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Abstract

Let E be a sublattice of a vector lattice F . A continuous operator T from E into a normed vector space X is said

to be õrder-norm continuous if xα
Fo−−→ 0 implies T (xα)

∥.∥−−→ 0 for every (xα)α∈A ⊆ E. This paper aims to investigate
the properties of this new class of operators and explore their relationships with existing classifications of operators.
We introduce a new class of operators called õrder weakly compact operators. A continuous operator T : E → X is
considered õrder weakly compact if T (A) in X is a relatively weakly compact set for every Fo-bounded A ⊆ E. In this
manuscript, we examine various properties of this class of operators and explore their connections with õrder-norm
continuous operators.
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1 Introduction and Preliminaries

Our motivation for writing this article is to disseminate and expand upon the concepts introduced in the articles
[4] and [8]. These papers have introduced and studied concepts such as õ-convergence, the property (F ), and order-
to-norm continuous operators, exploring their properties and relationships with other lattice properties.

In this article, we introduce a new class of operators known as õrder-norm continuous operators, and examine some
of their properties and relationships with other known operators.

To state our results, we need to fix some notations and recall some definitions. A net (xα)α∈A in a vector lattice
E is said to be order convergent to x ∈ E if there is a net (yβ)β∈B in E such that yβ ↓ 0 and for every β ∈ B, there

exists α0 ∈ A such that |xα − x| ≤ yβ whenever α ≥ α0. For short, we will denote this convergence by xα
o−→ x and

write that xα is o-convergent to x. A net (xα)α∈A in vector lattice E is unbounded order convergent to x ∈ E if

|xα − x| ∧ u
o−→ 0 for all u ∈ E+. We denote this convergence by xα

uo−→ x and write that xα uo-convergent to x. It
is clear that for order bounded nets, uo-convergence is equivalent to o-convergence. A net (xα)α∈A ⊆ E is said to be
õrder convergent to x ∈ E if there is a net (yβ)β∈B ⊆ F , possibly over a different index set, such that yβ ↓ 0 in F and

for every β ∈ B, there exists α0 such that |xα − x| ≤ yβ whenever α ≥ α0. We denote this convergence by xα
Fo−−→ x
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and write that(xα)α∈A is õ-convergent to x. It is clear that if E is regular in F and xα
o−→ x in E, then xα

Fo−−→ x.

The converse is not true in general. For example, c0 is a sublattice of ℓ∞ and (en) ⊆ c0. en
ℓ∞o−−→ 0 in c0, but it is

not order convergent to 0 in c0. A subset A of E is said to be F -order bounded (in short, Fo-bounded), if there exist
x, y ∈ F that A ⊆ [x, y]. A vector lattice E is said to have the property (F ) if every Fo-bounded set A ⊆ E is also
order bounded (see [4]). A Banach lattice E is called an AM -space if for every x, y ∈ E such that |x| ∧ |y| = 0, we
have ∥x + y∥ = max{∥x∥, ∥y∥}. Similarly, a Banach lattice E is called an AL-space if for every x, y ∈ E such that
|x| ∧ |y| = 0, we have ∥x + y∥ = ∥x∥ + ∥y∥. Furthermore, a Banach lattice E is referred to as a KB-space if every
increasing, norm-bounded sequence in E+ is norm convergent. Let E and G be vector spaces. L(E,G) will denote the
space of all operators from E into G. Lb(E,G) is the all of order bounded operators in this manuscript. An operator T
from a Banach space X into a Banach space Y is weakly compact if T (BX) is weakly compact where BX is the closed
unit ball of X. A continuous operator T from Banach lattice E into Banach space X is called M -weakly compact if
lim ∥T (xn)∥ = 0 holds for every norm bounded disjoint sequence (xn)n of E. An operator T : E → F from Banach
lattice E into Banach lattice F is said to preserve disjointness whenever for each x, y ∈ E such that x ⊥ y in E implies
T (x) ⊥ T (y) in F . A subset A of a vector lattice E is called b-order bounded in E if it is order bounded in E∼∼. If
each b-order bounded subset of E is order bounded in E, then E is said to have the property (b). Jalili, Haghnejad and
Moghimi characterized Loτ (E,G) and Lσ

oτ (E,G) spaces in [8]. An operator T from a vector lattice E into topological

vector space G is said to be order-to-topology continuous whenever xα
o−→ 0 implies T (xα)

τ−→ 0 for each (xα)α∈A ⊆ E.

For each sequence (xn)n ⊆ E, if xn
o−→ 0 implies T (xn)

τ−→ 0, then T is called σ-order-to-topology continuous operator.
The collection of all order-to-topology continuous operators from a vector lattice E into topological vector space G
will be denoted by Loτ (E,G); the subscript oτ is justified by the fact that the order-to-topology continuous operators;
that is,

Loτ (E,G) = {T ∈ L(E,G) : T is order-to-topology continuous }.

Similarly, Lσ
oτ (E,G) represents the collection of all σ-order-to-topology continuous operators, that is,

Lσ
oτ (E,G) = {T ∈ L(E,G) : T is σ − order-to-topology continuous }.

For a normed space G, Lon(E,G) is collection of order-to-norm topology continuous operators.

Let E and G be two normed vector lattices. Recall that from [9], a continuous operator T : E → G is said to be

σ-uon-continuous if every norm-bounded uo-null sequence (xn)n ⊆ E implies T (xn)
∥.∥−−→ 0. Furthermore, an operator

T from a Banach lattice E into a Banach space X is referred to as a wun-Dunford-Pettis operator if xn
wun−−−→ 0 in E

implies T (xn)
|.|−→ 0 in X for every sequence (xn)n ⊆ E (See [10] for more information).

Recall that a Banach lattice E is said to have the property (P ) if there exists a positive contractive projection
P : E∗∗ → E, where E is identified as a sublattice of its topological bidual E∗∗.

In a Banach lattice E, a subset A is considered almost order bounded if, for any ϵ > 0, there exists u ∈ E+ such
that A ⊆ [−u, u] + ϵBE , where BE denotes the closed unit ball of E. A useful fact to note is that A ⊆ [−u, u] + ϵBE

if and only if supx∈A ∥(|x| − u)+∥ = supx∈A ∥|x| − |x| ∧ u∥ ≤ ϵ. This fact can be easily verified using the Riesz
decomposition theorem. According to Theorems 4.9 and 3.44 in [1], every almost order bounded subset in an order
continuous Banach lattice is relatively weakly compact. Furthermore, it is known that a subset A ⊆ L1(µ) is relatively
weakly compact if and only if it is almost order bounded (see [7]).

A sublattice G of a vector lattice E is called majorizing if, for every x ∈ E, there exists y ∈ G such that x ≤ y.
On the other hand, a sublattice G of a vector lattice E is said to be order dense in E if, for each 0 < x ∈ E, there
exists y ∈ G such that 0 < y ≤ x. Recall that a Banach lattice E is said to have the positive Schur property if every
positive w-null sequence in E is norm null. Furthermore, it is said to have the dual positive Schur property if every
positive w∗-null sequence in E∗ is norm null. Moreover, a vector lattice is considered laterally complete if every subset
of pairwise disjoint positive vectors has a supremum.

Throughout this paper, unless otherwise stated, we consider F and G as two vector lattices. Additionally, we
assume that E is a sublattice of F , and X and Y are two normed vector spaces.

2 The property (F ) in vector lattices

In this section, we focus on investigating the property (F ) as defined in [4]. Our aim is to derive new insights and
results based on this property.
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Let E be a closed, order continuous, and regular sublattice of F . Consider a net (xα)α∈A ⊆ E that is order

bounded, and let F be a Dedekind complete Banach lattice. According to Lemma 4.5 in [7], we observe that xα
Fo−−→ x

in E if and only if xα
o−→ x in E.

Remark 2.1. 1. If E∗∗ is lattice isomorphic to a sublattice of F and E has the property (F ), then E also has
property (b). Moreover, if E∗∗ is lattice isomorphic to F , then properties (b) and (F ) are equivalent in E.

2. If E is a majorizing sublattice of F , then E has property (F ). Let A ⊆ E be an F -order bounded set. Therefore,
there exists u ∈ F+ such that A ⊆ [−u, u]. Since E is a majorizing sublattice of F , there exists v ∈ E+ such
that u ≤ v and −v ≤ −u. Thus, A ⊆ [−v, v], and hence A is order bounded in E.

3. Let E be a sublattice of F and F be a sublattice of G. If F has property (G), then necessarily E does not have
property (G). For example, c0 is a sublattice of c and c is a sublattice of ℓ∞. c has property (ℓ∞) while c0 does
not have property (ℓ∞).

4. Let E be a sublattice of F and F be a sublattice of G. It is clear that if E has property (G), then it also has
property (F ). If A ⊆ E is an F -order bounded set, then it is also order bounded in G. By assumption, A is
order bounded in E. Therefore, E has property (F ).

Example 2.2. By Remark 2.1, since c0 does not have property (b), it also does not have property (ℓ∞).
Note that c0 does not have property (ℓ∞). For example, consider the sequence (en) ⊆ c0, where en denotes the
standard unit vector in c0 with 1 in the n-th position and 0 elsewhere. This sequence is ℓ∞-order bounded, but it is
not order bounded in c0.

Proposition 2.3. Let E and F be two Banach lattices with order continuous norms. If E has property (b), then E
also has property (F ).

Proof . Assume that E has property (b). Let A ⊆ E be an F -order bounded set. Then there exists u ∈ F+ such that
A ⊆ [−u, u]. Hence, |A| ⊆ [−u, u]. Without loss of generality, assume that A ⊆ E+ and A is directed upward. Let
A = (xα)α∈A, where xα = α for all α ∈ A. Clearly, 0 ≤ xα ↑≤ u. Since E has property (b), by Proposition 2.1 of [2],

E is a KB-space. Thus, we have xα
∥·∥−−→ x for some x ∈ E. Since F has an order continuous norm, it is a Dedekind

complete Banach lattice. Hence, there exists y ∈ F such that 0 ≤ xα ↑≤ y. It is clear that y − xα ↓ 0 in F . Since F

has order continuous norm, we have xα
∥·∥−−→ y. Therefore, y = x ∈ E and A ⊆ [0, x]. This shows that E has property

(F ). □

Theorem 2.4. Let E and F be two Banach lattices, and suppose that E has property (F ). Then, if A ⊆ E is almost
order bounded in F , it is also almost order bounded in E.

Proof . Suppose that E is a sublattice of F and let IE denote the ideal generated by E in F . It is clear that E is
majorizing in IE . Thus, A is almost order bounded in E if and only if A is almost order bounded in IE . Without loss
of generality, we assume that E is an ideal of F . Let A ⊆ E be an almost order bounded set in F . This means that
for every ε > 0, there exists u ∈ F+ such that A ⊆ [−u, u] + εBF . For each x ∈ A, we can write x = x1 + x2, where
x1 ∈ [−u, u] and x2 ∈ εBF . It follows that |x| ≤ |x1|+ |x2|. By Decomposition property of [1], there exist x3, x4 ∈ F+

such that 0 ≤ x3 ≤ |x1|, 0 ≤ x4 ≤ |x2|, and |x| = x3 + x4. Since E is an ideal of F , we have x3, x4 ∈ E. Therefore,
|x| = x3 + x4 ∈ [−u, u] + εBE . Thus, x

+, x−, also, x ∈ [−u, u] + εBE .

E has property(F), then, there exists v ∈ E+ such that x ∈ [−v, v] + εBE . Since x ∈ A is arbitrary, A ⊆
[−v, v] + εBE . Hence, A is almost order bounded in E. □

Corollary 2.5. Let (xn)n ⊆ E be a disjoint and almost order bounded sequence in F . If E has an order continuous

norm, then xn
∥.∥−−→ 0.

Proof . Since (xn)n is a disjoint sequence, by Corollary 3.6 of [6], we have xn
uo−→ 0 in E. By Theorem 2.4, (xn)n is

almost order bounded in E. By Proposition 3.7 of [7], we conclude that xn
∥.∥−−→ 0. □

3 Õrder-norm continuous operators

A continuous operator T : E → X is said to be õrder-norm continuous (or õn-continuous for short) if (xα)α∈A ⊆ E
is õ-null in E, then (T (xα))α∈A in X converges to 0 in norm. Similarly, a continuous operator T : E → X is said to
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be σ-õrder-norm continuous (or σ-õn-continuous for short) if (xn)n ⊆ E is õ-null in E, then (T (xn))n in X converges
to 0 in norm.

The collection of all õn-continuous operators from a vector lattice E into a Banach space X (resp. σ-õn-continuous
operators) will be denoted by Lõn(E,X) (resp. Lσ

õn(E,X)).

It is clear that if T : E → X is õn-continuous, then T is order-to-norm topology continuous. However, the converse
is not true in general, as shown in the following example.

Example 3.1. The identity operator I : c0 → c0 is order-to-norm topology continuous. Let (xα)α∈A ⊆ c0 be an

order-null net. Since c0 has order continuous norm, we have xα
∥.∥−−→ 0. However, consider the sequence (en)n ⊆ c0. We

have en
ℓ∞o−−→ 0 in c0. But (I(en))n is not convergent to zero in norm in c0. Hence, I : c0 → c0 is not ℓ∞on-continuous.

Obviously, Lõn(E,X) is a subspace of Lon(E,X). Here are some examples of õn-continuous operators.

Example 3.2. 1. If E has the property (F ), E∗ has order continuous norm, and G has the Schur property, then
every continuous operator T from E to G is σ-õn-continuous. Let (xn)n ⊆ E be a õ-null sequence. Therefore,
(xn)n is order-null in F and thus order-bounded in F . Since E has the property (F ), (xn)n is also order-bounded
in E. Moreover, (xn)n is uo-null in F , and by Lemma 4.5 of [7], it is also uo-null in E. Since E∗ has order

continuous norm, by Theorem 6.4 of [5], we have xn
w−→ 0 in E. By the continuity of T , we have T (xn)

w−→ 0 in

G. Since G has the Schur property, we conclude that T (xn)
∥.∥−−→ 0 in G.

The Banach lattice c has the property (ℓ∞), c∗ has order continuous norm, and ℓ1 has the Schur property.
Therefore, every continuous operator T : c → ℓ1 is σ-ℓ∞on-continuous.

2. Let F be a Dedekind complete Banach lattice. If E has the property (F ) and order continuous norm, then every
continuous operator T from E to X is σ-õn-continuous. Let (xn)n ⊆ E be a õ-null sequence. Therefore, (xn)n is
order-null in F and thus order-bounded in F . Since E has the property (F ), (xn)n is also order-bounded in E.
Moreover, (xn)n is uo-null in F , and by Lemma 4.5 of [7], it is also uo-null in E. Since (xn)n is order-bounded,

it is also order-null in E. Because E has order continuous norm, we have xn
∥.∥−−→ 0 in E. Thus, T (xn)

∥.∥−−→ 0 in
X.

3. If T : F → X is a uon-continuous operator, then T |E : E → X is a õn-continuous operator. Let (xα)α∈A ⊆ E

be a õ-null net. It is clear that xα
uo−→ 0 in F . By assumption, T (xα)

∥.∥−−→ 0 in X.

The class of õn-continuous operators differs from the class of order continuous operators. For example, the identity
operator I : c0 → c0 is order continuous, but it is not ℓ∞on-continuous (see Example 3.1).

Proposition 3.3. 1. Let T ∈ Lõn(E,G) and S : E → G be two operators such that 0 ≤ S ≤ T . Then S is a
õn-continuous operator.

2. If T ∈ Lõn(E,X) and S : X → Y is a continuous operator, then S ◦ T ∈ Lõn(E, Y ).

Proof .

1. Let (xα)α∈A ⊆ E be a õ-null net. It is obvious that |xα|
Fo−−→ 0 in E. We have |S(xα)| ≤ |S|(|xα|) = S(|xα|) ≤

T (|xα|). By assumption, T (|xα|)
∥.∥−−→ 0. Therefore, |S(xα)|

∥.∥−−→ 0. This shows that S is a õn-continuous
operator.

2. Let (xα)α∈A ⊆ E and xα
Fo−−→ 0. By assumption, we have T (xα)

∥.∥−−→ 0. Therefore, S(T (xα))
∥.∥−−→ 0. Hence,

S ◦ T ∈ Lõn(E, Y ).

□

Remark 3.4. Let T : E → G be an order continuous lattice homomorphism from a Dedekind complete vector lattice
E to an Archimedean laterally complete normed vector lattice G. If E is order dense in the Archimedean vector
lattice F , then by Theorem 2.32 of [1], T can be extended from F to G as an order continuous lattice homomorphism.
Furthermore, if G has an order continuous norm, then T is õn-continuous.

Theorem 3.5. Let T : E → G be an order bounded operator. Then the following assertions are true.
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1. If G is an Archimedean vector lattice and T preserves disjointness and is õn-continuous, then |T | exists and
|T | ∈ Lõn(E,G).

2. If E is a projection band in F , G is an atomic Banach lattice with order continuous norm, and T is σ-õn-
continuous, then |T | exists and |T | ∈ Lσ

õn(E,G).

Proof .

1. Let (xα)α∈A ⊆ E be a õ-null net. By the assumption, we have T (xα)
∥.∥−−→ 0. By Theorem 2.40 of [1], |T | exists

and |T |(|x|) = |T (|x|)| = |T (x)| for all x ∈ E. Since ||T |(xα)| ≤ |T |(|xα|)
∥.∥−−→ 0, we have |T |(xα)

∥.∥−−→ 0. Hence,
|T | ∈ Lõn(E,G).

2. Let (xn)n ⊆ E and xn
o−→ 0 in E. It is clear that xn

Fo−−→ 0 in E. By the assumption, T (xn)
∥.∥−−→ 0 in G. Since

(xn)n is order bounded, (T (xn))n is also order bounded. By Lemma 5.1 of [5], T (xn)
o−→ 0 in G. Hence, T is

a σ-order continuous operator. Note that since G has an order continuous norm, it is Dedekind complete. By
Theorem 1.56 of [1], |T | exists and it is σ-order continuous. Let (xn)n ⊆ E be a õ-null sequence. Since E is a
projection band, we have |xn| = PE(|xn|) ≤ PE(ym) such that |xn| ≤ ym ↓ 0 and (ym)m ⊆ F . Obviously, we have

xn
o−→ 0 in E. By the assumption, |T |(xn)

o−→ 0 in G. Because G has an order continuous norm, |T |(xn)
∥.∥−−→ 0

in G. Hence, |T | ∈ Lσ
õn(E,G).

□

Corollary 3.6. By the proof of part 2 of Theorem 3.5, if E is a projection band in F and G is an atomic Banach
lattice with order continuous norm, then T : E → G is a σ-õn-continuous operator if and only if it is a σ-order
continuous operator.

4 Õrder weakly compact operator

A continuous operator T : E → X is said to be õrder weakly compact (or, õ-weakly compact for short) if, for any
Fo-bounded set A ⊆ E, the image T (A) in X is a relatively weakly compact set.

The collection of all õ-weakly compact operators from the vector lattice E into the Banach space X will be denoted
by Wõ(E,X).

A subset A in a Banach lattice E is said to be F -almost order bounded if, for any ϵ > 0, there exists u ∈ F+ such
that A ⊆ [−u, u] + ϵBE .

As a remark, every weakly compact operator T : E → X is a õ-weakly compact operator. The converse holds
whenever E has an order unit.

Remark 4.1. 1. Let T : E → X be a weakly compact operator. If A is an F -order bounded set in E, then it is a
norm bounded set. Since T is a weakly compact operator, T (A) is a relatively weakly compact set in X. This
implies that T is a õ-weakly compact operator.

2. Let E have an order unit and T : E → X be a õ-weakly compact operator. If A is a norm bounded set in E, then
it is an order bounded set in E, and therefore, it is F -order bounded. By the assumption, T (A) is a relatively
weakly compact set in X. This implies that T is a weakly compact operator.

Proposition 4.2. If E has order continuous norm with property (F ), then the identity operator I : E → E is
õ-weakly compact.

Proof . Let A ⊆ E be a Fo-bounded set. Since E has property (F ), A is an order bounded set in E. It is also clear
that A is almost order bounded in E. Since E has order continuous norm, by Theorem 4.9(5) and Theorem 3.44 of
[1], A is a relatively weakly compact set in E. Hence, I(A) is a relatively weakly compact set in E. This means that
I is a õ-weakly compact operator. □

Lemma 4.3. Let E be a vector lattice and u ∈ E+. For each x ∈ E such that |x| < λu, if ∥x∥ ≤ M , then λ ≤ M

∥u∥
.

Theorem 4.4. A continuous operator T : E → X is õ-weakly compact if and only if for each disjoint and Fo-bounded

sequence (xn)n ⊆ E, T (xn)
∥.∥−−→ 0.
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Proof . Let T : E → X be a õ-weakly compact operator. Consider a disjoint and Fo-bounded sequence (xn)n ⊆ E.
There exists u ∈ F+ such that (xn)n ⊆ [−u, u]. Let Iu be the ideal generated by u in F . According to Lemma 4.3, we
have

BIu∩E = Iu ∩BE ⊆
[
− 1

∥u∥
u,

1

∥u∥
u

]
∩ E. (4.1)

By assumption, T (
[
− 1

∥u∥u,
1

∥u∥u
]
∩E) is relatively weakly compact. Therefore, the operator T |Iu∩E : Iu ∩E → X

is a weakly compact operator. By Theorem 5.62 of [1], Iu is an AM -space with an order unit. Therefore, T |Iu∩E :
Iu ∩ E → X is M -weakly compact operator. As (xn)n ⊆ Iu is a disjoint norm bounded sequence in E, we have

T (xn)
∥.∥−−→ 0.

Conversely, let A ⊆ E be a Fo-bounded set. Then, there exists u ∈ F+ such that A ⊆ [−u, u]. Let Iu be the ideal
generated by u in F , and let (xn)n ⊆ Iu∩E be a disjoint norm bounded sequence. Since (xn)n ⊆ Iu is norm bounded,

by Lemma 1, (xn)n is Fo-bounded. By the assumption, we have T (xn)
∥.∥−−→ 0. Therefore, T |Iu∩E : Iu ∩ E → X is

M -weakly compact. By Theorem 5.61 of [1], T |Iu∩E : Iu ∩ E → X is a weakly compact operator. Since A is norm
bounded in Iu and T |Iu∩E : Iu ∩E → X is weakly compact, we conclude that T (A) is a relatively weakly compact set
in X. Thus, T : E → X is a õ-weakly compact operator. □

Corollary 4.5. 1. Let T and S be two operators from E to G such that 0 ≤ T ≤ S and S is a õ-weakly compact

operator. If (xn)n ⊆ E is a disjoint and Fo-bounded sequence, then by Theorem 4.4, we have S(xn)
∥.∥−−→ 0. It

follows that T (xn)
∥.∥−−→ 0. Thus, T is a õ-weakly compact operator.

2. Let T be an õ-weakly compact operator from E to X, and let S ∈ B(X,Y ). By Theorem 4.4, it is clear that
S ◦ T is a õ-weakly compact operator.

It is well-known that if T : E → X is an õ-weakly compact operator, then it is also order weakly compact. However,
the converse is not true in general, as illustrated by the following example.

Example 4.6. The operator T : ℓ1 → ℓ∞ defined by

T (x1, x2, . . .) =

( ∞∑
i=1

xi,

∞∑
i=1

xi, . . .

)

is an order weakly compact operator. Let (xn)n ⊆ ℓ1 be a disjoint and order bounded sequence. We have xn
uo−→ 0

and (xn)n is order bounded, therefore, xn
o−→ 0. Since ℓ1 has order continuous norm, (xn)n is norm-null. Because T

is a continuous operator, we have T (xn)
∥.∥−−→ 0 in ℓ∞. Thus, by Theorem 5.57 of [1], T is an order weakly compact

operator. If we consider (en)n ⊆ ℓ1, we have en
ℓ∞o−−→ 0 in ℓ1. On the other hand, T (en) = (1, 1, 1, . . .), and therefore,

(T (en))n does not converge to zero in the norm topology. Thus, T is not õ-weakly compact.

Theorem 4.7. Let G be a normed vector lattice that is a sublattice of a normed vector lattice H, and let T : E → G
be a õ-weakly compact operator. Under one of the following conditions, the modulus of T exists and is a õ-weakly
compact operator.

1. E is an AL-space, and G satisfies both property (P ) and property (H).

2. Both E and G have an order unit.

3. G is Archimedean Dedekind complete, and T is an order-bounded operator that preserves disjointness.

Proof .

1. Let (xn)n ⊆ E be a disjoint order bounded sequence. It is clear that (xn)n is Fo-bounded. By the assumption

and Theorem 4.4, we have T (xn)
∥.∥−−→ 0. Hence, by Theorem 5.57 of [1], T is an order weakly compact operator.

Since E is an AL-space and G has property (P ), by Theorem 2.2 of [3], the modulus |T | exists and is an order
weakly compact operator. Since G has property (H), |T | is a õ-weakly compact operator.

2. Let A be a norm bounded set in E. Since E has an order unit, by Theorem 4.21 of [1], A is order bounded and
hence Fo-bounded. By the assumption, T (A) is a relatively weakly compact set in G. Hence, T is a weakly
compact operator. Since G has an order unit, by Theorem 2.3 of [11], the modulus of T exists and is a weakly
compact operator. It is clear that |T | is also a õ-weakly compact operator.
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3. By Theorem 2.40 of [1], |T | exists and we have |T |(|x|) = |T (|x|)| = |T (x)| for all x. If (xn)n ⊆ E is a Fo-bounded

disjoint sequence, then by the assumption, T (xn)
∥.∥−−→ 0. We have |T |(|xn|) = |T (|xn|)| = |T (xn)|

∥.∥−−→ 0 in G for

each n. Now, using the inequality ||T |(xn)| ≤ |T ||xn|, we have |T |(xn)
∥.∥−−→ 0. Hence, |T | is a õ-weakly compact

operator.

□

The following examples demonstrate that õ-weakly compact operators do not possess the duality property.

Example 4.8. 1. Consider the operator T : C[0, 1] → c0 defined by

T (f) =

(∫ 1

0

f(x) sin(x)dx,

∫ 1

0

f(x) sin(2x)dx, ...

)
.

By Example 3.15 of [10], T is a wun-Dunford-Pettis, and by Theorem 3.11 of [10], T is a weakly compact
operator. Therefore, T is an õ-weakly compact operator. We have T ∗ : ℓ1 → (C[0, 1])∗ defined by

T ∗(xn)(f) =

∞∑
n=1

xn

(∫ 1

0

f(t) sin(nt)dt

)
.

Consider the sequence (en) ⊆ ℓ1, which is ℓ∞-order bounded and disjoint. Let fn(t) = sin(nt) for all n. We have

∥T ∗(en)∥ ≥ ∥T ∗(en)(fn)∥ =

∫ 1

0

(sin(nt))2dt ↛ 0.

Thus, by Theorem 4.4, T ∗ is not a õ-weakly compact operator.
2. consider the functional f : ℓ1 → R defined by

f(x1, x2, ...) =

∞∑
n=1

xn.

The sequence (en) ⊆ ℓ1 is ℓ∞-order bounded and disjoint, but f(en) ↛ 0. Therefore, by Theorem 4.4, f is not
a õ-weakly compact operator. However, it is obvious that f∗ : R → ℓ∞ is a õ-weakly compact operator.

In the following, we demonstrate that under certain conditions, if an operator T is õ-weakly compact, then its
adjoint T ∗ is also õ-weakly compact, and vice versa.

Proposition 4.9. Let G be a vector lattice such that G∗ ⊆ F . Then the following assertions hold:

1. If E has an order unit and T : E → G is a õ-weakly compact operator, then T ∗ is also a õ-weakly compact
operator.

2. If G∗ has an order unit and T ∗ : G∗ → E∗ is a õ-weakly compact operator, then T is also a õ-weakly compact
operator.

Proof .

1. Let E have an order unit, and suppose T : E → G is a õ-weakly compact operator. It is clear that T is a weakly
compact operator. By Theorem 5.23 of [1], T ∗ is also a weakly compact operator, and therefore, T ∗ is a õ-weakly
compact operator.

2. The proof follows a similar argument as in (1).

□

Theorem 4.10. Let T : F → X be an operator. The restriction T |E : E → X is õ-weakly compact if and only if
T (A) is relatively weakly compact for every F -almost order bounded subset A ⊆ E.

Proof . If T (A) is relatively weakly compact for every F -almost order bounded subset A of E, it is evident that T |E
is a õ-weakly compact operator.

Conversely, let A ⊆ E be an F -almost order bounded set. For every ϵ > 0, there exists u ∈ F+ such that
A ⊆ [−u, u] + εBE . Since T is linear, we have T (A) ⊆ T ([−u, u] ∩ E) + ϵT (BE). As T is õ-weakly compact,
T ([−u, u] ∩E) is a relatively weakly compact set. By Theorem 3.44 of [1], T (A) is a relatively weakly compact set in
X. □
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Isr. J. Math. 220 (2017), 649—689.

[7] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math.
Anal. Appl. 415 (2014), 931–947.

[8] S.A. Jalili, K. Haghnejad Azar, and M.B. Farshbaf Moghimi, Order-to-topology continuous operators, Positivity
25 (2021), 1313–1322.

[9] K. Haghnejad Azar, M. Matin, and R. Alavizadeh, Unbounded order-norm continuous and unbounded norm
continuous operators, Filomat 35 (2021), no. 13, 4417–4426.

[10] K. Haghnejad Azar, M. Matin, and R. Alavizadeh, Weakly Unbounded Norm Topology and wun-Dunford-Pettis
Operators, Rend. Circ. Mat. Palermo, II. Ser 72 (2023), 2745–2760.

[11] K.D. Schmidt, On the modulus of weakly compact operators and strongly additive vector measures, Proc. Amer.
Math. Soc. 102 (1988), no. 4, 862–866.


	Introduction and Preliminaries
	The property (F) in vector lattices
	Õrder-norm continuous operators
	Õrder weakly compact operator

