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Abstract

Let E be a sublattice of a vector lattice F'. A continuous operator T from F into a normed vector space X is said

to be order-norm continuous if Fo implies T'(z4) M> 0 for every (z4)aca € E. This paper aims to investigate
the properties of this new class of operators and explore their relationships with existing classifications of operators.
We introduce a new class of operators called érder weakly compact operators. A continuous operator 7' : £ — X is
considered order weakly compact if T(A) in X is a relatively weakly compact set for every Fo-bounded A C E. In this
manuscript, we examine various properties of this class of operators and explore their connections with order-norm
continuous operators.
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1 Introduction and Preliminaries

Our motivation for writing this article is to disseminate and expand upon the concepts introduced in the articles
[4] and [8]. These papers have introduced and studied concepts such as &-convergence, the property (F'), and order-
to-norm continuous operators, exploring their properties and relationships with other lattice properties.

In this article, we introduce a new class of operators known as order-norm continuous operators, and examine some
of their properties and relationships with other known operators.

To state our results, we need to fix some notations and recall some definitions. A net (2,)aca in a vector lattice
E is said to be order convergent to x € E if there is a net (yg)gep in E such that yg | 0 and for every 8 € B, there
exists o € A such that |z, — 2| < yg whenever a > «p. For short, we will denote this convergence by z, 2 2 and
write that z, is o-convergent to x. A net (z,)aca in vector lattice E is unbounded order convergent to x € E if
|To — x| Au 2 0 for all w € ET. We denote this convergence by z, — x and write that x, uo-convergent to z. It
is clear that for order bounded nets, uo-convergence is equivalent to o-convergence. A net (z)aca C E is said to be
order convergent to « € E if there is a net (yg)gep C F, possibly over a different index set, such that yg | 0 in F' and

for every 8 € B, there exists ag such that |z, — z| < yg whenever a > ag. We denote this convergence by z, o, 2
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and write that(zq)aca is 6-convergent to x. It is clear that if E is regular in F and z, — z in E, then o 4.

The converse is not true in general. For example, ¢y is a sublattice of £ and (e,) C ¢p. e 70 0 in cg, but it is
not order convergent to 0 in ¢y. A subset A of E is said to be F-order bounded (in short, Fo-bounded), if there exist
x,y € F that A C [z,y]. A vector lattice E is said to have the property (F') if every Fo-bounded set A C F is also
order bounded (see []). A Banach lattice F is called an AM-space if for every x,y € E such that |x| A |y| = 0, we
have ||z + y|| = max{|z||, ||y||}. Similarly, a Banach lattice F is called an AL-space if for every x,y € E such that
|z| A ly| = 0, we have ||z + y|| = [|z|| + |ly|l. Furthermore, a Banach lattice E is referred to as a K B-space if every
increasing, norm-bounded sequence in E7 is norm convergent. Let £ and G be vector spaces. L(E,G) will denote the
space of all operators from E into G. Ly(E, G) is the all of order bounded operators in this manuscript. An operator T'
from a Banach space X into a Banach space Y is weakly compact if T'(Bx) is weakly compact where By is the closed
unit ball of X. A continuous operator T from Banach lattice F into Banach space X is called M-weakly compact if
lim || T(zy,)]| = 0 holds for every norm bounded disjoint sequence (x,,), of E. An operator T : E — F from Banach
lattice E into Banach lattice F' is said to preserve disjointness whenever for each z,y € F such that 1 y in E implies
T(z) L T(y) in F. A subset A of a vector lattice E is called b-order bounded in F if it is order bounded in E~™. If
each b-order bounded subset of E is order bounded in F, then F is said to have the property (b). Jalili, Haghnejad and
Moghimi characterized Lo, (E,G) and L. (E,G) spaces in [8]. An operator T' from a vector lattice E into topological
vector space G is said to be order-to-topology continuous whenever z, ~ 0 implies T'(x,) — 0 for each (24)aea C E.
For each sequence (z,,), C E, if z,, 25 0 implies T(x,) = 0, then T is called g-order-to-topology continuous operator.
The collection of all order-to-topology continuous operators from a vector lattice E into topological vector space G
will be denoted by L, (E, G); the subscript ot is justified by the fact that the order-to-topology continuous operators;
that is,

Lo, (E,G)={T € L(E,G) : T is order-to-topology continuous }.

Similarly, L9 _(E, G) represents the collection of all o-order-to-topology continuous operators, that is,
L (E,G)={T € L(E,G) : T is 0 — order-to-topology continuous }.

For a normed space G, L,,(E, Q) is collection of order-to-norm topology continuous operators.
Let E and G be two normed vector lattices. Recall that from [9], a continuous operator T': E' — G is said to be

o-uon-continuous if every norm-bounded wo-null sequence (), C E implies T'(z,,) M) 0. Furthermore, an operator
T from a Banach lattice F into a Banach space X is referred to as a wun-Dunford-Pettis operator if z,, —— 0 in E

implies T'(z,) 10 in X for every sequence (), C E (See [10] for more information).

Recall that a Banach lattice E is said to have the property (P) if there exists a positive contractive projection
P: E* — E, where F is identified as a sublattice of its topological bidual E**.

In a Banach lattice E, a subset A is considered almost order bounded if, for any € > 0, there exists v € E™ such
that A C [—u,u] + eBg, where Bg denotes the closed unit ball of E. A useful fact to note is that A C [—u,u] 4+ eBg
if and only if sup,c [|(|z] — w)™|| = sup,eca lllz] — |z] A ul| < e. This fact can be easily verified using the Riesz
decomposition theorem. According to Theorems 4.9 and 3.44 in [1], every almost order bounded subset in an order
continuous Banach lattice is relatively weakly compact. Furthermore, it is known that a subset A C L;(u) is relatively
weakly compact if and only if it is almost order bounded (see [7]).

A sublattice G of a vector lattice F is called majorizing if, for every z € FE, there exists y € G such that x < y.
On the other hand, a sublattice G of a vector lattice E is said to be order dense in E if, for each 0 < x € E, there
exists y € G such that 0 < y < x. Recall that a Banach lattice F is said to have the positive Schur property if every
positive w-null sequence in F is norm null. Furthermore, it is said to have the dual positive Schur property if every
positive w*-null sequence in £* is norm null. Moreover, a vector lattice is considered laterally complete if every subset
of pairwise disjoint positive vectors has a supremum.

Throughout this paper, unless otherwise stated, we consider F' and G as two vector lattices. Additionally, we
assume that F is a sublattice of ', and X and Y are two normed vector spaces.

2 The property (F) in vector lattices

In this section, we focus on investigating the property (F') as defined in [4]. Our aim is to derive new insights and
results based on this property.
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Let E be a closed, order continuous, and regular sublattice of F. Consider a net (z4)aca C E that is order

bounded, and let F' be a Dedekind complete Banach lattice. According to Lemma 4.5 in [7], we observe that z,, Fo, o
in F if and only if o, = x in E.

Remark 2.1. 1. If E** is lattice isomorphic to a sublattice of F' and F has the property (F), then E also has
property (b). Moreover, if E** is lattice isomorphic to F, then properties (b) and (F’) are equivalent in E.

2. If E is a majorizing sublattice of F', then E has property (F'). Let A C E be an F-order bounded set. Therefore,
there exists uw € F* such that A C [—u,u]. Since F is a majorizing sublattice of F, there exists v € ET such
that u < v and —v < —u. Thus, A C [—v,v], and hence A is order bounded in E.

3. Let E be a sublattice of F' and F be a sublattice of G. If F has property (G), then necessarily E does not have
property (G). For example, ¢ is a sublattice of ¢ and ¢ is a sublattice of £>°. ¢ has property (£°°) while ¢y does
not have property (£°).

4. Let F be a sublattice of F' and F' be a sublattice of G. It is clear that if F has property (G), then it also has
property (F). If A C E is an F-order bounded set, then it is also order bounded in G. By assumption, A is
order bounded in E. Therefore, F has property (F).

Example 2.2. By Remark since ¢y does not have property (b), it also does not have property (£°°).

Note that ¢y does not have property (£°°). For example, consider the sequence (e,) C ¢, where e, denotes the
standard unit vector in ¢y with 1 in the n-th position and 0 elsewhere. This sequence is ¢*°-order bounded, but it is
not order bounded in c¢g.

Proposition 2.3. Let E and F be two Banach lattices with order continuous norms. If E has property (b), then F
also has property (F).

Proof . Assume that F has property (b). Let A C E be an F-order bounded set. Then there exists u € F* such that
A C [~u,u]. Hence, |A| C [—u,u]. Without loss of generality, assume that A C ET and A is directed upward. Let
A = (2q)aca, where z, = a for all & € A. Clearly, 0 < z, 1< u. Since F has property (b), by Proposition 2.1 of [2],

E is a K B-space. Thus, we have z,, M) x for some x € E. Since F' has an order continuous norm, it is a Dedekind

complete Banach lattice. Hence, there exists y € F' such that 0 < z, 1< y. It is clear that y — x, | 0 in F. Since F

has order continuous norm, we have z L”—> y. Therefore, y = x € E and A C [0, z]. This shows that F has property

(F). O

Theorem 2.4. Let E and F' be two Banach lattices, and suppose that F has property (F'). Then, if A C E is almost
order bounded in F', it is also almost order bounded in E.

Proof . Suppose that E is a sublattice of F' and let I denote the ideal generated by E in F. It is clear that E is
majorizing in Ir. Thus, A is almost order bounded in F if and only if A is almost order bounded in Ir. Without loss
of generality, we assume that F is an ideal of F'. Let A C E be an almost order bounded set in F'. This means that
for every € > 0, there exists u € F'* such that A C [—u,u] + eBp. For each x € A, we can write x = x1 + z2, where
x1 € [—u,u] and x5 € eBp. It follows that |z| < |x1| + |22]. By Decomposition property of [1], there exist x3,24 € F*
such that 0 < x5 < |21], 0 < 24 < |z2|, and |z| = 23 + x4. Since E is an ideal of F, we have x3,z4 € E. Therefore,
|z| = 23 + x4 € [~u,u] +eBg. Thus, 2T, x~, also, r € [—u,u] + Bg.

E has property(F), then, there exists v € ET such that x € [~v,v] + ¢Bg. Since # € A is arbitrary, A C
[-v,v] + eBg. Hence, A is almost order bounded in E. O

Corollary 2.5. Let (z,), C E be a disjoint and almost order bounded sequence in F'. If E has an order continuous

norm, then z, M) 0.

Proof . Since (x,), is a disjoint sequence, by Corollary 3.6 of [6], we have x,, ~% 0 in E. By Theorem [2.4] (1), is

almost order bounded in E. By Proposition 3.7 of [7], we conclude that z, Mlﬁ 0. O

3 Order-norm continuous operators

A continuous operator T : E — X is said to be érder-norm continuous (or én-continuous for short) if (z4)aea C F
is 6-null in E, then (T'(z4))aca in X converges to 0 in norm. Similarly, a continuous operator T': E — X is said to
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be g-6rder-norm continuous (or o-6n-continuous for short) if (), C F is 6-null in E, then (T(x,)), in X converges
to 0 in norm.

The collection of all on-continuous operators from a vector lattice E into a Banach space X (resp. o-on-continuous
operators) will be denoted by L, (E, X) (resp. LE, (E,X)).

It is clear that if T': E — X is on-continuous, then T is order-to-norm topology continuous. However, the converse
is not true in general, as shown in the following example.

Example 3.1. The identity operator I : ¢g — ¢p is order-to-norm topology continuous. Let (z4)aca C ¢o be an

. . Il .
order-null net. Since ¢y has order continuous norm, we have z, —> 0. However, consider the sequence (e, ), C cg. We

L0 . . . . . .
have e,, — 0 in ¢g. But (I(e,))n is not convergent to zero in norm in ¢o. Hence, I : g — ¢g is not £°on-continuous.

Obviously, Lsn (E, X) is a subspace of Lo, (E, X). Here are some examples of 6n-continuous operators.

Example 3.2. 1. If E has the property (F'), E* has order continuous norm, and G has the Schur property, then
every continuous operator 7' from E to G is o-0n-continuous. Let (x,), C E be a 6-null sequence. Therefore,
(Zn)n is order-null in F' and thus order-bounded in F. Since E has the property (F), ()5 is also order-bounded
in E. Moreover, (2,), is uo-null in F, and by Lemma 4.5 of [7], it is also wo-null in E. Since E* has order
continuous norm, by Theorem 6.4 of [5], we have x,, — 0 in E. By the continuity of 7, we have T(z,) — 0 in

G. Since G has the Schur property, we conclude that T'(z,,) M> 0in G.
The Banach lattice ¢ has the property (£°°), ¢* has order continuous norm, and ¢! has the Schur property.
Therefore, every continuous operator T : ¢ — ¢! is o-£>°on-continuous.

2. Let F be a Dedekind complete Banach lattice. If E has the property (F') and order continuous norm, then every
continuous operator T from E to X is o-on-continuous. Let (x,), C E be a 6-null sequence. Therefore, (), is
order-null in F' and thus order-bounded in F. Since E has the property (F'), (z,)n is also order-bounded in E.

Moreover, () is uo-null in F, and by Lemma 4.5 of [7], it is also uwo-null in E. Since (z,), is order-bounded,

it is also order-null in E. Because E has order continuous norm, we have z,, Il o in B Thus, T'(x,,) LR

X.

3. I T: F — X is a uon-continuous operator, then T|g : E — X is a dn-continuous operator. Let (z4)aca C E

be a 6-null net. Tt is clear that 2, — 0 in F. By assumption, T'(x4) LINTNS'e

The class of 6n-continuous operators differs from the class of order continuous operators. For example, the identity
operator I : ¢g — ¢g is order continuous, but it is not £>°on-continuous (see Example [3.1]).

Proposition 3.3. 1. Let T € Lsp(E,G) and S : E — G be two operators such that 0 < S < T. Then S is a
on-continuous operator.
2. fT € Ls(E,X) and S: X — Y is a continuous operator, then SoT € L;,(E,Y).

Proof .
1. Let (z4)aca C E be a 6-null net. It is obvious that |z 29 0 in E. We have IS(za)] < 1S|(Jzal) = S(|zal) <

T(|xzq|). By assumption, T'(|zq]) LRy Therefore, |S(z4)] I, "9, This shows that S is a dn-continuous
operator.

2. Let (z4)aca € E and z, o, 0. By assumption, we have T'(z) LR Therefore, S(T'(z4)) LR Hence,
SoT € Lsp(E,Y).

d
Remark 3.4. Let T : E — GG be an order continuous lattice homomorphism from a Dedekind complete vector lattice
E to an Archimedean laterally complete normed vector lattice G. If E is order dense in the Archimedean vector

lattice F', then by Theorem 2.32 of [1], T can be extended from F' to G as an order continuous lattice homomorphism.
Furthermore, if G has an order continuous norm, then 7' is on-continuous.

Theorem 3.5. Let T : E — G be an order bounded operator. Then the following assertions are true.
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1. If G is an Archimedean vector lattice and T preserves disjointness and is on-continuous, then |T| exists and
IT| € Lsn(E,G).

2. If E is a projection band in F, G is an atomic Banach lattice with order continuous norm, and T is o-on-
continuous, then |T'| exists and |T'| € LZ,(FE, G).

Proof .

1. Let (zo)aca C FE be a 6-null net. By the assumption, we have T'(z,) LENY) By Theorem 2.40 of [I, |T| exists

and |T|(jz]) = |T(|z])| = |T(z)| for all z € E. Since ||T|(za)| < |T|(1za]) 1 0, we have |T](za) 115 0. Hence,

|T) € Lsn(E,G).
-1

2. Let (2n)n € E and z,, = 0 in E. Tt is clear that z,, Foroin E. By the assumption, T'(x,) — 0 in G. Since
() is order bounded, (T(x,)), is also order bounded. By Lemma 5.1 of [5], T(z,) = 0 in G. Hence, T is
a og-order continuous operator. Note that since G has an order continuous norm, it is Dedekind complete. By
Theorem 1.56 of [I], |T'| exists and it is o-order continuous. Let (z,), C E be a 6-null sequence. Since F is a

projection band, we have |z,| = Pr(|zn|) < Pr(ym) such that |z,| < ym 4 0 and (Y )m C F. Obviously, we have

r, 2 0in E. By the assumption, |T|(z,) = 0 in G. Because G has an order continuous norm, |T'|(z,,) LRI

in G. Hence, |T| € L, (E,G).

O

Corollary 3.6. By the proof of part 2 of Theorem [3.5] if E is a projection band in F' and G is an atomic Banach
lattice with order continuous norm, then T : E — G is a o-on-continuous operator if and only if it is a o-order
continuous operator.

4 Order weakly compact operator

A continuous operator T': E — X is said to be order weakly compact (or, 6-weakly compact for short) if, for any
Fo-bounded set A C E, the image T'(A) in X is a relatively weakly compact set.

The collection of all 6-weakly compact operators from the vector lattice F into the Banach space X will be denoted
by Wa (E, X)

A subset A in a Banach lattice E is said to be F-almost order bounded if, for any € > 0, there exists u € F'™ such
that A C [—u,u] + eBg.

As a remark, every weakly compact operator T : E — X is a 0-weakly compact operator. The converse holds
whenever E has an order unit.

Remark 4.1. 1. Let T : E — X be a weakly compact operator. If A is an F-order bounded set in E, then it is a
norm bounded set. Since T is a weakly compact operator, T'(A4) is a relatively weakly compact set in X. This
implies that T is a 6-weakly compact operator.

2. Let E have an order unit and T : E — X be a 0-weakly compact operator. If A is a norm bounded set in F, then
it is an order bounded set in F, and therefore, it is F-order bounded. By the assumption, T'(A) is a relatively
weakly compact set in X. This implies that T" is a weakly compact operator.

Proposition 4.2. If E has order continuous norm with property (F), then the identity operator I : E — FE is
o-weakly compact.

Proof . Let A C E be a Fo-bounded set. Since E has property (F'), A is an order bounded set in E. It is also clear
that A is almost order bounded in E. Since E has order continuous norm, by Theorem 4.9(5) and Theorem 3.44 of
[1], A is a relatively weakly compact set in E. Hence, I(A) is a relatively weakly compact set in E. This means that
I is a 6-weakly compact operator. [

M
Lemma 4.3. Let E be a vector lattice and u € E*. For each z € F such that |z| < Au, if ||z]| < M, then X < Tl

U
Theorem 4.4. A continuous operator 7' : £ — X is 6-weakly compact if and only if for each disjoint and Fo-bounded

sequence (,)n, C E, T(x,) LN
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Proof . Let T : E — X be a 6-weakly compact operator. Consider a disjoint and Fo-bounded sequence (z,), C E.
There exists u € F'* such that (z,), C [~u,u]. Let I,, be the ideal generated by u in F. According to Lemma we

have X '
Br,ne =1,NBg C [—u, u} NE. (4.1)
ull " [l

By assumption, T'( —mu, HTIHU} N E) is relatively weakly compact. Therefore, the operator T'|;,ng : [,NE — X

is a weakly compact operator. By Theorem 5.62 of [I], I,, is an AM-space with an order unit. Therefore, T'|;, nE :
I, NE — X is M-weakly compact operator. As (z,), C I, is a disjoint norm bounded sequence in FE, we have

T(a,) L1 0,

Conversely, let A C E be a Fo-bounded set. Then, there exists u € F'™ such that A C [—u,u]. Let I,, be the ideal
generated by u in F, and let (z,), C I, N E be a disjoint norm bounded sequence. Since (x,,),, C I, is norm bounded,

by Lemma 1, (z,), is Fo-bounded. By the assumption, we have T'(z,,) Ml% 0. Therefore, T|;,np : IuNE — X is
M-weakly compact. By Theorem 5.61 of [1], T|;,ne : I. N E — X is a weakly compact operator. Since A is norm
bounded in I, and T|;,ng : [, N E — X is weakly compact, we conclude that T'(A) is a relatively weakly compact set
in X. Thus, T : E — X is a 0-weakly compact operator. [J

Corollary 4.5. 1. Let T and S be two operators from F to G such that 0 < T < S and S is a 6-weakly compact

operator. If (x,), C E is a disjoint and Fo-bounded sequence, then by Theorem 4.4, we have S(z,,) Mlﬁ 0. It

follows that T'(z,,) LAY Thus, T is a 6-weakly compact operator.

2. Let T be an 6-weakly compact operator from E to X, and let S € B(X,Y). By Theorem it is clear that
S oT is a 6-weakly compact operator.

It is well-known that if T': E — X is an 6-weakly compact operator, then it is also order weakly compact. However,
the converse is not true in general, as illustrated by the following example.

Example 4.6. The operator T : ! — ¢>° defined by

T(,CEl, o, .. ) = (Z Zi, Z.’Ei, .. )
i=1 i=1

is an order weakly compact operator. Let (r,), C ¢! be a disjoint and order bounded sequence. We have z,, 20

and (z,)n is order bounded, therefore, x,, 25 0. Since ¢! has order continuous norm, (Zn)n is norm-null. Because T'

is a continuous operator, we have T'(z,,) M‘% 0 in ¢°°. Thus, by Theorem 5.57 of [1], T is an order weakly compact

operator. If we consider (e,,), C ¢!, we have e, £79 0'in £*. On the other hand, T'(e,) = (1,1,1,...), and therefore,
(T'(en))n does not converge to zero in the norm topology. Thus, T is not 6-weakly compact.

Theorem 4.7. Let G be a normed vector lattice that is a sublattice of a normed vector lattice H, and let T : E — G
be a 6-weakly compact operator. Under one of the following conditions, the modulus of T exists and is a 6-weakly
compact operator.

1. E is an AL-space, and G satisfies both property (P) and property (H).
2. Both E and G have an order unit.
3. G is Archimedean Dedekind complete, and T is an order-bounded operator that preserves disjointness.

Proof .

1. Let (z,)n C E be a disjoint order bounded sequence. It is clear that (z,), is Fo-bounded. By the assumption

and Theorem we have T'(z,,) LEN Hence, by Theorem 5.57 of [I], T" is an order weakly compact operator.

Since E is an AL-space and G has property (P), by Theorem 2.2 of [3], the modulus |T| exists and is an order
weakly compact operator. Since G has property (H), |T| is a 6-weakly compact operator.

2. Let A be a norm bounded set in E. Since F has an order unit, by Theorem 4.21 of [I], A is order bounded and
hence Fo-bounded. By the assumption, T'(A) is a relatively weakly compact set in G. Hence, T is a weakly
compact operator. Since G has an order unit, by Theorem 2.3 of [11]], the modulus of T exists and is a weakly
compact operator. It is clear that |T| is also a 6-weakly compact operator.
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3. By Theorem 2.40 of [I], |T'| exists and we have |T|(|z|) = |T(|z|)| = |T(z)] for all x. If (z,,),, C F is a Fo-bounded

disjoint sequence, then by the assumption, T'(zy,) L0 0. We have IT|(|zn]) = 1T (Jxn])| = T (zn)] L 6 in @ for

each n. Now, using the inequality ||T'|(x,)| < |T||zn|, we have |T|(x,,) LN Hence, |T| is a 6-weakly compact

operator.
U

The following examples demonstrate that 6-weakly compact operators do not possess the duality property.

Example 4.8. 1. Consider the operator T : C[0, 1] — ¢o defined by

T(f) = ( /0 () sin(a)d, /0 () sin(20)de, ) .

By Example 3.15 of [I0], T is a wun-Dunford-Pettis, and by Theorem 3.11 of [10], T is a weakly compact
operator. Therefore, T is an 6-weakly compact operator. We have T* : ¢ — (C[0,1])* defined by

T (xn)(f) = gzcn (/01 ft) sin(nt)dt> .

Consider the sequence (e,,) C ¢!, which is £>°-order bounded and disjoint. Let f,,(t) = sin(nt) for all n. We have

1T (ea)| > I T (en) ()| = / (sin(nt))2dt - 0.

Thus, by Theorem [£:4] T* is not a 6-weakly compact operator.
2. comnsider the functional f : ' — R defined by

flz1,29,...) = Z Ty,
n=1

The sequence (e,) C ¢! is £>°-order bounded and disjoint, but f(e,) - 0. Therefore, by Theorem f is not
a o-weakly compact operator. However, it is obvious that f* : R — £°° is a 6-weakly compact operator.

In the following, we demonstrate that under certain conditions, if an operator T is 0-weakly compact, then its
adjoint T™ is also 6-weakly compact, and vice versa.

Proposition 4.9. Let G be a vector lattice such that G* C F. Then the following assertions hold:

1. If F has an order unit and T : E — G is a 6-weakly compact operator, then 7% is also a 6-weakly compact
operator.

2. If G* has an order unit and T* : G* — E* is a 6-weakly compact operator, then T is also a 6-weakly compact
operator.

Proof .

1. Let E have an order unit, and suppose T : E — G is a 0-weakly compact operator. It is clear that T is a weakly
compact operator. By Theorem 5.23 of [I], T* is also a weakly compact operator, and therefore, T* is a 6-weakly
compact operator.

2. The proof follows a similar argument as in (1).

O

Theorem 4.10. Let T : F' — X be an operator. The restriction T |g: E — X is 6-weakly compact if and only if
T(A) is relatively weakly compact for every F-almost order bounded subset A C E.

Proof . If T'(A) is relatively weakly compact for every F-almost order bounded subset A of F, it is evident that T |g
is a 0-weakly compact operator.

Conversely, let A C E be an F-almost order bounded set. For every e > 0, there exists u € FT such that
A C [~u,u] + eBg. Since T is linear, we have T(A) C T([—u,u] N E) + ¢I'(Bg). As T is &-weakly compact,
T([—u,u] N E) is a relatively weakly compact set. By Theorem 3.44 of [I], T(A) is a relatively weakly compact set in
X. O
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