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Abstract

In this work, we shall be interested in the existence of a solution to the following Dirichlet problem for a specific class
of elliptical anisotropic equations of the type{

A(u) + g(x, u) = f in Ω
u = 0 on ∂Ω,

(0.1)

where Ω is a bounded open set of RN , A =
∑∞

|α|=0(−1)|α|Dα
(
aα|Dαu|pα(x)−2Dαu

)
is an operator of infinite order

and g(x, s) is a non-linear lower order term that verify some natural growth and sign conditions, where the data f is
framed in L1(Ω).

Keywords: Strongly nonlinear elliptic equations of infinite order, monotonicity condition,variable exponents, sign
condition
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1 Introduction

The purpose of this study is to investigate the existence of a weak solution to the nonlinear Dirichlet problem{
A(u) + g(x, u) = f in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain of RN , A is an operator of infinite order defined as:

A(u) =

∞∑
|α|=0

(−1)|α|Dα
(
aα|Dαu|pα(x)−2Dαu

)
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with aα(x, ζ) is a Carathéodory function for all α satisfying the non polynomial growth and coercivity conditions,
without supposing a monotonicity condition in anisotropic Sobolev spaces with variable exponents. Where pα(x) are
continous functions on Ω̄, such that pα(x) > 1 for any x ∈ Ω̄ and for any multi-indices α.

The solvability of the problem (1.1) has been studied by many authors. For example, M. Chrid et al in [5, 8, 9],
demonstrated this result in the particular case when pα(x) = pα. In setting, especially, in the isotropic Lp(x) and

W
m,p(x)
0 (Ω), its has also been used other authors in different articles [11, 14, 15, 16, 18, 20, 21, 25, 27, 28, 29, 30, 31],

The mathematical modeling of physical processes in space of variable exponents has generated a particular interest in
the study of such equations see for example [1, 2, 7, 10].

In this study, we study the presence of a weak solution to problem (1.1) in anisotropic Sobolev spaces of infinte
order W∞

0 (aα, pα(x))(Ω), without supposing a monotonicity condition and we assume that the second member belongs
to L1(Ω).

This paper is organized as follows. In Section 2 we introduce some notation, functional spaces, and certain technical
results that will be needed in the sequel. Section 3 covers the solvability of the main result.

2 Preliminaries

We can begin by recalling some definitions and properties of the variable exponent Lebesgue Sobolev spaces
Lp(x)(Ω), where Ω is a bounded subset of RN . Set

C+(Ω) = {h ∈ C(Ω) : min
x∈Ω

h(x) > 1},

for any h ∈ C+(Ω). We define
h+ = sup

x∈Ω
h(x) and h− = inf

x∈Ω
h(x).

For any p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(x) = {u : u is a measurable real-valued function such that

∫
Ω

|u(x)|p(x) dx < ∞},

endowed with the so-called Luxemburg norm

|u|p(x) = inf{µ > 0 :

∫
Ω

∣∣∣∣u(x)µ

∣∣∣∣p(x) dx ≤ 1},

which is a separable and reflexive Banach space. For basic properties of the variable exponent Lebesgue spaces we
refer to [22].

Lemma 2.1. (see Fan and Zhao [17] and Zhao et al. [31])

(1) The space (Lp(x)(Ω), |u|p(x)) is a separable, uniform convex Banach space, and its conjugate space is Lq(x)(Ω),

where 1
q(x) +

1
p(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣ ∫

Ω

uv dx

∣∣∣∣ ≤ (
1

p−
+

1

q−

)
|u|p(x)|v|q(x).

(2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then

Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

and the imbedding is continuous.

Lemma 2.2. (see Fan and Zhao [17] and Zhao et al. [31]) If we denote

ρ(u) =

∫
Ω

|u|p(x)dx ∀ u ∈ Lp(x),

then
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(1) |u|p(x) < 1 (= 1;> 1) ⇔ ρ(u) < 1 (= 1;> 1);

(2) |u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(3) |u|p(x) < 1 ⇒ |u|p
−

p(x) ≥ ρ(u) ≥ |u|p
+

p(x);

(4) |u|p(x) → 0 ⇔ ρ(u) → 0; |u|p(x) → ∞ ⇔ ρ(u) → ∞.

Lemma 2.3. (see Fan and Zhao [17] and Zhao et al. [31])
If u, un ∈ Lp(x)(Ω), n = 0, 1, 2, ..., then the following statements are equivalent each other:

(1) lim
n→∞

|un − u|p(x) = 0;

(2) lim
n→∞

ρ(un − u) = 0;

(3) un → u in measure in Ω and lim
n→∞

ρ(un) = ρ(u).

Finally, we introduce a naturel generalization of the variable exponent Sobolev space W
m,p(x)
0 (Ω), that will enable

us to study with sufficient accuracy anisotropic problem in section 3. For this purpose, let us denote by p⃗(x) the
vectorial function

p⃗(x) = {pα(x), |α| ≤ m},
where m is a positive integer such that m ≥ 1 and pα(.) ∈ C+(Ω) for all multi-indices α such that |α| ≤ m.

We denote by C∞
0 (Ω) the space of all functions with compact support in Ω with continuous derivatives of arbitrary

order. We define W
m,p⃗(x)
0 (Ω), the anisotropic variable exponent Sobolev space, as the closure of C∞

0 (Ω) with respect
the norm

∥u∥m,p⃗(x) =

m∑
|α|=0

|Dαu|pα(x).

In the case when pα(x) ∈ C+(Ω) are constant functions for any |α| ≤ m, the resulting anisotropic space is denoted

by Wm,p⃗
0 (Ω). Such spaces was developed and considered by authors in [5], [8] and [9] in the study of some anisotropic

strongly non linear equations. It was proved thatWm,p⃗
0 (Ω) is a reflexive Banach space for any pα > 1 for all multi-indice

|α| ≤ m. This result can be easily extend to W
m,p⃗(x)
0 (Ω). In fact, the following lemma follows

Lemma 2.4. (see [1]) The space (W
m,p⃗(x)
0 (Ω), ∥.∥m,p⃗(x)) is a Banach and reflexive space.

In order to facilitate the manipulation of the space W
m,p⃗(x)
0 (Ω), we introduce p++ and p−− as

p++ = max{p+α (x), |α| ≤ m}, p−− = min{p−α (x), |α| ≤ m}.

Lemma 2.5. Let Ω be a bounded open subset of RN . If mp−− > N , then W
m,p⃗(x)
0 (Ω) ⊂ L∞(Ω) ∩ Ck(Ω) where

k = E(m− N
p−
−
). Moreover, the embedding is compact.

The proof follows immediately from the corresponding embedding theorems in the isotropic case by using the fact

that W
m,p⃗(x)
0 (Ω) ⊂ W

m,p−
−

0 (Ω). Now, let aα ≥ 0 be a real numbers for multi-indices α. The variable exponent Sobolev
space of infinite order is the functional space defined by

W∞(aα, pα(x))(Ω) =

{
u ∈ C∞(Ω) : σ(u) =

∞∑
|α|=0

aα|Dαu|p
+
α

pα(x) < ∞
}
.

Since we shall deal with the Dirichlet problem in this paper, we shall use the functional space W∞
0 (aα, pα(x))(Ω)

defined by

W∞
0 (aα, pα(x))(Ω) =

{
u ∈ C∞

0 (Ω) : σ(u) =

∞∑
|α|=0

aα|Dαu|p
+
α

pα(x) < ∞
}
.

In contrast with the finite order Sobolev space, the very first question, which arises in the study of the spaces
W∞

0 (aα, pα(x))(Ω), is the question of their nontriviality (or nonemptiness), i.e. the question of the existence of a
function u such that σ(u) < ∞.



4

Definition 2.6. (Dubinskii [13]) The space W∞
0 (aα, pα(x))(Ω) is called nontrivial space if it contains at least one

function which not identically equal to zero, i.e. there is a function u ∈ C∞
0 (Ω) such that σ(u) < ∞.

It turns out that the answer of this question depends not only on the given parameters aα, pα of the spaces
W∞(aα, pα(x))(Ω), but also on the domain Ω. The dual space of W∞

0 (aα, pα(x))(Ω) is defined as follows

W−∞(aα, p
′
α(x))(Ω) =

{
h : h =

∞∑
|α|=0

(−1)|α|aαD
αhα, σ

′
(h) =

∞∑
|α|=0

aα|hα|
p′+

α

p′
α(x) < ∞

}
,

where hα ∈ Lp′
α(x)(Ω) and p′α is the conjugate of pα, i.e., p

′
α = pα

pα−1 . By the definition, the duality pairing between

W∞
0 (aα, pα(x))(Ω) and its dual space W−∞(aα, p

′
α(x))(Ω) is given by the relation

⟨h, v⟩ =
∞∑

|α|=0

aα

∫
Ω

hα(x)D
αv(x) dx,

which, as it is not difficult to verify, is correct. In the particular case when pα(x) = pα for any multi-indices α, the
Sobolev space of infinite order is defined as

W∞
0 (aα, pα)(Ω) =

{
u ∈ C∞

0 (Ω) : σ(u) =

∞∑
|α|=0

aα|Dαu|rαpα
< ∞

}
.

aα ≥ 0, pα > 1 and rα > 1 are real numbers for all multi-indices α and |.|pα
is the usual norm in the Lebesgue space

Lpα(Ω), (see [13], [12]).

Lemma 2.7. (see [1])For all nontrivial space W∞
0 (aα, pα(x))(Ω), there exists a nontrivial space W∞

0 (cα, 2)(Ω) such
that W∞

0 (aα, pα(x))(Ω) ⊂ W∞
0 (cα, 2)(Ω).

3 Essential assumptions and main result

Let Ω is an open and bounded set of RN and the differential operatorA : W∞
0 (aα, pα(x))(Ω) −→ W−∞(aα, p

′
α(x))(Ω)

in divergence form

A(u) =

∞∑
|α|=0

(−1)|α|DαAα(x,D
γu), |γ| ≤ |α|. (3.1)

where Aα : Ω×Rλα → IR is a real function and λα is the number of multi-indices γ such that |γ| ≤ |α|. We make the
following assumptions:

(A1) Aα(x, ξα) is a Carathéodory function for all α, |γ| ≤ |α|.

(A2) For a.e. x ∈ Ω, all m ∈ IN∗, all ξγ , ηα, |γ| ≤ |α| and some constant c0 > 0, we assume that∣∣∣∣ m∑
|α|=0

Aα(x, ξγ)ηα

∣∣∣∣ ≤ c0

m∑
|α|=0

aα|ξα|pα(x)−1|ηα|,

where aα ≥ 0, are reals numbers and (pα(.))α is a bounded sequence of functions in C+(Ω) for all multi-indices
α.

(A3) There exist constants c1 > 0, c2 ≥ 0 such that for all m ∈ IN∗, for all ξγ , ξα; |γ| ≤ |α|, we have

m∑
|α|=0

Aα(x, ξγ) · ξα ≥ c1

m∑
|α|=0

aα|ξα|pα(x) − c2.

(A4) The space W∞
0 (aα, pα(x))(Ω) is nontrivial.

(G1) The function g : Ω× IR 7→ IR is of Carathéodory type such that, for all δ > 0,

sup
|u|<δ

|g(x, u)| ≤ hδ(x) ∈ L1(Ω).
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(G2) We assume the ”sign condition” g(x, u)u ≥ 0, for a.e. x ∈ Ω and all u ∈ IR.

Finally, we assume that
f ∈ L1(Ω), (3.1)

and we shall prove the existence result without assuming any monotonicity condition.

3.1 Existence results

Our main result is the following theorem.

Theorem 3.1. Let us assume the conditions (A1) − (A4), (G1) and (G2). Then for all f ∈ L1(Ω), there exists
u∈W∞

0 (aα, pα(x))(Ω) such that g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω)

⟨Au, v⟩+
∫
Ω
g(x, u)v dx = ⟨f, v⟩, for all v ∈ W∞

0 (aα, pα(x))(Ω).
(3.2)

The proof of Theorem 3.1 is divided into several steps: we show first the existence of solutions to the approximate
problem of (3.2) and a priori estimates, the convergence of approximate solution and then passing to the limit in the
approximate problems will yield the main result.

Step 1: Approximate problem

Consider φ ∈ C∞
0 (IRN ) such that 0 < φ(x) < 1 and φ(x) = 1 for x close to 0. Let fn be a sequence of regular

functions defined by

fn(x) = φ(
x

n
)Tnf(x),

where Tn is the usual truncation given by

Tnξ =

{
ξ if |ξ| < n
nξ
|ξ| if |ξ| ≥ n.

It is clear that |fn| ≤ n for a.e. x ∈ Ω. Thus, it follows that fn ∈ L∞(Ω).Using Lebesgue’s dominated convergence
theorem, since fn → f a.e. x ∈ Ω and |fn| ≤ |f | ∈ L1(Ω), we conclude that fn strongly converges to f in L1(Ω).
Define the operator of order 2n+ 2 by

A2n+2(u) =
∑

|α|=n+1

(−1)n+1cαD
2αu+

n∑
|α|=0

(−1)|α|DαAα(x,D
γu), |γ| ≤ n,

where cα are constants small enough such that they fulfill the conditions of the Lemma 2.6. The operator A2n+2 is
clearly monotone since the term of higher order of derivation is linear and satisfies the monotonicity condition, this
follows from the result of [23]. Moreover from assumptions (A1), (A2) and (A3), we deduce that A2n+2 satisfies the
growth, the coerciveness and the monotonicity conditions. Hence by Theorem 3.1 (see [1]), there exists an approximate
solution un of the following problem:

(Pbn)

{
g(x, un) ∈L1(Ω), g(x, un)un ∈L1(Ω)

⟨A2n+2(un), v⟩+
∫
Ω
g(x, un)v dx = ⟨fn, v⟩, ∀v ∈ W

n+1,p⃗(x)
0 (Ω)

with

fn =

n∑
|α|=0

(−1)|α|aαD
αfα , fα ∈Lp′

α(x)(Ω).

Step 2: Apriori estimates

Set v = un and using (A3), (G2), Lemma 2.1 and 2.2, we deduce the estimates

∑
|α|=n+1

cα|Dαun|22 +
n∑

|α|=0

aα|Dαun|βα
pα

≤ K (3.5)
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and ∫
Ω

g(x, un)un dx ≤ K (3.6)

for some constant K = K(f) > 0, with

βα =

{
p+α if |Dαu|pα(x) < 1
p−α if |Dαu|pα(x) > 1

From this and since the summation in estimate (3.5) is finite, we can also write

∑
|α|=n+1

cα|Dαun|22 +
n∑

|α|=0

aα|Dαun|
p+
α

pα ≤ K. (3.7)

The estimate (3.7) is equivalent to
n+1∑
|α|=0

aα|Dαun|
p+
α

pα(x) ≤ K (3.8)

with aα = cα and pα = 2 for |α| = n+ 1. Consequently, we have

∥un∥Wn+1,p⃗(x) ≤ K. (3.9)

Then via a diagonalization process, there exists a subsequence still, denoted by un, which converges uniformly to
an element u ∈C∞

0 (Ω), also for all derivatives there holds Dαun → Dαu (for more details we refer to [5], [13]).

Step 3: Convergence of problem (Pbn)

There exists a solution un of problem (Pbn), n = 1, 2, . . .. Then by passing to the limit, we have

lim
n→+∞

⟨A2n+2(un), v⟩+ lim
n→+∞

∫
Ω

g(x, un)v dx = lim
n→+∞

⟨fn, v⟩,

for v ∈ W∞
0 (aα, pα(x))(Ω). It is clear that

lim
n→+∞

⟨fn, v⟩ = ⟨f, v⟩ for all v∈W∞
0 (aα, pα(x))(Ω).

Now, we shall prove that

lim
n→+∞

⟨A2n+2(un), v⟩ = ⟨Au, v⟩, for all v∈W∞
0 (aα, pα(x))(Ω).

In fact, let n0 be a fix number sufficiently large (n > n0) and let v∈W∞
0 (aα, pα)(Ω). Set

⟨A(u)−A2n+2(un), v⟩ = I1 + I2 + I3,

where

I1 =

n0∑
|α|=0

⟨Aα(x,D
γu)−Aα(x,D

γun), D
αv⟩

I2 =

∞∑
|α|=n0+1

⟨Aα(x,D
γu), Dαv⟩

I3 = −
n∑

|α|=n0+1

⟨Aα(x,D
γun), D

αv⟩ −
∑

|α|=n+1

cα⟨Dαun, D
αv⟩,

or in another form,

I3 = −
n+1∑

|α|=n0+1

⟨Aα(x,D
γun), D

αv⟩.
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with Aα(x, ξγ) = cαξα and cα ≥ 0 for |α| = n + 1. We will go to the limit as n → +∞ to prove that I1, I2 and I3
tend to 0. Starting by I1; we have I1 → 0 since Aα(x, ξγ) is of Carathéodory type. The term I2 is the remainder of a
convergent series, hence I2 → 0. For what concerns I3; in view of (A2) and Hölder inequality (Lemma 2.1) we have∣∣∣∣ n+1∑

|α|=n0+1

⟨Aα(x,D
γun), D

αv⟩
∣∣∣∣ ≤

n+1∑
|α|=n0+1

|⟨Aα(x,D
γun), D

αv⟩|

≤ c0

n+1∑
|α|=n0+1

aα

∫
Ω

|Dαun|pα(x)−1|Dαv| dx

≤ c0

n+1∑
|α|=n0+1

aα| |Dαun|pα(x)−1|p′
α(x)|Dαv|pα(x).

Now, in view Lemma 2.3, one get

| |Dαun|pα(x)−1|p′
α(x) ≤

(∫
Ω

|Dαun|(pα(x)−1)p′
α(x) dx

)να

≤ (

∫
Ω

|Dαun|pα(x) dx

)να

≤ |Dαun|να βα

pα(x)

≤ |Dαun|
p+
α−1

pα(x),

where να and βα are real numbers for all multi-indices |α| ≤ n, defined as

να =

{
1

p′
α

+ if | |Dαun|pα(x)−1|p′
α(x) < 1

1
p′
α

− if | |Dαun|pα(x)−1|p′
α(x) > 1

βα =

{
p+α if |Dαun|pα(x) < 1
p−α if |Dαun|pα(x) > 1.

It’s very easy to verify that for all multi-indices |α| ≤ n, on has

να βα ≤ p+α − 1.

Indeed, we have p′α = pα

pα−1 , then,

case 1: να βα = 1
p′+
α
p+α =

p+
α−1

p+
α

p+α = p+α − 1.

case 2: να βα = 1
p′−
α
p−α =

p−
α−1

p−
α

p−α = p−α − 1 ≤ p+α − 1.

Therefore, for all ε > 0, there exists k(ε) > 0 (see [6, p. 56]) such that∣∣∣∣ n+1∑
|α|=n0+1

⟨Aα(x,D
γun), D

αv⟩
∣∣∣∣ ≤ εc0

n+1∑
|α|=n0+1

aα|Dαun|
p+
α

pα(x) + c0k(ε)

n+1∑
|α|=n0+1

aα|Dαv|p
+
α

pα(x)

≤ εc0K + c0k(ε)

∞∑
|α|=n0+1

aα|Dαv|p
+
α

pα(x),

where K is the constant given in the estimate (3.8). Since the sequence (pα(x)) is bounded and

∞∑
|α|=n0+1

aα|Dαv|p
+
α

pα(x)

is the remainder of a convergent series, therefore I3 → 0 holds. Hence ⟨A2n+2(un), v⟩ → ⟨A(u), v⟩ as n → +∞ for all
v ∈ W∞

0 (aα, pα(x))(Ω). It remains to show, for our purposes, that

lim
n→+∞

∫
Ω

g(x, un)v dx =

∫
Ω

g(x, u)v dx,
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for all v ∈ W∞
0 (aα, pα(x))(Ω). Indeed, we have un → u uniformly in Ω, hence g(x, un) → g(x, u) for a.e. x ∈ Ω. In

view of (3.6), we deduce by Fatou’s lemma that∫
Ω

g(x, u)u dx ≤ lim
n→+∞

∫
Ω

g(x, un)un dx ≤ K.

This implies that g(x, u)u ∈ L1(Ω). On the other hand, let δ > 0, since |g(x, t)|δ ≤ |g(x, t)t| and then |g(x, t)| ≤
δ−1|g(x, t)t| for |t| ≥ δ, we have

|g(x, un)| ≤ sup
|t|≤δ

|g(x, t)|+ δ−1|g(x, un).un|

≤ hδ(x) + δ−1|g(x, un)un|.

It follows that ∫
E

|g(x, un)| dx ≤
∫
E

hδ(x) dx+ δ−1K,

for some measurable subset E of Ω and for some ε > 0. Here, K is the constant of (3.2) which is independent

of n. For |E| sufficiently small and δ = 2K
ε , we obtain

∫
E

|g(x, un)| dx < ε. Then, using Vitali’s, we get theorem

g(x, un) → g(x, u) in L1(Ω). Hence it follows that g(x, u) ∈ L1(Ω).

Step 4: Passing to the limit

By passing to the limit, we obtain

⟨Au, v⟩+
∫
Ω

g(x, u)v dx = ⟨f, v⟩, for all v ∈ W∞
0 (aα, pα(x))(Ω).

Consequently,  g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω)

⟨Au, v⟩+
∫
Ω

g(x, u)v dx = ⟨f, v⟩ for all v ∈ W∞
0 (aα, pα(x))(Ω)

This completes the proof.

Remark 3.2. Note that the existence result is given with no monotonicity condition on the operator.

4 Conclusions

We have studied a strongly nonlinear elliptic problem in the framework anisotropic Sobolev spaces of infinite order
with variable exponents. The order term in elleptic equation is defined by a nonlinear operator of infinite order and a
nonlinear lower order term that verify some natural growth and sign condition and the second term f belongs in L1(Ω).
Under the usual assumptions on the data, we have demonstrated the existence of a weak solution to this problem. The
proof of this result is developed through several steps. The existence result is given with no monotonicity condition
on the operator.
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