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Abstract

A common technique for navigation and positioning applications is the Global Positioning System (GPS)/Inertial
Navigation System (INS) integration, which combines the strengths of GPS and INS to offer accurate and reliable
information. As a standalone system, the performance of the INS deteriorates as time is passed. Kalman Filter
(KF) is used for GPS/INS integration, and its performance is excellent for simple data. However, in a complex and
natural set environment, its performance degrades when the system performs relatively long; therefore, resolving the
long-time problem for the GPS/INS system is challenging. The novelty of this paper is GPS/INS integration with the
Faded Kalman Filter (FKF). In the FKF, the measurement updates are weighted differently to adapt to changes in
the system. This approach allows the filter to adapt to changes or uncertainties in the system dynamics. GPS/INS
integration performance is significantly improved using this algorithm rather than a simple KF. An average of 45%
reduces the positioning errors compared to traditional KF.
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1 Introduction

An Inertial Navigation System (INS) is a technology designed to gauge the orientation, position, and velocity of a
mobile entity, like a vehicle or bicycle. Its applicability extends to wearable devices, such as shoes or clothing, enabling
the monitoring of movement and activity independently of external references, such as GPS or radio signals [5, 7, 22].
This sensing device comprises two primary components: an Inertial Measurement Unit (IMU), responsible for gauging
linear acceleration and angular velocity, and a mechanization block that analyzes the IMU data to derive information
on orientation, position, and velocity [20]. An INS provides several advantages, including functioning autonomously,
operating automatically, ensuring reliability, and remaining unaffected by external disturbances [3]. However, an INS
also has drawbacks, such as having high cost, complexity, and susceptibility to sensor errors that accumulate over
time. On the other hand, GPS is a system that uses satellites to give location and time information to a receiver on
or close to Earth. It computes the receiver’s location by using trilateration, which is based on the distance and time
difference between the receiver and the satellites. GPS offers many benefits, such as providing precise, dependable,
worldwide, and available information.

By combining the strengths of GPS and INS, GPS/INS integration is a method that provides precise and dependable
information for navigation and positioning applications. GPS/INS integration enhances positioning performance by
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leveraging the complementary features of GPS and INS. GPS exhibits high precision; however, it is not always
available or reliable, whereas INS is consistently available and reliable but possesses lower precision. Through the
fusion of data from GPS and INS, GPS/INS integration achieves high precision, availability, and reliability in various
situations and settings [20, 3, 18]. Addressing the challenge of GPS integration involves considering two key aspects.
Firstly, enhancing the system with additional sensors, and secondly, designing and implementing suitable processing
and estimation algorithms. The selection of sensors for integration is contingent on the specific application and
technological requirements.

One common sensor employed in navigation systems for applications like autonomous cars, drones, robots, and
satellites is the camera. Cameras provide vision-like sensory capabilities and facilitate the recognition of 2D infor-
mation. The camera offers advantages such as cost-effectiveness, high resolution, and the capability to detect colors
and shapes. However, it is not without limitations, including diminished performance in extreme weather conditions,
limited range and angle of view, and susceptibility to occlusion and glare. Additionally, managing the data generated
by the camera presents a challenging task, averaging between 20-40 MB/Sec [24]. Another sensor commonly used
is LiDAR, offering higher accuracy than a camera for positioning. Nevertheless, LiDAR generates substantial data
volumes, ranging from 10-70 MB/Sec., necessitating considerable computing power for real-time processing [16]. Ad-
ditionally, a sensor designed to measure the speed of a moving vehicle is known as a Doppler Velocity Log (DVL).
It provides precise and consistent speed measurements in any direction, irrespective of the vehicle’s orientation or
movement. However, its performance is influenced by weather and environmental factors. [12]. Other sensors can
assist the system, such as a magnetometer [28], which measures the magnitude and direction of the magnetic fields.
A barometer uses the atmospheric pressure to calculate the altitude [14]. Furthermore, 5G networks can support the
GPS through some map applications or initialization states [13, 17]. Nevertheless, ensuring network coverage for the
entire environment poses a challenging task, demanding the deployment of more base stations, which incurs significant
costs. Consequently, augmenting sensors introduces numerous challenges, including escalating system costs, height-
ened computational load, increased storage utilization, elevated system failure rates, issues related to matching and
timing, and the management of battery resources. As a result, alternative approaches such as processing algorithms
have been proposed to address the challenges associated with integration.

The second approach involves data fusion and processing algorithms, commonly referred to as classic algorithms due
to their analytical and iterative-based equations. The Kalman Filter (KF) stands out as the preferred choice among
experts for various applications. KF is adept at operating in linear form, with the assumption that the system’s
noise follows a Gaussian distribution. An enhanced method, the Extended Kalman Filter (EKF), is particularly
robust as it can account for the system’s non-linearity by employing the Taylor series [20]. While the Extended
Kalman Filter (EKF) is well-suited for handling non-linearity, it exhibits limitations in extreme scenarios. To address
this, the Unscented Kalman Filter (UKF) has been introduced. The UKF employs a deterministic sampling method
to propagate a Gaussian random variable through the non-linear system, in contrast to the EKF’s utilization of a
linearization method. The UKF offers advantages over the EKF, including greater precision, elimination of the need for
Jacobians or Hessians, and the capability to handle non-linearities that may be discontinuous or non-differentiable [6].
In contrast, the Unscented Kalman Filter (UKF), while advantageous, is not exempt from limitations. It introduces
challenges such as heightened computational demands, complexities associated with high-dimensional state vectors, and
reliance on specific assumptions and approximations. To address these concerns, the Cubature Kalman Filter (CKF)
has been developed as a method for enhancing non-linear estimation, particularly improving upon the limitations of
the UKF [29]. CKF uses a set of cubature points to compute the mean and covariance of the state distribution of a
non-linear system with additive Gaussian noise. CKF is one of the nearest approximations to the Bayesian filter and
has some benefits over UKF, such as higher precision, no need for Jacobians or Hessians, and the ability to handle
non-linearities that are discontinuous or non-differentiable [29, 19]. Moreover, there are new methods of KF, such as
Kalman-Neural Network (NN), which improve the KF and EKF in robustness and non-linearity [9, 23]. Within these
methodologies, learning algorithms play a crucial role in managing uncertain conditions. For instance, the Long Short-
Term Memory (LSTM) network proves beneficial in estimating Kalman Filter (KF) gain, presenting an alternative to
traditional equations [8, 2, 26, 4, 10, 1, 30, 11].

This paper introduces Faded Memory Kalman Filter (FMKF) to enhance the performance of the GPS/INS inte-
gration system in land-based navigation. In this scenario, the KF deteriorates and deviates or oscillates from true
values over time. By fading the covariance of measurement noise, the system accuracy improves and the problems are
solved. The remains of this article are organized as follows. In Section 2, the system architecture is fully described.
In Section 3 the KF and FMKF methods are illustrated. Next, the experimental results of the proposed method
performed and investigated are mentioned in Section 4. Finally, the conclusion is presented in Section 5.
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2 System Methodology and Mathematical Model

The system architecture consists of three main components: data collectors, data processors, and core modules,
as shown in Fig. 1. The data collectors, such as IMU and GPS, capture the physical parameters of the system. The
data processors perform basic mathematical operations on the data. The core modules such as mechanization block,
KF, and INS error modeling apply the complex mathematical models that determine the system behavior. Table 1
also provides the parameters and definitions for navigation used in the following sections.

Figure 1: Overall architecture of the system

2.1 Data Collectors

The system consists of two sensors: IMU and GPS. The IMU measures the linear acceleration and angular velocity
of the system in the body frame coordinates The GPS calculates the position and velocity of the system in the global
frame coordinates. The IMU has different sampling rates depending on the application.

2.2 Data Processing Elements

The data processing consists of elements such as difference block and correction block, as described in Table2.

2.3 Main Blocks

This section consists of three main components: mechanization, INS error modeling, and KF. In the following,
mechanization block and INS error modeling are described.

2.3.1 Mechanization Block

This block computes the attitude, velocity, and position of the vehicle using the accelerometer and gyroscope data.
Eq. (2.1) shows the compact formula of the mechanization block: ṙl

v̇l

Rb
l

 =

 D−1vl

Rl
bf

b − (2Ωl
ie +Ωl

el)v
l + gl

R(qw, qx, qy, qz)

 (2.1)

The details of the Eq. (2.1) is described in Table 1. Figure 2 shows the internal structure of this block. The
mechanization block receives the IMU’s information (f b

(x,y,z), w
b
ib(x,y,z)). It then calculates the quaternions (Eq. (2.2))

and the rotation matrix using the third row of Eq. (2.1). The rotation matrix has two purposes: obtaining the Euler



288 Alaeiyan, Mosavi, Ayatollahi

Parameters

φ Latitude vd Down velocity Euler angles (Attitude) Pitch, roll, yaw
λ Longitude rl [φ, λ, h] f b

x,y,z(Accelerometer) [fx, fy, fz]
T

h Altitude from see level vl [vn, ve, vd]
T wb

ibx,y,z
(Accelerometer) [wx, wy, wz]

T

vn North velocity Equatorial radius a = 6378137.0m
ve East velocity Eccentricity e = 0.08181919

Title Definition and formula

Local-level frame (l)
Fixed and locally oriented coordinate system attached to
the Earth’s surface.

Body frame (b)
Moving and rotating coordinate system attached to the
vehicle or sensor.

Earth-Centered Earth-
Fixed (ECEF) (e)

Rotating coordinate system attached to the Earth’s center.

ωl
il

Rotation of the Earth about its spin axis
(ωe

ie = 15 ◦ /hr) which is interpreted in the local-level frame.
ṙl and v̇l The derivative of those vector.

Rotation matrix
computation (qw, qx, qy, qz)

Rb
l =

q2w + q2x − q2y − q2z 2(qxqy − qwqz) 2(qxqz − qwqy)
2(qxqy + qwqz) q2w − q2x + q2y − q2z 2(qyqz − qwqx)
2(qxqz + qwqy) 2(qyqz − qwqx) q2w − q2x − q2y + q2z


Rb

l = (Rb
l )

T = (Rb
l )

−1

Gravity computation

gl =
[
0 0 γ

]T
γ = a1(1 + a2 sin

2 φ+ a3 sin
4 φ) + (a4 + a5 sin

2 φ)h+ a6h
2

a1 = 9.7803267714m/s2, a2 = 0.0052790414, a3 = 0.0000232718,
a4 = −0.0000030876910891 1/s2, a5 = 0.0000000043977311 1/s2,
a6 = 0.0000000000007211 1/(ms2).

Position transition
matrix

D−1 =

 1
(RN+h) cosφ 0 0

0 1
RM+h 0

0 0 −1


Table 1: Parameters and definitions

Figure 2: Details of mechanization block
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Table 2: Data processing elements.

Name Description Formula and structure

Difference
Block

This block determines the KF inputs.
The KF inputs are the first six equations
when the GPS is valid. When the GPS is
invalid,the KF inputs are the last
two equations.

 ∆φINS−GPS = φINS − φGPS |k
∆λINS −GPS = λINS − λGPS |k
∆hINS −GPS = hINS − hGPS |k (∆VNorth)INS−GPS = (VNorth)INS − (VNorth)GPS |k
(∆VEast)INS−GPS = (VEast)INS − (VEast)GPS |k
(∆VDown)INS−GPS = (VDown)INS − (VDown)GPS |k

Correction
Block

This block corrects the output of the INS.
The conditions of the equations is same
as difference block.

 φCorrected = φINS −∆φKalman |k
λCorrected = λINS −∆λKalman |k
hCorrected = hINS −∆hKalman |k (∆VNorth)Corrected = (VNorth)INS − (∆VNorth)Kalman |k
(∆VEast)Corrected = (VEast)INS − (∆VEast)Kalman |k
(∆VDown)Corrected = (VDown)INS − (∆VDown)Kalman |k

angles and transforming the (f b
(x,y,z) from the body frame to the local-level frame. Next, it integrates the gravity,

acceleration, and ωl
el, ω

l
ie data to obtain the velocity. Then, it derives the position from the velocity.

Also, the gravity block calculates the Earth’s gravity at a specific location, as described in Table 1. The quaternion
computation block derives the quaternion to obtain the rotation matrix (Rb

l ). It is given by Eq. (2.2) [27, 21]:

q4×1|k+1 = q4×1|k + 0.5[2(cos
θ

2
− 1)I4×4 +

2

θ
sin

θ

2
S(ω)]q4×1|k (2.2)

where θ =
√

(ωb
lb,x)

2 + (ωy
lb,x)

2 + (ωz
lb,x)

2 and S(ω) is given by Eq. (2.3):

S(ω) =

[
−(Ωb

lb)3×3 (ωb
lb)3×1

(ωb
lb)

T
1×3 0

]
4×4

(2.3)

Moreover, for finding the Euler’s angles, the attitude computation block derives the pitch, roll and yaw angles,
described in Eq. (2.4):

pitch = tan−1 Rl
b(3, 2)

Rl
b(3, 3)

, roll = sin−1 −Rl
b(3, 1), yaw = tan−1 Rl

b(2, 1)

Rl
b(1, 1)

(2.4)

where Rl
b(i, j) denotes the ith row of the jth column value of the rotation matrix.

2.3.2 INS Error Modeling

The system model is given by Eq. (2.5):

δẋ15×1 = F15×15δx15×1 + g15×1w (2.5)

The state vector (δx) includes error components of the position, velocity, and attitudes, as well as accelerometer
biases and gyroscope drifts, attained by the second-order of Gauss-Markov equations [21]. The details of the Eq. (2.5)
is explained in Table 3.

3 Faded Memory Kalman Filter

The first part of the KF is the system model, equal to Eq. (2.5). The second part of the KF is the measurement
model expressed in Eq. (3.1). The details of Eq. (3.1) is described in Table 4.

δz6×1 = H6×15δx15×1 + η6×1. (3.1)
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Table 3: Equation (2.5)’s description

Title Description and Formula

Expanded version
of δx

δx15×1 =
[
δrl3×1 δvl3×1 εl3×1 δωl

3×1 δf l
3×1

=
]T

=

[
δφ, δλ, δh︸ ︷︷ ︸

Position Errors

, δvn, δve, δvd︸ ︷︷ ︸
V elocity Errors

, δp, δr, δA︸ ︷︷ ︸
Attitude Errors

, δωx, δωy , δωz︸ ︷︷ ︸
Gyro Errors

, δfx, δfy , δfz︸ ︷︷ ︸
Accelerometer Errors

]

Noise distribution
vector (g)

g =
[
σr,1×3 σv,1×3 σϵ,1×3 σω,1×3 σf,1×3

]T
σr,1×3, σv,1×3 and σϵ,1×3 are knowledge base and depend on the sensors and applications with

quantity [10−7, 10−12].
σω,1×3 and σf,1×3 are obtained from the second-order of Gauss-Markov equations.

F is the dynamic
coefficient matrix

F =


03×3 Fr 03×3 03×3 03×3

03×3 03×3 Fv 03×3 Rl
b

03×3 Fϵ 03×3 Rl
b 03×3

03×3 03×3 03×3 Fω 03×3

03×3 03×3 03×3 03×3 Ff


15×15

Fr =


1

(RN+h) cosϕ
0 0

0 1
RM+h

0

0 0 −1

 Fε =


1

RM+h
0 0

0 −1
RN+h

0

0 − tanφ
RN+h

0

 Ff =

−βfx 0 0
0 −βfy 0
0 0 −βfz


Fv =

 0 fd −fe
−fd 0 −fn
fe fn 0

 Fω =

−βωx 0 0
0 −βωy 0
0 0 −βωz

 {
βω(x, y, z)
βf(x,yz)

= Gauss Markov Equation

After describing the navigation-based KF’s equations, The KF steps are summarized in Table 5. The KF has two
main steps (prediction and correction) and one minor (initialization or prior information).

A system model may have a finite validity period, beyond which it fails to capture the system dynamics accurately[25].
To mitigate this issue, attenuating the older measurements is preferred over time, which can be done by incremen-
tally increasing the noise covariance R of those measurements to reduce their impact on the current estimate. In
mathematical terms:

Rk = Rℵ−(k+1) (3.2)

where α is a positive constant and fading factor. Over time k becomes greater and Rk gradually decreases, thereby
giving greater weight to the most recent data.

4 Results and Discussions

This paper has described the in the previous sections, and the next sections will report the experiments and results.
The scenario is car navigation in urban land with the MPU6050 sensor (IMU, and u-blox 6 GPS. The IMU has a rate
of 100 Hz, and the GPS has a rate of 1 Hz. This sensor is common and is used for commercial purposes. Table 6
shows the information and 2D path of the trajectories. Moreover, trajectories 1, 3, 4, 5, and 6 are local datasets (near
campus) with lower velocity and position changes. Trajectories 2, 7, 8, and 9 are highway datasets with higher velocity
and some traffic congestion.

To assess the performance of the FKF and KF, Root Mean Squa re Error (RMSE) and Signal-to-Error-Ratio (SER)
are used. RMSE show the error from true path in XYZ based on meter. The formulation of the RMSE is described
in Eq. (4.1) and total RMSE is described in Eq. (4.2):

RMSEx,y,z =

√√√√ 1

Number of Samples

Number of Samples∑
i=1

(True Valuei − Estimated valuei)2 (4.1)

RMSETotal =
√
RMSE2

x +RMSE2
y +RMSE2

z (4.2)

On the other hand, the SER shows the power of the signal to error and is calculated by Eq. (4.3). The MSS is the
mean-squared value of the actual data and MSE is the mean-squared value of the prediction error [15].

SERx,y,z = 10 log10

∣∣∣∣MSS

MSE

∣∣∣∣
x,y,z

(4.3)
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Table 4: Details of the Eq. (3.1)

Title Formula Description

State vector δx15∗1 Contains the INS’s errors.

Measurement vector δz =

[
rlINS − rlGPS
vlINS − vlGPS

]
=


ϕINS − ϕGPS

λINS − λGPS

hINS − hGPS

vn,INS − vn,GPS

ve,INS − ve,GPS

vd,INS − vd,GPS


The difference of the GPS’s and
INS’s position and velocity.

Measurement noise η6×1 Zero-mean with covariance R.
Measurement design
matrix

H =
[
I6×6 06×9

]
6×15

Measurements directly correspond to the
position and velocity error states.

Variances of the
measured states

R =



σ2
ϕ 0 0 0 0 0

0 σ2
λ 0 0 0 0

0 0 σ2
h 0 0 0

0 0 0 σ2
vn

0 0
0 0 0 0 σ2

ve
0

0 0 0 0 0 σ2
vd


6×6

Covariance of measurement noise
and is selected knowledge based.

The state prediction
covariance matrix

P =


σ2
rI3×3 03×3 03×3 03×3 03×3

03×3 σ2
vI3×3 03×3 03×3 03×3

03×3 03×3 σ2
ϵ I3×3 03×3 03×3

03×3 03×3 03×3 σ2
ωI3×3 03×3

03×3 03×3 03×3 03×3 σ2
f I3×3


15×15

All σ terms are 3× 3 diagonal matrices
associated with the position, velocity,
attitude, gyroscope’s bias/drift, and
accelerometer’s bias/drift.

Table 5: KF time update prediction and correction equations (k is the discrete time step)
Definition Formula Description

Initialization:
A priori information

R0, Q0

δx0, P0

The matrix R0, Q0 are estimated on the
basis of prior experience with the system and
tuned to get the best estimates
of the states.

Prediction System dynamic model:
δxk = Fk|k−1δxk−1 + gTk−1wk−1

wk ∼ N(0, Qk)

The Fk|k−1 is computed and then, using this
matrix, the initial state is propagated from the

epoch k − 1 to k, which is denoted by ˆδx−
k .

State vector prediction: ˆδx−
k = Fk|k−1

ˆδx+
k

Covariance prediction:
P−
k = Fk|k−1P

+
k−1F

T
k|k−1

+gTk−1Qk−1gk−1

The covariance of the predicted state P−
k

is based on Fk|k−1, the

previous value of the state covariance (P+
(k−1)

),

the last value of the process noise covariance
(Q(k−1)), and the noise distribution matrix

(gT
(k−1)

).

Correction Measurement model:
δzk = Hkδxk + ηk
ηk ∼ N(0, Rk)

Kalman gain matrix: Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1

The Kalman gain (Kk) depends on the a priori error covariance

(P−
k ), the process noise covariance (Rk),

and the design matrix (Hk).

Corrected state estimation: ˆδx+
k = ˆδx−

k +Kk(c−Hk
ˆδx−
k )

The estimated (or the a priori) state

( ˆδx−
k ) is corrected whenever a measurement

is received.This is based on the difference

of the predicted measurement (Hk
ˆδx−
k )

and the real measurement (δzk). This
difference contains the new information that
forms the basis for the correction.

Corrected covariance matrix: P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k

updating the a

priori error covariance (P−
k ) to the a posteriori

error covariance (P+
k ) for indicating the level

of trust in the corrected estimate ( ˆδx+
k ), which

is proportional to gain Kk and P−
k .

In this research different constant numbers for α are utilized and α = 2 is chosen by trial and error method for
fading factor. In this regard, the performance of the system for these nine trajectories is described in Table 7.

Fig. 3 and Fig. 4 show the latitude and longitude values for all trajectories, respectively. As Table 7, Fig. 3, and
Fig. 4 indicate, the simple KF and FKF have the same performance for Tr. 3, Tr. 4, and Tr. 5. This is due to
the short duration and stable values of the system that follows the proper trajectory closely. However, as mentioned
before, the system becomes more complex. Dynamic changes affect its performance, as seen at the end of Tr. 1, Tr.
2, and Tr. 6. When the trajectory is longer and more complex, the KF exhibits weak performance, as in Tr. 7, Tr. 8,
and Tr. 9. In a traditional KF, every sensor measurement has the same weight in the estimation process. This implies
that older measurements still influence the current estimates equally. Therefore, the predictions may not match the
current conditions accurately. In contrast, a fading KF reduces the impact of older measurements by assigning them
lower weights based on a fading factor. Thus, the system performance for all trajectories improves compared to the
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Table 6: Information and path of trajectories.

Title Inform. Path Inform. Path Inform. Path

Time
series

Duration (s)

Trajectory
1

418 s

Trajectory
2

554 s

Trajectory
3

244 s

Time
series

Duration (s)

Trajectory
4

90 s

Trajectory
5

107 s

Trajectory
6

498 s

Time
series

Duration (s)

Trajectory
4

1163 s

Trajectory
5

1407 s

Trajectory
6

911 s

Table 7: Result of KF, FKF, and without any algrithm for all trajectories.

Path Duration Type of algorithm SER X (dB) SER Y (dB) SER Z (dB) RMSE X (m) RMSE Y (m) RMSE Z (m) RMSE Total (m)

Tr. 1 418 s
Without anything

KF
FKF

51
89
103

80
89
108

60
94
107

8559
108
22

369
137
14

3619
71
14

9299
188
29

Tr. 2 554 s
Without anything

KF
FKF

48
92
97

81
105
106

59
97
104

11788
75
44

324
22
19

3762
49
22

12377
92
52

Tr. 3 244 s
Without anything

KF
FKF

74
103
103

67
112
112

83
106
107

590
22
20

1726
9
9

253
16
15

1841
28
26

Tr. 4 90 s
Without anything

KF
FKF

95
104
105

85
115
116

86
105
106

57
18
17

225
6
5

183
19
17

295
26
24

Tr. 5 107 s
Without anything

KF
FKF

83
103
104

87
109
109

84
107
107

205
20
19

171
14
14

224
15
14

348
28
27

Tr. 6 498 s
Without anything

KF
FKF

67
102
104

63
108
109

68
108
111

1417
22
18

2724
14
13

1467
13
9

3381
29
23

Tr. 7 1163 s
Without anything

KF
FKF

42
85
95

46
85
100

45
80
98

23717
162
53

18230
205
33

18662
335
41

35257
424
74

Tr. 8 1407 s
Without anything

KF
FKF

39
80
95

39
83
100

47
81
94

32803
317
53

44953
270
40

15701
328
68

57821
530
95

Tr. 9 911 s
Without anything

KF
FKF

55
85
97

48
89
100

53
86
106

5266
168
43

15759
138
40

8224
174
17

18539
278
61

traditional KF. Table 8 illustrates the improvement from simple KF to FKF. The average improvement of FKF is 45%
for all trajectories.
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Figure 3: Latitude (in radian) figures of all trajectories.
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Figure 4: Longitude (in radian) figures of all trajectories.
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Table 8: results of improvement for all trajectories.

Trajectory Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5 Tr. 6 Tr. 7 Tr. 8 Tr. 9

Duration (s) 418 s 554 s 244 s 90 s 107 s 498 s 1163 s 1407 s 911 s
Improvement (%) 84% 43% 7% 7% 3% 20% 82% 82% 78%

5 Conclusion

This article proposed the FMKF method to enhance the positioning accuracy of GPS/INS integration. Imple-
menting a faded KF involves modifying the traditional KF equations to introduce fading factors for update steps. The
fading factors control how much influence past observations have on the current estimation. The FKF is used on a
real dataset with multiple trajectories at various speeds and complexities. The performance of FKF is compared with
traditional KF in GPS/INS integration. The results showed that the FKF can reduce position errors by an average
of 45% compared to simple KF.
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