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Abstract

This article is concerned with the study of the existence of a distributional solution for a strongly nonlinear (p(x), q(x))−elliptic
systems. By means of the Berkovits degree theory, with suitable assumptions on the nonlinearities, we prove the ex-
istence of nontrivial solutions to our problem.
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1 Introduction

In this article, we are interested in studying the existence of a distributional solution for the strongly nolinear
elliptic system 

−∆p(x)(u) = λ|u|r(x)−2u+ g(x, v,∇v) in Ω,

−∆q(x)(v) = µ|v|s(x)−2v + h(x, u,∇u) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, −∆p(x)(u) = −div(|∇u|p(x)−2∇u) is p(x)−Laplacian,
the functions p, q, r, s ∈ C(Ω̄) with p(.), q(.) are log-Hölder continuous functions and λ, µ are a real parameters. We
assume also that 2 < r− ≤ r(x) ≤ r+ < p− ≤ p(x) ≤ p+ <∞ and 2 < s− ≤ s(x) ≤ s+ < q− ≤ q(x) ≤ q+ <∞.

In recent years, the study of partial differential equations and variational problems involving variable exponent
conditions is a very attractive topic and has been received considerable attention of many authors in this area of
resarch (see [9, 10, 11, 13, 18, 20, 21, 24, 26, 27, 28, 29, 30, 31, 32, 33]). This is partly due to their various applications
in various fields such as image processing [19], mathematical biology [16], elastic mechanics [40], stratigraphy problems
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[17] and electro-rheological fluids [1]. On the existence results for elliptic systems similar to (1.1), we refer [23, 35, 38]
and references therein. In [4], the researchers proved the existence of weak solutions for the problem{

∆p(x)(u) = λ|u|q(x)−2u+ f(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(1.2)

The proofs based on the recent Berkovits topological degree. In [14] Fan and Zhang considered the existence of
weak solutions of the problem (1.2) with λ = 0 and f independent of ∇u. They present several existence results of
weak solutions for problem. Their results are extensions of that of p-Laplacian problems. This same problem has
been studied in [37]. Using critical point theory without the Ambrosetti-Rabinowitz condition, they obtain a couple
of existence results of strong solutions. In [34], the authors solved the problem (1.2) with the right hand side is
λf(x, u), under appropriate assumptions on f and g, they establish the existence and multiplicity of solutions. This
existence is obtained by using the variational method. The similar problem that the problem (1.2) has been studied
in [12]. The difference is that in [12] considered the case that the function p(.) = q(.) and f ≡ 0. In [3], the authors
studied the above problem with λ = 0. Using the topological degree theory for a class of demicontinuous operators
of generalised (S+) type, they obtain the existence results of at least weak solutions. The authors in [24] generalized
these results to the system. More precisely, they studied the existence of solutions in the variational frame work by
using the topological degree constructed by Kim and Hong [21]. For more details about this method, the reader can
see [2, 6, 7, 25].

In our research, we concentrate our efforts to study the existence of distributional solutions for the system (1.1).
This existence have been given by the topological degree method. Precisely, the existence of distributional solutions
under suitable assumptions on the nonlinearities, has been discussed. These results are extensions of those in [4].

Our paper is structured as follows. In Section 2, we present some classes of mappings and topological degree,
some basic properties of the variable exponent Lebesgue-Sobolev spaces and we collect several important properties of
p(x)−Laplacian which will be later needed. Section 3 deals with the basic assumptions and the main results concerning
the distributional solutions of system (1.1).

Notation. Throughout this paper, we will denoted by ”→” and ”⇀” the strong and weak convergence. We use
BR(a) to denote the open ball in the Banach space X of radius R > 0 centered at a. The symbol ”↪→” means the
continuous embedding.

2 Preliminaries

In order to discus system (1.1), we need some elementary results and theories on topological degree and on the
variable-exponent Lebesgue-Soboleve spaces Lp(x)(Ω) and W 1,p(x)(Ω). Firstly, we state some classes of mappings and
topological degree, secondly, we recall basic properties of spaces Lp(x)(Ω) and W 1,p(x)(Ω). Finally, we give some
properties of (p(x), q(x))-Laplacian operators which will be used later.

2.1 Some classes of mappings and topological degree

Definition 2.1. Let X and Y be two real separable, reflexive Banach spaces and Ω a nonempty subset of X. A
mapping F : Ω ⊂ X → Y is

� bounded, if it takes any bounded set into a bounded set.

� demicontinuous, if for each u ∈ Ω and any sequence (un) in Ω, un → u implies F (un)⇀ F (u).

� compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 2.2. Let X be a real separable reflexive Banach space with dual space X∗. An operator F : Ω ⊂ X → X∗

is said to be

� of class (S+), if for any sequence (un) in Ω with un ⇀ u and lim sup⟨Fun, un − u⟩ ≤ 0, we have un → u.

� quasimonotone, if for any sequence (un) in Ω with un ⇀ u, we have lim sup⟨Fun, un − u⟩ ≥ 0.
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Definition 2.3. Let T : Ω1 ⊂ X → X∗ be a bounded mapping such that Ω ⊂ Ω1. For any mapping F : Ω ⊂ X → X,
we say that

� F of class (S+)T , if for any sequence (un) in Ω with un ⇀ u, yn := Tun ⇀ y and lim sup⟨Fun, yn − y⟩ ≤ 0, we
have un → u.

� F has the property (QM)T , if for any sequence (un) in Ω with un ⇀ u, yn := Tun ⇀ y, we have lim sup⟨Fun, yn−
y⟩ ≥ 0.

Now, let O be the collection of all bounded open set in X. For any Ω ⊂ X, we consider the following classes of
operators:

F1(Ω) := {F : Ω → X∗|F is bounded, demicontinuous and of class (S+)},
FT,B(Ω) := {F : Ω → X|F is bounded, demicontinuous and of class (S+)T },
FT (Ω) := {F : Ω → X|F is demicontinuous and of class (S+)T },
FB(X) := {F ∈ FT,B(G)|G ∈ O, T ∈ F1(G)},
F(X) := {F ∈ FT (G)|G ∈ O, T ∈ F1(G)},

where, T ∈ F1(G) is calledc an essential inner map to F .

Lemma 2.4 ([5], Lemmas 2.2 and 2.4). Let T ∈ F1(G), G ∈ O, be continuous and S : DS ⊂ X∗ → X a bounded
demicontinuous mapping such that T (G) ⊂ DS . Then the following statements are true:

� If S is quasimonotone, then I + SoT ∈ FT (G), where I denote the identity operator.

� If S of class (S+), then SoT ∈ FT (G).

Definition 2.5. Let F, S ∈ FT (G) and let G be a bounded open subset of a real reflexive Banach space X. The
affine homotopy H : [0, 1]×G→ X given by

H(λ, u) := (1− λ)Fu+ λSu, for (λ, u) ∈ [0, 1]×G

is called an admissible affine homotopy with the continuous essential inner map T .

Remark 2.6. [5] The above affine homotopy satisfies condition (S+).

Now, we introduce the Berkovits topological degree for the class FB(X). For more details see [5].

Theorem 2.7. There exists a unique degree function

deg : {(F,G, h)|G ∈ O, T ∈ F1(G), F ∈ FT,B(G), h /∈ F (∂G)} → Z

that satisfies the following properties:

� (Normalization) For any h ∈ G, we have deg(I,G, h) = 1.

� (Additivity) Let F ∈ FT,B(G). If G1 and G2 are two disjoint open subsets of G such that h /∈ F (G \ (G1 ∪G2)),
then we have

deg(F,G, h) = deg(F,G1, h) + deg(F,G2, h).

� (Homotopy invariance) If H : [0, 1]×G→ X is a bounded admissible affine homotopy with a common continuous
essential inner map and h : [0, 1]×X is a continuous path in X such that h(λ) /∈ H(λ, ∂G) for all λ ∈ [0, 1], then
the value of deg(H(λ, ·), G, h(λ)) is constant for all λ ∈ [0, 1].

� (Existence) If deg(F,G, h) ̸= 0, then the equation Fu = h has a solution in G.
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2.2 Notation and functional spaces

In this subsection, we list and recall some fact and results on variable exponent spaces Lp(x)(Ω) and W 1,p(x)(Ω).
See [8, 10, 15, 22, 39] for more details. Throughout the rest of the paper we consider a bounded domain Ω ⊂ RN ,
N ≥ 2 with a Lipschitz boundary ∂Ω. We denote

C+(Ω) = {f ∈ C(Ω) | inf
x∈Ω

f(x) > 1},

f− = min
x∈Ω

f(x), f+ = max
x∈Ω

f(x), for every f ∈ C+(Ω).

For each p ∈ C+(Ω), we define the space Lp(x)(Ω) by

Lp(x)(Ω) =

{
u | u : Ω → R is a measurable function, ρp(x)(u) <∞

}
,

where ρp(x)(u) =
∫
Ω
|u(x)|p(x)dx, this space equipped with the Luxemburg norm

∥u∥p(x) = inf{λ > 0 | ρp(x)(
u

λ
) ≤ 1},

and (Lp(x)(Ω), ∥ · ∥p(x)) becomes a Banach space.

Proposition 2.8. [22]

� The space Lp(x)(Ω) is a separable and reflexive Banach space.

� The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω), where 1/p(x) + 1/p′(x) = 1. Then for any u ∈ Lp(x)(Ω) and
w ∈ Lp′(x)(Ω), we have the following Hölder inequality∣∣∣ ∫

Ω

uwdx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
∥u∥p(x)∥w∥p′(x) ≤ 2∥u∥p(x)∥w∥p′(x). (2.1)

� If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the continuous embedding Lp2(x)(Ω) ↪→
Lp1(x)(Ω)

Proposition 2.9. [24, 39] If u, un ∈ Lp(x)(Ω), then the following assertions hold true:

∥u∥p(x) < 1 (= 1, > 1) ⇔ ρp(x)(u) < 1 (= 1, > 1). (2.2)

∥u∥p(x) < 1 ⇒ ∥u∥p
+

p(x) ≤ ρp(x)(u) ≤ ∥u∥p
−

p(x). (2.3)

∥u∥p(x) > 1 ⇒ ∥u∥p
−

p(x) ≤ ρp(x)(u) ≤ ∥u∥p
+

p(x). (2.4)

lim
n→∞

∥un − u∥p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0. (2.5)

∥u∥p(x) ≤ ρp(x)(u) + 1. (2.6)

ρp(x)(u) ≤ ∥u∥p
−

p(x) + ∥u∥p
+

p(x). (2.7)

Now, we define the space W 1,p(x)(Ω) as W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)}, equipped with the norm

∥u∥W 1,p(x) = ∥u∥p(x) + ∥∇u∥p(x). (2.8)

Let W
1,p(x)
0 (Ω) denote the subspace of W 1,p(x)(Ω) which is the closure of C∞

0 (Ω) with respect to the norm (2.8).

Proposition 2.10. [8, 15, 22]

� The two spaces W
1,p(x)
0 (Ω) and W 1,p(x)(Ω) are a Banach spaces separable and reflexive.
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� If p(x) satisfies the log-Hölder continuity condition, i.e., there is a constant α > 0 such that for every x, y ∈
Ω, x /∈ y with |x− y| ≤ 1

2 one has

|p(x)− p(y)| ≤ α

− log |x− y|
, (2.9)

then there exists a constant C > 0, such that

∥u∥p(x) ≤ C∥∇u∥p(x), ∀u ∈W
1,p(x)
0 (Ω). (2.10)

� If p ∈ C+(Ω) for any x ∈ Ω, then the imbedding W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω) is compact.

Remark 2.11. � By (2) of Lemma 2.10, we know that ∥∇u∥p(x) and ∥u∥ are equivalent norms on W
1,p(x)
0 (Ω).

� The dual space of W
1,p(x)
0 (Ω) is W−1,p′(x)(Ω), which endowed with the norm

∥u∥−1,p′(x) = inf
{
∥u0∥p′(x) +

N∑
i=1

∥ui∥p′(x)

}
,

where the infinimum is taken on all possible decompositions u = u0 − divF with u0 ∈ Lp′(x)(Ω) and F =
(u1, · · · , uN ) ∈ (Lp′(x)(Ω))N .

Let us define U = W
1,p(x)
0 (Ω) ×W

1,q(x)
0 (Ω) endowed with the norm ∥(u, v)∥U = max(∥u∥1,p(x), ∥v∥1,q(x)) where

∥u∥1,p(x) = ∥∇u∥p(x) and (U, ∥ · ∥) is a Banach space, separable and reflexive.

2.3 Properties of (p(x), q(x))-Laplacian operators

Now, we discuss the (p(x), q(x))-Laplacian operator

−∆p(x)u = −div(|∇u|p(x)−2∇u), and −∆q(x)v = −div(|∇v|q(x)−2∇v).

We consider the following functional:

J (u, v) =

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
Ω

|∇v|q(x)

q(x)
dx.

We know that (see [14]) J ∈ C1(U,R) and the (p(x), q(x))-Laplacian operator is the derivative operator of J in
the weak sense. Denote T = J ′ : U → U∗, then for any (w,ψ) ∈ U

⟨T (u, v), (w,ψ)⟩ =
∫
Ω

|∇u|p(x)−2∇u∇wdx+

∫
Ω

|∇v|q(x)−2∇v∇ψdx, ∀u, v ∈ U.

Theorem 2.12. [14]

� T : U → U∗ is a continuous, bounded and strictly monotone operator.

� T : U → U∗ is a mapping of type (S+).

� T : U → U∗ is a homeomorphism.

The proof of the above theorem can be found in [14].
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3 Basic assumptions and the main results

In the present section, we study the existence of distributional solutions for the systems (1.1) based on the degree
theory in Section 2, where Ω ⊂ RN is a bounded domain with a Lipschitz boundary ∂Ω, p, q ∈ C+(Ω̄) satisfies the
log-Hölder continuity (2.9), r, s ∈ C+(Ω̄), 2 < r− ≤ r(x) ≤ r+ < p− ≤ p(x) ≤ p+ < ∞, 2 < s− ≤ s(x) ≤ s+ < q− ≤
q(x) ≤ q+ <∞ and g, h : Ω× R× RN → R are a real-valued functions such that

(A1) (Continuity) g, h are the Carathéodory functions ( i.e., g(x, ·, ·) is continuous in (t1, t2) for almost every x ∈ Ω
and g(·, t1, t2) is measurable in x for each (t1, t2) ∈ R× RN ).

(A2) (Growth) There exist a positive constants k1, k2, b ∈ Lp′(x)(Ω), d ∈ Lq′(x)(Ω), b(x), d(x) ≥ 0 and α, β ∈ C+(Ω̄)
with 2 < α− ≤ α(x) ≤ α+ < p−, 2 < β− ≤ β(x) ≤ β+ < q−, such that

|g(x, t1, t2)| ≤ k1(b(x) + |t1|α(x)−1 + |t2|α(x)−1), and |h(x, ξ1, ξ2)| ≤ k2(d(x) + |ξ1|β(x)−1 + |ξ2|β(x)−1).

Definition 3.1. We say that (u, v) ∈ U is a distributional solution of the system (1.1) if for any (w,ψ) ∈ U we have∫
Ω

|∇u|p(x)−2∇u∇wdx+
∫
Ω

|∇v|q(x)−2∇v∇ψdx =

∫
Ω

(λ|u|r(x)−2u+g(x, v,∇v))wdx+
∫
Ω

(µ|v|s(x)−2v+h(x, u,∇u))ψdx.

(3.1)

Remark 3.2. Note that
∫
Ω
|∇u|p(x)−2∇u∇wdx +

∫
Ω
|∇v|q(x)−2∇v∇ψdx = ⟨T (u, v), (w,ψ)⟩ as defined in subsection

2.3, λ|u|r(x)−2u ∈ Lp′(x)(Ω), µ|v|s(x)−2v ∈ Lq′(x)(Ω), g(x, v,∇v) ∈ Lq′(x)(Ω) and h(x, u,∇u) ∈ Lp′(x)(Ω) under
(u, v) ∈ U , the assumptions A2) and the given hypotheses about the exponents p, q, r and s becaose: b ∈ Lp′(x)(Ω) and
d ∈ Lq′(x)(Ω), γ(x) = (r(x) − 1)p′(x) ∈ C+(Ω̄) with γ(x) < p(x), κ(x) = (β(x) − 1)p′(x) ∈ C+(Ω̄) with κ(x) < p(x),
θ(x) = (s(x)− 1)q′(x) ∈ C+(Ω̄) with θ(x) < q(x) and δ(x) = (α(x)− 1)p′(x) ∈ C+(Ω̄) with α(x) < q(x). Then, by the
continuousembedding, we can conclude that Lp(x) ↪→ Lγ(x), Lp(x) ↪→ Lκ(x), Lq(x) ↪→ Lθ(x) and Lq(x) ↪→ Lδ(x). Hence,
since (w,ψ) ∈ Lp(x) × Lq(x), we have∫

Ω

(λ|u|r(x)−2u+ g(x, v,∇v))wdx+

∫
Ω

(µ|v|s(x)−2v + h(x, u,∇u))ψdx ∈ L1(Ω)× L1(Ω).

This implies that the integral∫
Ω

(λ|u|r(x)−2u+ g(x, v,∇v))wdx+

∫
Ω

(µ|v|s(x)−2v + h(x, u,∇u))ψdx

exists.

Lemma 3.3. Assume that the assumptions (A1) and (A2) hold. Then the operator S : U → U∗ given by
(u, V ) ∈ U,

⟨S(u, v), (w,ψ)⟩ = −
∫
Ω

(λ|u|r(x)−2u+ g(x, v,∇v))wdx−
∫
Ω

(µ|v|s(x)−2v + h(x, u,∇u))ψdx, ∀(w,ψ) ∈ U

is compact.

Proof . We divide the proof into three steps.

Step 1 Let φ :W
1,p(x)
0 (Ω) → Lp′(x)(Ω), ϕ :W

1,q(x)
0 (Ω) → Lq′(x)(Ω) be two operators defined by

φu(x) = −λ|u(x)|r(x)−2u(x) for u ∈W
1,p(x)
0 and x ∈ Ω,

and
ϕv(x) = −µ|v(x)|s(x)−2v for v ∈W

1,q(x)
0 and x ∈ Ω.
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In this step, we show that the operators φ and ϕ are continuous and bounded. It is clear that the operators φ

and ϕ are continuous. Next, we show that φ and ϕ are bounded. Let u ∈ W
1,p(x)
0 (Ω), by inequalities (2.6) and

(2.7), we obtain

∥φu∥p′(x) ≤ ρp′(x)(φu) + 1

=

∫
Ω

|λ|u|r(x)−1|p
′(x)dx+ 1

≤ (|λ|p
′−

+ |λ|p
′+
)ργ(x) + 1

≤ (|λ|p
′−

+ |λ|p
′+
)(|u|γ

−

γ(x) + |u|γ
+

γ(x)) + 1.

Then, we have by (2.10) and Lp(x) ↪→ Lγ(x) that

∥φu∥p′(x) ≤ const
(
∥u∥γ

−

1,p(x) + ∥u∥γ
+

1,p(x)

)
+ 1,

that means φ is bounded on W
1,p(x)
0 . Similarly, we can show that ϕ is bounded on W

1,q(x)
0 .

Step 2 We define the operators ϑ :W
1,p(x)
0 (Ω) → Lp′(x)(Ω), χ :W

1,q(x)
0 (Ω) → Lq′(x)(Ω) by

ϑu(x) = −h(x, u,∇u) for u ∈W
1,p(x)
0 and x ∈ Ω,

and
χw(x) = −g(x,w,∇w) for w ∈W

1,q(x)
0 and x ∈ Ω.

We will show that ϑ and χ are bounded and continuous. For any u ∈W
1,p(x)
0 (Ω), we have, by the inequalities (2.6)

and (2.7) and the condition (A2) that

∥ϑu∥p′(x) ≤ ρp′(x)(ϑu) + 1

=

∫
Ω

|h(x, u(x),∇u(x))|p
′(x) + 1

≤ const
(∫

Ω

(
|d|+ |u|β(x)−1 + |∇u|β(x)−1

)p′(x)

dx
)

≤ const
(
ρp′(x)(d) + ρκ(x)(u) + ρκ(x)(∇u)

)
+ 1

≤ const
(
∥d∥p

′−

p′(x) + ∥d∥p
′+

p′(x) + ∥u∥κ
−

κ(x) + ∥u∥κ
+

κ(x) + ∥∇u∥κ
−

κ(x) + ∥∇u∥κ
+

κ(x)

)
+ 1.

Hence, we have by the continuous embedding Lp(x) ↪→ Lκ(x) and (2.10) that

∥ϑu∥p′(x) ≤ const
(
∥d∥p

′−

p′(x) + ∥d∥p
′+

p′(x) + ∥u∥κ
−

1,p(x) + ∥u∥κ
+

1,p(x)

)
+ 1.

Consequently, ϑ is bounded on W
1,p(x)
0 . Similarly, we can show that χ is bounded on W

1,q(x)
0 . Now, we prove that

the operators ϑ and χ are continuous. To this purpose, let (un, vn) converge to (u, v) in U . Then

un → u and ∇un → ∇u in W
1,p(x)
0 , and vn → v and ∇vn → ∇v in W

1,q(x)
0 .

Hence there exist two subsequences denote again by (un), (vn) and measurable functions ω1 (resp. ω2) in L
p(x)(Ω)

(resp. in Lq(x)(Ω)) and ϖ1 (resp.ϖ2 ) in (Lp(x)(Ω))N (resp. in (Lq(x)(Ω))N ), such that

un(x) → u(x) and ∇un(x) → ∇u(x),

vn(x) → w(x) and ∇vn(x) → ∇v(x),

|un(x)| ≤ ω1(x), |∇un(x)| ≤ |ϖ1(x)| and |vn(x)| ≤ ω2(x), |∇vn(x)| ≤ |ϖ2(x)|,
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for almost all x ∈ Ω and all n ∈ N . From (A1) and (A2), we obtain

h(x, un(x),∇un(x)) → h(x, u(x),∇u(x)) for almost all x ∈ Ω,

and
|h(x, un(x),∇un(x))| ≤ const

(
d(x) + |ω1(x)|β(x)−1 + |ϖ1(x)|β(x)−1

)
,

for almost all x ∈ Ω and all n ∈ N and d+ |ω1|β(x)−1 + |ϖ1|β(x)−1 ∈ Lp′(x)(Ω). Taking into account the equality

ρp′(x)(ϑun − ϑu) =

∫
Ω

|h(x, un(x),∇un(x))− h(x, u(x),∇u(x))|p
′(x)dx,

then, from the equivalence (2.5) and the Lebesgue dominated convergence theorem, we obtain ϑun → ϑu in Lp′(x)(Ω),
that is, ϑ is continuous. Similarly, we obtain that χ is continuous.

Step 3 Let I∗
1 : Lp′(x)(Ω) → W

1,p′(x)
0 (Ω), I∗

2 : Lq′(x)(Ω) → W
1,q′(x)
0 (Ω), be the adjoint operators of the operators

I1 :W
1,p(x)
0 (Ω) → Lp(x)(Ω), I2 :W

1,q(x)
0 (Ω) → Lq(x)(Ω), respectively.

Then we define I∗
1oφ : W

1,p(x)
0 (Ω) → W

1,p′(x)
0 (Ω), I∗

2oϕ : W
1,q(x)
0 (Ω) → W

1,q′(x)
0 (Ω), I∗

1oϑ : W
1,p(x)
0 (Ω) →

W
1,p′(x)
0 (Ω), and I∗

2oχ : W
1,q(x)
0 (Ω) → W

1,q′(x)
0 (Ω). On another hand, as the operators I1 and I2 are compact, then

I∗
1 and I∗

2 are compact. Therefore, the compositions I∗
1oφ, I∗

2oϕ, I∗
1oϑ and I∗

2oχ are compact. We conclude that
S = I∗

1oφ+ I∗
2oϕ+ I∗

1oϑ+ I∗
2oχ is compact, which completes the proof of Lemma3.3. □

Theorem 3.4 ([36], Theorem 26A). Let the operator equation

Au = b, u ∈ X (3.2)

together with the corresponding Galerkin equations

a(un, wk) = ⟨b, wk⟩, k = 1, · · · , n, (3.3)

where A : X → X∗ is a monotone, coercive, and hemicontinuous operator on the real, separable, reflexive B-space X.
Assume {w1, w2, · · · } is a basis in X. Then the following assertions hold:

1. Solution set. For each b ∈ X∗, equation (3.2) has a solution. The solution set of (3.2) is bounded, convex, and
closed.

2. Galerkin method. If dimX = ∞, then for each n ∈ N, the Galerkin equation (3.3) has a solution un ∈ Xn and
the sequence (un) has a weakly convergent subsequence

un ⇀ u in X as n→ ∞,

where u is a solution of the original equation (3.2).

3. Uniqueness. If the operator A is strictly monotone, then equation (3.2) (resp. equation (3.3)) is uniquely solvable
inX (resp. Xn).

4. Inverse operator. If A is strictly monotone, then the inverse operator A−1 : X∗ → X exists. This operator is
strictly monotone, demicontinuous, and bounded.
If A is uniformly monotone, then A−1 is continuous.
If A is strongly monotone, then A−1 is Lipschitz continuous.

5. Strong convergence of the Galerkin method. Let dimX = ∞. If the operator A is strictly monotone, then the
sequence of Galerkin solutions (un) converges weakly in X to the unique solution u of equation (3.2).
If A is uniformly monotone, then (un) converges strongly in X to the unique solution u of (3.2).

6. Nonseparable spaces. IfX is not separable, then the assertions 1, 3, and 4 remain true.

Theorem 3.5. Suppose that the assumptions (A1) and (A2) hold true. Then problem (1.1) has least one distributional
solution (u, v) in U .
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Proof . Let (u, v) ∈ U, (w,ψ) ∈ U , we define the operator S as defined in Lemma 3.3 and the operator T as defined
in subsection 2.3

⟨S(u, v), (w,ψ)⟩ = −
∫
Ω

(λ|u|r(x)−2u+ g(x, v,∇v))wdx−
∫
Ω

(µ|v|s(x)−2v + h(x, u,∇u))ψdx,

⟨T (u, v), (w,ψ)⟩ =
∫
Ω

|∇u|p(x)−2∇u∇wdx+

∫
Ω

|∇v|q(x)−2∇v∇ψdx.

Then (u, v) ∈ U is a distributional solution of (1.1) if and only if

T (u, v) = −S(u, v). (3.4)

According to the properties of the operator T seen in Theorem 2.12 and by using the Minty-Browder Theorem 3.4,
the inverse operator L = T−1 : U∗ → U is bounded, continuous and satisfies condition (S+). On another side, thanks
to Lemma 3.3, the operator S is bounded, continuous and quasimonotone. Consequently, equation (3.4) is equivalent
to

(u, v) = L(w,ψ) and (w,ψ) + SoL(w,ψ) = 0. (3.5)

Folowing the terminology of [36], the equation (w,ψ)+SoL(w,ψ) = 0 is an abstract Hammerstein equation in the
reflexive space W−1,p′(x)(Ω) ×W−1,q′(x)(Ω). Since the equation (3.4) is equivalent to (3.5), then to solve (3.4), it is
thus enough to solve (3.5). To solve (3.5), we will using the degree theory introduced in subsection 2.1. For this , we
first show that the set

Σ = {(w,ψ) ∈ U∗|(w,ψ) + tSoL(w,ψ) = 0 for some t ∈ [0, 1]}

is bounded. Indeed, let us up (u, v) = L(w,ψ) for all (w,ψ) ∈ Σ, then ∥L(w,ψ)∥U = ∥(u, v)∥U = max(∥∇u∥p(x), ∥∇v∥q(x)).
If ∥∇u∥p(x) ≤ 1 and ∥∇v∥q(x) ≤ 1. Then ∥L(w,ψ)∥U ≤ 1, that means {L(w,ψ) : (w,ψ) ∈ Σ} is bounded. If
∥∇u∥p(x) > 1 and ∥∇v∥q(x) > 1, then by using the assumption (A2), the inequalities (2.1), (2.7), the implication (2.4)
and the Young inequality, we obtain the estimate

∥L(w,ψ)∥min(p−,q−)
U = ∥(u, v)∥min(p−,q−)

U

≤ ρp(x)(∇u) + ρq(x)(∇v)
= ⟨T (u, v), (u, v)⟩
= ⟨(w,ψ), L(w,ψ)⟩
= −t⟨SoL(w,ψ), L(w,ψ)⟩

= t

(∫
Ω

(
λ|u|r(x)−2u+ g(x, v,∇v)

)
udx+

∫
Ω

(
µ|v|s(x)−2v + h(x, u,∇u)

)
vdx

)

≤ const
(
∥u∥r

−

r(x) + ∥u∥r
+

r(x) + ∥b∥p′(x)∥v∥p(x) +
1

α′− ρα(x)(v) +
1

α− ρα(x)(u)

+
1

α′− ρα(x)(∇v) +
1

α− ρα(x)(u) + ∥v∥s
−

s(x) + ∥v∥s
+

s(x) + ∥d∥q′(x)∥u∥q(x)

+
1

β′− ρβ(x)(u) +
1

β− ρβ(x)(v) +
1

β′− ρβ(x)(∇u) +
1

β− ρβ(x)(v)
)

≤ const
(
∥u∥r

−

r(x) + ∥u∥r
+

r(x) + ∥v∥p(x) + ∥v∥α
+

α(x) + ∥∇v∥α
+

α(x)

+ ∥v∥s
−

s(x) + ∥v∥s
+

s(x) + ∥u∥q(x) + ∥u∥β
+

β(x) + ∥∇u∥β
+

β(x)

)
,

then, thanks to Lp(x) ↪→ Lr(x), Lp(x) ↪→ Lα(x), Lq(x) ↪→ Ls(x) and Lq(x) ↪→ Lβ(x) and (2.10), we get

∥L(w,ψ)∥min(p−,q−)
U ≤ const (∥L(w,ψ)∥max(r+,s+)

U + ∥L(w,ψ)∥U + ∥L(w,ψ)∥max(α+,β+)
U ).

If ∥∇u∥p(x) > 1 and ∥∇v∥q(x) ≤ 1 (resp. if ∥∇u∥p(x) ≤ 1 and ∥∇v∥q(x) > 1), we can also get that ∥L(w,ψ)∥V is
bounded. Consequently {L(w,ψ)|(w,ψ) ∈ Σ} is bounded. Since the operator S is bounded, it is obvious from (3.5)
that the set Σ is bounded in U∗. However, there exists η > 0 such that

∥(w,ψ)∥U∗ < η for all (w,ψ) ∈ Σ,
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which says that
(w,ψ) + tSoL(w,ψ) ̸= 0 for all (w,ψ) ∈ ∂Ση(0) and all t ∈ [0, 1],

where Ση(0) is the ball of radus η and center 0 in U∗. By Lemma 2.4, we conclude that

I + SoL ∈ FL(Ση(0)) and I = ToL ∈ FL(Ση(0)).

Since the operators I, S and L are bounded, then I + SoL is bounded. We conclude that

I + SoL ∈ FL,B(Ση(0)) and I ∈ FL,B(Ση(0)).

Next, we consider the homotopy H : [0, 1]× Ση(0) → U∗ given by

H(t, w, ψ) := (w,ψ) + tSoL(w,ψ) for (t, w, ψ) ∈ [0, 1]× Ση(0).

Hence, according to the properties of the degree deg stated in Theorem 2.7, we obtain

deg(I + SoL,Ση(0), 0) = deg(I,Ση(0), 0) = 1,

which implies that ∃(w,ψ) ∈ Ση(0) such that

(w,ψ) + SoL(w,ψ) = 0.

Which implies that (u, v) = L(w,ψ) is a distributional solution of (1.1). This completes the proof. □

References

[1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal.
164 (2002), no. 3, 213–259.

[2] M. Ait Hammou and E. Azroul, Existence result for a nonlinear elliptic problem by topological degree in Sobolev
spaces with variable exponent, Moroccan J. Pure Appl. Anal. 7 (2021), no. 1, 50–65.

[3] M. Ait Hammou, E. Azroul, and B. Lahmi, Existence of solutions for p(x)-Laplacian Dirichlet problem by Topo-
logical degree, Bull. Transilv. Univ. Brasov Ser III. 11 (2018), no. 2, 29–38.

[4] M. Ait Hammou, E. Azroul, and B. Lahmi, Topological degree methods for a Strongly nonlinear p(x)−elliptic
problem, Rev. Colombiana Mat. 53 (2019), no. 1, 27–39.

[5] J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differ. Equ.
234 (2007), no. 1, 289–310.

[6] L.E.J. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1912), 97–115.

[7] F.E. Browder, Degree of mapping for nonlinear mappings of monotone type, Proc. Natl. Acad. Sci. USA. 80
(1983), no. 6, 1771–1773.

[8] L. Dingien, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev Spaces with Vriable Exponent, Lecture
Notes in Mathematics, Springer, Berlin, 2011.

[9] G.G. dos Santos, G.M. Figueiredo, and L.S. Tavares, Sub-super solution method for nonlocal systems involving
the p(x)−Laplacian operator, Electron. J. Differ. Equ. 2020 (2020), no. 25, 1–19.

[10] D.E. Edmunds, J. Lang, and A. Nekvinda, On Lp(x)(Ω) norms, Proc. Royal Soc. London Ser. A 455 (1999),
219–225.

[11] D.E. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3,
267–293.

[12] X. Fan, Q. Zhang, and D. Zhao, Eigenvalues of p(x)−Laplacian Dirichlet problem, J. Math. Anal. Appl. 302
(2005), no. 2, 306–317.

[13] X.L. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces Wm,p(x)(Ω), J. Math. Anal. Appl. 262
(2001), no. 2, 749–760.



Existence of solutions for a strongly nonlinear (p(x), q(x))-elliptic systems 239

[14] X.L Fan and Q.H. Zhang, Existence of solutions for p(x)−Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003),
no. 8, 1843–1852.

[15] X.L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424–446.

[16] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl. 367
(2010), 204–228.

[17] J. Giacomoni and G. Vallet, Some results about an anisotropic p(x)-Laplace Barenblat equation, Adv. Nonlinear
Anal. 1 (2012), 227–298.

[18] S. Heidari and A. Razani, Infinitely many solutions for (p(x); q(x))- Laplacian-like systems, Commun. Korean
Math. Soc. 36 (2021), no. 1, 51–62.

[19] F. Karami, K. Sadik, and L. Ziad A variable exponent nonlocal p(x)−Laplacian equation for image restoration,
Comput. Math. Appl. 75 (2018), 534–546.

[20] A. Khaleghi and A. Razani, Solutions to a (p(x); q(x))-biharmonic elliptic problem on a bounded domain, Bound.
Value Prob. 2023 (2023), 53.

[21] I.S. Kim and S.J. Hong, A topological degree for operators of generalized (S+) type, Fixed Point Theory Algorithms
Sci. Eng. 2015 (2015), 194.

[22] O. Kovacik and J. Rakosnik, On spaces Lp(x)(Ω) and Wm,p(x)(Ω), Czechoslovak Math. J. 41 (1991), 592–618.

[23] H. Lalilia, S. Tasa, and A. Djellitb, Existence of solutions for critical systems with variable exponents, Math.
Modell. Anal. 23 (2018), 596–610.

[24] S. Lecheheb and A. Fekrache, Topological degree methods for a nonlinear elliptic systems with variable exponents,
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