inoin) ) o< 000,

Proof . Let u > 0. Applying . ) and (| . ) to , we get
X 1
X(p) =22 + — (AX (1) + H(p)),
poop
where
X(p) = / e W=D/ (k) x(k)dk and H(p) = / e W=Dy (k) h(k, X(K), Rx(k)))dk.
0 0
This means that
X(p) = p =M (' T =) xo + (W' —20) 7 H(p) = p' ™! / e MV (¢)xods + / e MV () H (p)ds.
0 0
By putting ¢ = k!, ds = Ik!'dk, we get

X(p) =1 / () 1e 'V () xodr + 1 / W e (k) H () i,
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next, we alter k to ¥(¢) — ¥ (0);
oo
1
X () =l / () = (0) M (e HPOTHODV((1(2) — 9 (0)))xodt
0

! /owwu) —1(0)" 1! (1)e = BEO=PO Y (9(0) — (0))") H () de

~Jo _uli [ =NV (((2) — 1(0))!) xode
/ / l 1¢ () (1)e *(H(di(b)*w(O)))’V((w(L) B w(O))l)efﬂ(dﬂ(b)fw(o))H(u)dgdL'

Using the fact that / e *uwi(o)do = e where | € (0, 00):
0

= [ [ alge OO V() - 0) xadad
[ / O () (n(@)e VOOV (1) = (0)') x VOO () dpdsd

:/ e~ B0V O) () (/ODO wi(o)V (W(L) ;l¢(0))z) Xon) .
/ / / 1 ()Y (v)e —u(P()+¥(s)— 2¢(0))Mwl(g) <V <W(L)_w(0))l) H (p)dodsde

Ql

:/ =000 /() (/OOO wi(o)V (W) XOdQ) d
/ / / 1 () (1) e WO”MM(QW (W)

Y 0
h(p™! = (0) +9(0), Xx( ™ (¥ (k) — () + (0))), Rx (™ (¥() — 1 (2) +1(0)))) dedrde

:/OOO e M (wu—w(onw (1) (/OOO wi(0)V (M)_gw())) Xon) dv + /OOO e~ (k) =(0))
(

K o0 _ l_l l
X <‘/0 ‘/O l/(/)/(g) (w(ﬁ) qul)(§)) wl(g) (Uglz/}(g))) ﬁ(g’ X(C)v %X(g))d9d§> wl(/ﬁ?)dl{.
By using the inverse Laplace transform, we can accomplish the following:

X () :/O‘X’ 14 <W> wi(e)xode

%

+l/OL Aoo , (w(n Qlw(c))l> L W) — ?(g))lﬂwl(g)h(g,x(c),§Rx(<))¢/(<)d@d€

4

= [V (@0 - v0)'e) #ilonade
+Z/OL/OOO oV (¥(2) —¥(0)) o) x (¥(2) — ¥(s)) @i (0)hls, x(s), Rx())¥' ()dods.

For y € X and 0 <[ < 1, two families {be(z,, ¢):0<¢<:<w}and {YJJ(L,g) :0 < ¢ <t <v} of operators are as
follows:

X1ty <) = / T2V ((0) — (o) Dxde: X x X 5 X,

and
Yoy = / 0BV (1) — (<)) Q)xde : X x X — &,

respectively. [J

Lemma 3.2. [49] The operators X}, (¢,¢) and Y}(z, <) meet the following requirements:
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for all 1 > ¢ >0 and x € X,,, the operators X, (¢,5) and Y,/ (,<) are bounded linear operators, i.e
X x], < My il and (VL Ox], < 2 I
b6l < My lIxll,, b (el < 5 Il

. The operators be(ug) and Y;Z(L, ) are strongly continuous for all ¢ > ¢ > 0. That is, x € &, and for all

0> ¢ > 11 > 1o, we have the following:
Hsz,(Lg,c)x - be(Ll, g)x”p — 0 and ||Y,£(L2, S)x — Yé(Ll,C)XHp —0
as Lo — L.

The operators X,llb(L7 ) and qu)(L, ¢) are compact operators, for all ¢,¢ > 0.
If Xfl} (¢,¢) and Yqi(L, ¢) are strongly continuous compact semigroups of linear bounded operators.
If 0 <l <1, then

CDlo’f{Xfp(% 0)xo} = Q[{le/;(bv 0)xo}
and

DR Pe{w()}} + w(e) = Py {w()}} + w(v),
where b
Po{x()} = / (W(e2) = ()" () Yy k2, ) x () ds,
L1

such that 1,02 € A; x,w € C,,.

Definition 3.3. A solution x(.; xo;u) € C, is called an p-mild solution of (|1.1) if it satisfies:

X(t) = X3, (1,0)x0 + /OLw(L) = () (Y (1, OR(s, x(6), Rx())de (3-3)

4 Existence and unicity result

Theorem 4.1. Suppose that the conditions (C;) and (C3) are met and

Myeg .
Ty o< (4.1)

then the fractional semilinear equation (|1.1) has a mild solution on A.

Proof . We define the function H, : C, — C, such as

(Hex)() = X7, (1,0)x0 + /()L(z/f(b) — () ()Y (1, 9)A(s, X (<), Rx(s))ds.

Define, U, = {x € Cy : x(0) = xo; [Ixl,, < o}. Then, U, is a closed, convex, and bounded subset of the Banach

space Cy,, it is necessary to prove that, the operator H, : C, — C,, has a fixed point. We will now proceed step by step:

Step 1. For an arbitrary ¥ > 0, there exists a positive constant o = o(1}) such that Hy(Us9)) C U(y). Let 9 > 0,
there exists x € U,, then for ¢, € A; such that Hng(Uo(lg))Hp > o.

Depending on Lemma and condition (Cs), here’s what we have:

o <I(Ho) (o), < wao,om - " ((10) = () (Y (s (s, (), R(€))de

©

<[ X5 (0, O)x0 [, + H /0 " (t0) — () ()Y ko s, x(6), (<)) ds

&

<My |Ixoll, + /0 (¥ (t0) = ()" (<) | ATV (o, ) A R(s, X(5), Rx())]| ds

<bty ol + 25 [ W)~ ) s

My CY—9

() x €.

<My [|xoll, +
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Dividing to both side by o and taking the lower limit as 0 — oo, we obtain

M- MyCo—P & M
1 < lim jnfM + lim inf O] _ vE
0—00 0 e o r()

which leads us to a contradiction. Therefore, Hy(U,(g)) C Uo(gy for some o() > 0.

CP <1,
Step 2. We show that Hy is continuous. Let (x,) be a sequence of U, so that x,, — x in U,. The function # is
continuous on A x X, x X,,, then we can say that

(s, xn($), Rxn () — Als, x(s), Rx()), as n — oo.

We have now, for . € A
[(Hox)(¢) = (Hoxn) (), = /Obw'@)(wu) = () [AETYE (e, AR, X (6), Rxn (<)) — Fals, x (<), Rx ()] de

Mver® / W) — ) s xn(6): Rxn(6)) — ls x(s), Rx(s)l, ds
T Jo
for « € A. Using the fact that

172(<, Xn (), Rxn (<)) = A<, X (<), Rx())l, < 2Lo(s) for < € A;

and for each ¢ € A since % conforms to (Cz), using the Lebesgue Dominated Convergence Theorem ones proves that

. / ()W () = ()RS, Xa(s), Rxa(s)) — Al x($), Rx ()], ds — 0.
L@ Jo

Then we can say that
lim ||Hyxn — Hox|[, = 0.
L—00
In other terms Hy is continuous.
Step 3. To prove that Hy is compact. we have to show that ¢(c) = {(Hyx)(¢) : x € U,} is relatively compact in

X, for all ¢« € A. It goes without saying that {(Hyx)(0) : x € U,} is compact. Let ¢ € (0,v], Vg > 0, we define the set
or(t) ={(Hgx)(t) : x € Uo} :

;00 = [ " V(1) — 9(0)) o) xode

+1 ; 0®1(0) (1 (1) = (<)) (QV (%) = (0)) 0)hls, x(c), Rx(<))deds

g

_ / " V() — p(0))lo - w'g + lg)xodo

* Z/OL g / () ((e) — () V() — B(0)) o — w'g + Kg)h(s, x(<), Rx(<))deds
_ / T 2V (K V() —w(0) e - #'g)lxode

/ob e 0®u(0)(¥(e) = ()W (V[ () = $(0)) 2 — &' g)I(s, x(c), Rx (<)) dods.

Thus, by the compactnesss of V (x!g) for x'g > 0 and the boundedness of/ () [V (1 (1) —(0) o—K'g)] xodo+
9

! / / " o)) — () () [V((0) —$(0)) o~ Kg)] x h(s, x(<), R(<))deds on By, it is obvious that (1)
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is a relatively compact set in &|,. In addition,

1o () — ()0, —H / @10 —p(0) e)xode
il [T emie) ) — w6) T V() — 9(0)) 0. x(<). Rx(s))deds
= V() — ) 0)xol|, / @1(0)de
o[ [ em@0) - o) V@ — w0 ehte. ). R(s)dods

0ty ol [ @ileddo+ 0 (€ IEN) [ (00 = 00D H0) [ otil)dods.

In other words, we can tell that there are relatively compact sets arbitrarily close to the set (1), Ve € A. Thus,
©(¢), is relatively compact in Xj,. Since it is compact at ¢ = 0. We get the relative compactness of ¢(¢) in X, Vi € A.
Step 4. For 0 < 15 <17 < v; we have

) (W (12) = ()Y (v, )RS, x(5), Rx(<))ds

I(H ) (e2) = (Hx) (1)l < [| X3 (e2,0)x0 — be(bho)XoHp +

— () = (¥(e1) — ()Y (2, ) R(s, X (), Rx())ds

—9(e)' Y (s2,6) = Y (11, )IA(s, x(5), Rx(<))ds

©

< X520, + X er. 0ol + | 9O ) = () [V ezs I () R

+/0L1 O (2) = ()™ = () = () [[Vh (e, )Als, x (<), Rx())ds |

+ B P () (W (12) — () T Y (k25 6) — Yy (11, 9)(s, X (<), Rx(<))ds

)

- /_ & () (W(e2) — () Yy (2, 6) = Yy (1, 9)IA(s, x(5), Rx(<))ds

W(Lz) - ¢(L1))l
l

©

<My |Ixoll, + My lIxoll, + (2977 (12, )7 A, x (), Rx (<)) ds |

+ %[W(w) = (1)) + (W (e1) — ¥(0)" = ((e2) — (0))'] [| A€V (2, ) A (s, x (), Rx(s))ds]|
+ %[(z/;(”) —1p(0))" + ((1) — P(tr — )| AT [V (12, 6) — Vi (1, A R(s, x (<), R (s))ds |
+ %(d)(bl) — (i — ) [ APV (2, 6) — Yy (11, IV Als, x(s), Rx (<)) ds |

(¥(t2) = (1)) My C,y— MyC,_,,

<2My [Ixoll, + TU+ 1) S e + Ti+1) [(#(e2) = (1)) + (@(1) = ¥(0) = (¥(e2) = ¥(0))] 1] o
MyCy—p
T [(¥(11) = (0) + (¢(e1) — (2 — €))] o ¥ (2, ) = Y (1, )| 1] e
£ 200(0) — 00 — ) ey

T(+1)

By the condition (C;) and Lemmawe have proven that [|(Hx)(t2) — (Hx)(t1)|l, — 0 as t2 — ¢1. It is obvious
to say that {Hx),x € U,} is a family of equicontinuous functions. By the Arzela-Ascoli Theorem, since H(U,)
equicontinue, It is simple to infer that H(U,) is relatively compact in C,,.

Furthermore, it is simple to determine that, H is continuous in C,, which means it is completely continuous on
Ce. Of course, this means that by Schauder’s fixed point theorem H has a fixed point x € U,. This is the necessary
confirmation to state that (L.1) has a mild solution on A. O
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Remark 4.2. Using theorem it is noted that if ¢ is a bijection function, then (|1.1)) has a minimum of one mild
solution, given that
1
_ Fi+1)\*
vt ((Gral) +vo).
( MyC_,, (0)

Theorem 4.3. Assume the condition (C3) holds. Then the problem (1.I) has a unique mild solution.

Proof . Let x; and x2 be the solutions of the problem (1.1)) in U,. Then for each w € {1, 2}, the solution y,, satisfies

(Hxw)(t) = X},(1,0)x0 + /Ob(w(b) — () ()Y (4,9 A(S, X (5), Rxaw (5)) s

Then, for any ¢ € A, we have

ICHx)(0) = (Hx2) (W), < /0 () — 96N (6) [ ) e X1 (1), Rxa (1)) — A, xa(), Rxa (], ds

<t [0 = v O I a0 Ra0) - Al R, b

<5 [ 00 = 9O QO I €) ~ (Ol + () [Ra(o) ~ Rl s
<My IgP0 () Iha = xell, + Myi*IgP6(0) Iba = xll,

< MyIgPe) [xa = xell, (1+57)
SMVS(;)FJ*) /0 (W) = () (9)e(s) Ixa(s) = xa(o)ll,, ds.

0 /OLW(L) — () () [Ixals) = x2(9)ll, ds,

where ¢* = sup |[¢(¢)|. We get the wanted result by using the theorem [2.10} x1 = x2. Hence there is only one unique
LEA

solution for (1.1). O

Definition 4.4. [23] A function # satisfies the local Lipshitz condition in x(¢), uniformly in ¢ on bounded intervals
if for every ¢/ > 0 and k > 0 there is a constant £(cst,:’) such that

1(e, x1) = e, x2) [, < Llest, ) Ixa = xall, »
for all x1,x2 € X, and ¢ € A.

Theorem 4.5. Let i : A x X, x X, — X is continuous in ¢ for ¢ > 0 and locally Lipschitz continuous in X, uniformly
in ¢ on bounded intervals. Then for every xo € &, there is a tmax < 00 such that

{CDé;fx@) = —Ax(0) + At x(0), Rx(1)), ¢ > w,
X(LO) = Xo

has a unique mild solution x on [0, tmax)-

Proof . We begin by demonstrating that for each + > 0, xo € X,, the problem from above has a unique mild solution
under the presumptions of our theorem, x(¢) on an interval [cg, ¢1] whose length is restricted beneath by

N oll, T+ 1)
5(“)7 ||XOHgo) - mll’l{]., j(LO)Z(j(LO)v Lo + 1) + 'fl(L())

where {(cst,¢) is the local Lipschitz constant of & and j(to) = 2||xoll,, Mv (t0). Indeed let ¢1 = to + B(eo, [[x0l,,), the
mapping H : C, — C, by

|2

(Hx)(¢) = X} (e, 00)x0 + /L(i/f(b) — () M (Y (1 <) Rls, x(<), Rx(s))ds.

Lo



10 Baihi, Kajouni, Hilal
maps the sphere of radius j(o) at 0 of C([eo, t1], &), into itself, then

ds
©

100, < X ol + | [ @0 - O O¥ A ). Rx0)

<btv () Toll, + 21 [ (000 = w10 e x) R, ds
<My (10) [Ixoll,, + MFV(%O) /qu) — ()M (<) [Hﬁ(t,xw), R (1)) = (s, 0,0)| ) + I, 0, O)IP} ds

<My (10) lIxoll,

L) [0 = vl (Alestns ) o), +alestan ) [R],) + 15,0001 s

KON
S [ w0 = v @ [(6 ol + e o)l 57) + 0,001, ] d

My (10) (¥(1) — ¥ (10))"
T(+1)

/L(d)(b) = 1(0))' 71 (9) IS, 0,0)], de

Lo

+

<My (o) [Ixoll, +

<My (v) [Ixoll, + (¢1(4(e0), to +1)j(v0) + £2(j(t0), to + 1)j(¢0)5 )

My (10)
(1)

and this is all due to the fact that j(0) = 2Mv (v0) || x0ll,, - Now, we put n(z0) = max{||(s,0,0), : 0 < 10 <o + 1},

lo

i(L0), L V) — (o)) L v
HEOWI, <M (eo) xoll, + My (10)j(uo) L0 to £ V() = ¥(t0))” | My (10) [ 00 = ) Onluolds

T(+1) YORA
05 (c0); o + 1) (¥ (1) — ¥(w0))" n My (co)n(to)
T(+1) T(l)

() (o), 10 + 1) + n(m)})

(¥(e) — ¥(e0))"

<My (o) [[xoll,, + My (20)7(20)

L) —¥Plo !
<My uo) Il + L)
<2My (vo)n(eo) = j(wo)

whereby the last inequality is derived from the meaning of ¢q, in this sphere, H fulfills a uniform Lipschitz condition
with constant £ = ¢(j(¢0),t0 + 1) and hence, just like in Theorem’s proof, it has a single mild solution x(¢) in the
sphere. The intended resolution of the mild solution is for our last problem on the interval [c1, to].

As a result of what we’ve just demonstrated if x(¢) is a mild solution of

{CDQML) = —2Ax(e) + hle, x(0), Rx (1), ¢ > 10,
X(LO) = Xo

on the interval [0, k]. It can be extended to the interval [0,x + 5] with 5 > 0 by defining on [x,x + 3], x(¢) = a(v)
where a(:) is the solution of the integral equation

L

(Hx)(¢) = X} (K, t)x0 + / () = ()M ()Y (1, ) R(s, x (<), Rx(s))ds, Kk <t< K+ p.

K

Additionally, 8 depends solely on ||x(x)||, j(x) and n(k). [0, tmax| should represent the maximal interval of existence
of mild solution x(¢) of (1.1)). Provided that tmax then lim ||x(¢)|| = oo, as there would be a sequence otherwise ¢y,
L—>lmax

converge to tmax such that [|x(¢)]] < est for all w.

This would suggest based on our recent proof that for each (w close enough to tmax, x(¢) specified on [0, ¢,] can
reach [0, ¢, + 8] in which 8 > 0 is not dependent upon ¢,,, therefore, it is possible to expand x(¢) beyond tpay conflict
with the meaning of ¢yax-

To illustrate the local mild solution’s uniqueness x(¢) of (1.1) as we observe, if x1(¢) is a mild solution of (1.1
thereafter, at each closed interval [0, ] where x(¢) and x1(¢) both exist and coincide according to the uniqueness
argument provided after the Theorem s proof. Consequently, tmax is the same for both x(¢) and x1(:) and on

[Oabmax[: X = X1- D
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5 Mittag-Lefller-Ulam-Hyers stability

For h: A x X, x X, - X, w € C(A,R") and € > 0 we consider the equation

“DGYx(0) = We(0) + e, (1), R (), ¢ € A, (5.1)
as well as the subsequent inequalities
[“D5 (1) = Ax(o) = B x(0), Rx(W)| < e, ven, (52)
[“D5Yx(0) = Ax(o) = A, x(0), Rx ()| < (), €A, (53)
[“DE () = Ax(o) = B x(0), Rx(0)| < (), ve A (5.4

Definition 5.1. [49] If there exists a real number C' > 0 such that for each € > 0 and for each solution ¢ € C*(A, X,,)
of inequality (5.2) there exists a mild solution x € C,, of (5.1)) with

C(1) = x()] € eCE(r), €A,

we can say that (5.1)) is M-L-U-H stable, concerning E;

Definition 5.2. [49] If there exists a function ¥ € C(R*,R™), ¥(0) = 0, such that for each ¢ > 0 and for each
solution ¢ € C1(A, X,,) of inequality (5.2)) there exists a mild solution x € C,, of (5.1]) with

C() =x (] < CIHE(), v €A,

we can say that (5.1)) is M-L-U-H stable, concerning E;
Remark 5.3. Definition [5.1] implies definition [5.2

Remark 5.4. A function y € C'(A, X,,) is a solution (5.2) if and only if there exists a function A € C*(A, X,,) such
that

1 JA(t)| < efor € A.
2. CDé’}fx(L) = Ax(¢) + hle, x(¢), Rx (1)) + A1), ¢ € A.

Remark 5.5. If ( € C*(A, X,,) is a solution (5.2), then ¢ a solution of the following integral inequality

¢(e) = X7,(1,0)¢(0) — /Oqu) = ()T ()Y (1 OR(s, ¢(6), RE(S))ds

< e [ 00 - v O Y09,

Theorem 5.6. Assume that 2 : A x X, x X, — X and there exists £, > 0 such that

|A(e, x1) = Pe, x2)| < €nlxa — xal,
for all « € A, and x1, x2 € X. Then (5.1)) is M-L-U-H stable.

Proof . Let ¢ € C'(A,X,,) be a solution of (5.2). Let us denote by x € C,, the unique solution of the semilinear

problem
{CDé’f x(1)

= —Ax(¢) + e, x (1), Rx (1)), ¢ € A,
x(0) = ¢(0)

(5.5)

We have
X (1) = X4, (2,0)¢(0) +/O (W(1) = () Y ()Y (1, )RS, ¢ (s), RC(s))ds, v € A.
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Then we get

¢(e) = X3(2,0)¢(0) — /Ob(wu) = () (Y (1 (s, x(€), Rx(6))ds| <

M ¢ —1 7
<t / ((0) — ()1 (6)ds
M-
<T@ —vO)

It follows that

() — x(v)] < 'cm — X4,(1,0)¢(0) — /0 Lw(n — ()M () YL (1, 6)Als, X (), Rx(<))ds

< 'C(L) = X3(1,0)¢(0) — /OLW(L) = () T ()Y (4 OR(S, C(<), RE(<)) ds

+ [ (W0 = 9 () Y9l 1o €0, RE()) = e, x(6), Rox(s))lds

< gy ) = )+ 55 [ 00 = 90 O IC(6) = X0l + raIRE(S) — RO
< FT ) ¥ + T [ 00 = 0l ) (B €(6) = x(6)| + Hrald() = x()l5)s
M M - ¢ —1 7
< FTT ) HO) + T+ [ 00) = 9) 1) (ol
where ¢, = sup{fp1, ln2}. By corollary [2.11} we obtain
LEA
60 = X0)] € Fg ) = 60D + B 1+ ) (0(0) = b 0)').

6 Mittag-Leffler-Ulam-Hyers-Rassias stability

Definition 6.1. [49] If there exists a real number C, > 0, such that for each e > 0 and for each solution ¢ € C*(A, X,,)
of inequality (5.4) there exists a mild solution x € C,, of (5.1) with

1€(1) = x(1)] < eCow() Eie), ¢ €A,

we can say that (5.1)) is M-L-U-H-R stable, concerning wkE;

Definition 6.2. [49] If there exists a real number Cy, > 0, such that for each solution ¢ € C*(A, X,,) of inequality
(5.3) there exists a mild solution x € C,, of (5.1]) with

€() =x()| < Comw()Ea(e), © €A,

we can say that (5.1)) is M-L-U-H-R stable, concerning wF;
Remark 6.3. Definition implies definition [6.2)

Theorem 6.4. Suppose that the subsequent is true.

a) h: Ax X, x X, =+ X
b) ¢1(¢) and ¢2(¢) are nonnegative, non decreasing continuous functions defined on ¢ € [0, o)

[7e; x2 (1), Rxa (1)) = e, xa.(0), Rxa ()] < Lr()[xa = xaf + £2(4)[Rxr — Rxal,

for all « € A, and x1,x2 € &.
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¢) The function @ € C([0,00),RT) is increasing and there exists « > 0 such that
[ w0 =0 ¥l ds < awo),
Then is M-L-U-H-R stable with respect to wkEj.

Proof . Let ¢ € C1(A,00) be a solution of (5.3)). Then we get

(1) = X, (1,0)¢(0) — /0 L(w@) — () MY ()Y (1, ) (s, C(5), R¢(s))ds

< /Lw(a) B (e (s) V()] ds
0

<aw(t), € (0,00).
Let x € C(A, o0) the unique mild solution of the semilinear problem

Dy x (1) = =2Ax (1) + ke, x(1), Rx(1)), ¢ € (0, 00),
{ (()) ¢(0) (6.1)

We have
X(1) = X3, (1,0)¢(0) + /OLw(L) — () ()Y (1, ) (s, ¢ (<), RC(s))ds, ¢ € (0,00).
It follows that

€(1) = x ()] <

- [ (W00 — () (YA (1)l x(s), R(6))ds
n /OLw(L)—w(c))“ YL, 1A, CLe), RE(6)) — s x(), Rx(s))lds

<aw(i) + A / (@(0) — ) I ()IC(s) — X(6)] + E2(WIRC() — Rx(s)]]ds
0 Jo

<aw(i) + {1{5 / (1) — () ()IC(S) — X)) + £2(2)[C(s) — x()]5*ds

<aw(t) + AM(LF)((;)JFJ) /OL(w(L) — () (9)I¢ () — x(5)|ds,

where £(¢) = sup(¢1(¢),¢2(¢)). By Corollary [2.11] we obtain
LEA

1C(1) = x()] < aw (1) By (MyL(e)(1+ ) (#(0) = 9(0))").

7 Example

The example that follows is examined in the final section to back up the theorem [f:1]s result. Examine the following
equation for a fractional partial differential:

CDEx(1,y) = E?QX( y)+ =
x(¢,0) = x(¢,m), t€A
x(0,y) =xo(y): v € [0,7]

91 cos (X(ba y) + /OL COS([,g)X(g,y)dg) ,

82
where [ = %, le = ainX(Lvy)a X(L) = X(Lvy)’

—tL

Ao X0 R0(0) = 55 cos (e + [ costhntde)  omd (o) =
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Let X be defined as X = L2[0, 7] and 2 by 2Av = —v” on the domain
D) = {v(.) € L*[0, 7], v, v, are absolutely continuous, v € L[0, 7], v(0) = v(x) = 0}.

It is noticeable that 2 has a discrete spectrum and the eigenvalues are {—n? : n € N with the corresponding

normalized eigenvectors e, (y) = \/g sinny. Consequently,

— Z n? (v,e,) en, vE D).

n=1

In addition, A is the infinitesimal generator of a bounded analytic semigroup (V' (¢)),>0, where

U—E e’ (v,en)en, vVEX.

Surely, for all ¢« > 0, ||V (¢)]] < e™*. Hence, we take My = 1, which implies that sup ||V ()| = 1 and (C;) are
L€(0,00)

satisfied. For [ = %, the operator Az is given by the following;:

A2y Z (U,en) €n, v E D).

where D(Az2) = {v € X : E (v,en) e, € X} and HQI_%

= (D@#).111y) , where [Ixly = |[23x]
for y € D(Az). It’s ev1dent now that the purpose i : A x [0, 7] x R — R fulfils the following conditions:

for all (¢, x) € A x [0, 7], A(¢, X, ) is continuous.
for all ¢ € R, A(.,.,<) is measurable. ,
for all c € A and ¢ € R, fi(t,<) is differentiable and %h(b, X,s) € X.
r,.,.) = h(n,.,.) =0.

there exists C' > 0 such that for all (¢, x,s) € A x [0, 7]

A

: %h(uxx)‘ <C.

We now Vo € X 1 possess the following

(h(e, 0, Rp), en) Z/Oﬂ (ge:eb cos (s@(b,y) + /O COS(L@)@(%y)dc)) : (\/Zsinny> dy
:% /OTr 8% (ge:eL cos (go(b,y) + /OL cos(m)@(gy)dc)) . (ﬂcosny) dy.

This suggests that i : A x X% X X% — Xé. Moreover, Yo > 0 by the Minkowski inequality, Our possessions include:

0 e" ¢
cos | (e, y +/ cos(t)p(s, y dg>)
liplly <o Ay (9+6’L ( S 0 ()els.v)
1o et ¢ 2 :
= sup — cos S,y +/ cos(t5)p(s,y dg)) dy
|w|§§o</o o (5o (vt + [ costiopotenn
< sw ([ (grmem (et + [ ostoptsnis) (1ol + 15 [ ot Lyd<|))
lelly <o \Jo \9+e 0

et . ¢ N
< s ( sin (w,yw / COS(K)sO(c,y)dg)(II@IXJrJ u||so||x>)
¢l 1 <o 0

sup ||B(t, 0, Rep)||2 = sup

lelly <o

1
2 X

9+et

—t

<(1+ j*y)ogeJr ” sin (gp(b,y) + /01 cos(x)go(g,y)dg)
<I,(1).
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Consequently, i meets the requirements (Cz) in the following way:

lim_inf %(w(b) — (<)) 1Y () I, (s)ds

—+00

S B 1 . et ¢
_OETDO inf 5/0 (b—¢)"2(1+y y)og ke (@(L,y) +/O cos(m)go(g,y)dg) ds
<(L+j"v) n ( o(t, y)+/ cos(1s)e(s, y)d<> /(L—c)‘%
9 +e L= Jo

=¢.

Sl

SQV%(l +7")

‘( /COSL§ gydg)

Thus, (7.1]) has at least one mild solution.

Conclusion

We examined a semilinear 1-fractional differential equation with starting conditions in this work, which involved
the Volterra integral operator with an integral kernel. The Schauder fixed point theorem allowed us to determine the
solution’s existence. For the uniqueness of the solution, we utilized contraction principle. Additionally, we offered at
least one [0, tmax] solution to (L.I). A few requirements are established for the HU stable, HU-R stable, generalized
HU stable, and generalized HU-R stable of . We demonstrated the existence and uniqueness of with an
example.
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