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Abstract

This article is concerned with the study of the existence of a distributional solution for a strongly nonlinear (p(z), ¢(x))—elliptic
systems. By means of the Berkovits degree theory, with suitable assumptions on the nonlinearities, we prove the ex-
istence of nontrivial solutions to our problem.
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1 Introduction

In this article, we are interested in studying the existence of a distributional solution for the strongly nolinear

elliptic system
—Ap(ay (1) = Au[" @2 + g(a,v, Vo) inQ,

D) (v) = plo]* 720 + h(z,u, Vu) inQ, (1.1)
u=v=0 on 0,

where Q is a bounded domain in RY with smooth boundary 99, —A, ) (u) = —div(|Vu[P®)=2Vu) is p(z)—Laplacian,
the functions p, q,r,s € C(2) with p(.),q(.) are log-Holder continuous functions and A, p are a real parameters. We
assume also that 2 <7~ <r(z) <rt <p~ <p(z) <p' <ocand 2 < s~ < s(z) <st < ¢ <q(z) <¢" < oco.

In recent years, the study of partial differential equations and variational problems involving variable exponent
conditions is a very attractive topic and has been received considerable attention of many authors in this area of
resarch (see [9] 10, [1T], 13} 18, 201 211 241 26l 27, 28], 291 [30, B1], 32], 33]). This is partly due to their various applications
in various fields such as image processing [19], mathematical biology [16], elastic mechanics [40], stratigraphy problems
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[1I7] and electro-rheological fluids [I]. On the existence results for elliptic systems similar to (1.1)), we refer [23] 35}, B8]
and references therein. In [4], the researchers proved the existence of weak solutions for the problem

{ Ap(ay () = Mu|?®@ =20 + f(z,u,Vu) in Q,
(1.2)

u=0 on 0f.

The proofs based on the recent Berkovits topological degree. In [14] Fan and Zhang considered the existence of
weak solutions of the problem with A = 0 and f independent of Vu. They present several existence results of
weak solutions for problem. Their results are extensions of that of p-Laplacian problems. This same problem has
been studied in [37]. Using critical point theory without the Ambrosetti-Rabinowitz condition, they obtain a couple
of existence results of strong solutions. In [34], the authors solved the problem with the right hand side is
Af(z,u), under appropriate assumptions on f and g, they establish the existence and multiplicity of solutions. This
existence is obtained by using the variational method. The similar problem that the problem has been studied
n [12]. The difference is that in [I2] considered the case that the function p(.) = ¢(.) and f = 0. In [3], the authors
studied the above problem with A = 0. Using the topological degree theory for a class of demicontinuous operators
of generalised (S4) type, they obtain the existence results of at least weak solutions. The authors in [24] generalized
these results to the system. More precisely, they studied the existence of solutions in the variational frame work by
using the topological degree constructed by Kim and Hong [21]. For more details about this method, the reader can
see [2, [, [7, 25].

In our research, we concentrate our efforts to study the existence of distributional solutions for the system (|1.1]).
This existence have been given by the topological degree method. Precisely, the existence of distributional solutions
under suitable assumptions on the nonlinearities, has been discussed. These results are extensions of those in [4].

Our paper is structured as follows. In Section [2| we present some classes of mappings and topological degree,
some basic properties of the variable exponent Lebesgue-Sobolev spaces and we collect several important properties of
p(x)—Laplacian which will be later needed. Sectiondeals with the basic assumptions and the main results concerning
the distributional solutions of system .

Notation. Throughout this paper, we will denoted by ”—” and ”—” the strong and weak convergence. We use
Bpg(a) to denote the open ball in the Banach space X of radius R > 0 centered at a. The symbol ”<—” means the
continuous embedding.

2 Preliminaries

In order to discus system , we need some elementary results and theories on topological degree and on the
variable-exponent Lebesgue-Soboleve spaces LP(*) (Q) and Wl’p(“’)(ﬂ). Firstly, we state some classes of mappings and
topological degree, secondly, we recall basic properties of spaces LP(*) () and Wl’p(“”)(Q). Finally, we give some
properties of (p(x), ¢(x))-Laplacian operators which will be used later.

2.1 Some classes of mappings and topological degree

Definition 2.1. Let X and Y be two real separable, reflexive Banach spaces and  a nonempty subset of X. A
mapping FF': QC X - Y is

e bounded, if it takes any bounded set into a bounded set.
e demicontinuous, if for each u € Q and any sequence (uy,) in €2, u, — w implies F(u,) = F(u).

e compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 2.2. Let X be a real separable reflexive Banach space with dual space X*. An operator F': Q C X — X*
is said to be

e of class (S), if for any sequence (u,) in Q with u, — w and lim sup(F'uy, u, — u) < 0, we have u,, — u.

e quasimonotone, if for any sequence (u,) in Q with u,, — u, we have lim sup(Fu,,, u, — u) > 0.
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Definition 2.3. Let T: 2; C X — X™ be a bounded mapping such that  C ;. For any mapping F': Q@ C X — X,
we say that

e F of class (S4)r, if for any sequence (uy,) in Q with u, — u, y, := Tu, — y and limsup(Fu,,y, —y) < 0, we
have u,, — u.

e [ has the property (QM )y, if for any sequence (u,,) in Q with u,, — u, y,, := Tu,, — y, we have lim sup(Fuy,, y, —
y) > 0.

Now, let O be the collection of all bounded open set in X. For any 2 C X, we consider the following classes of
operators:

F1() = {F:Q — X*|F is bounded, demicontinuous and of class (S1)},
Fre(Q) = {F:Q — X|F is bounded, demicontinuous and of class (S; )7},
Fr(Q) = {F:Q — X|F is demicontinuous and of class (Sy)r},
Fp(X) = {FeFrp(G)GeO,TeF(G))},
F(X) {F e Fr(G)GeO,Te Fi(G)},

where, T' € F1(G) is calledc an essential inner map to F.

Lemma 2.4 ([5], Lemmas 2.2 and 2.4). Let T € 71 (G),G € O, be continuous and S : Dg C X* — X a bounded

demicontinuous mapping such that T(G) C Dg. Then the following statements are true:

e If S is quasimonotone, then I + SoT € Fr(G), where I denote the identity operator.
e If S of class (Sy), then SoT € Fr(G).

Definition 2.5. Let F,.S € Fr(G) and let G be a bounded open subset of a real reflexive Banach space X. The
affine homotopy # : [0,1] x G — X given by

H(A\ u) = (1 — N Fu+ ASu, for (\,u) € [0,1] x G

is called an admissible affine homotopy with the continuous essential inner map 7.
Remark 2.6. [5] The above affine homotopy satisfies condition (S4).

Now, we introduce the Berkovits topological degree for the class Fg(X). For more details see [5].

Theorem 2.7. There exists a unique degree function
deg : {(F,G,h)|G € O,T € Fi(G),F € Frp(G),h ¢ F(0G)} = Z
that satisfies the following properties:

e (Normalization) For any h € G, we have deg(I,G,h) = 1.

e (Additivity) Let F' € Fr g(G). If G1 and Gy are two disjoint open subsets of G such that h ¢ F(G\ (G1UG?2)),
then we have
deg(F,G,h) = deg(F, Gy, h) + deg(F, G2, h).

e (Homotopy invariance) If H : [0,1] x G — X is a bounded admissible affine homotopy with a common continuous
essential inner map and h : [0,1] x X is a continuous path in X such that h(\) ¢ H(X, 0G) for all A € [0, 1], then
the value of deg(H(A,-), G, h(X)) is constant for all A € [0, 1].

o (Existence) If deg(F, G, h) # 0, then the equation Fu = h has a solution in G.
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2.2 Notation and functional spaces

In this subsection, we list and recall some fact and results on variable exponent spaces LP(®)(Q) and WP(®)(Q).
See [8, 10, [15, 22, [39] for more details. Throughout the rest of the paper we consider a bounded domain Q C RY,
N > 2 with a Lipschitz boundary 992. We denote

C(Q) = {f € C(Q) | inf f(z) > 1},

€

f~ =min f(z), f*=max f(z), forevery f € Cy(Q).
zeQ €

For each p € C,(Q), we define the space LP(*)(Q) by
L@ (Q) = {u | u:Q — Ris a measurable function, pp,)(u) < oo},

where pp () ( fQ |u(x |p #)dz, this space equipped with the Luxemburg norm

Dy<1y,

”qu(m) = inf{)\ >0 | pP(I)(A

and (LP()(Q), || - ||p(x)) becomes a Banach space.
Proposition 2.8. [22]

e The space LP(*)(Q) is a separable and reflexive Banach space.

e The conjugate space of LP()(Q) is L' ®)(Q), where 1/p(z) + 1/p/(z) = 1. Then for any u € LP®)(Q) and
w E Lp,(I)(Q), we have the following Hoélder inequality

1 1
| / wwdz| < (== + ==l 1l ) < 2l 0l (2.1)
Q p p

o If p1,pa € CL(Q), pi(x) < pao(x) for any = € Q, then there exists the continuous embedding LP2(®)(Q) <
LP(=)(Q)

Proposition 2.9. [24, [39] If u,u,, € LP®)(Q), then the following assertions hold true:

[ullp@) <1 (=1,>1) & ppa)(u) <1 (=1,>1). (2.2)
+

lellpy < 1= 75y < ooy () < Jull (23)

lullpgy > 1= l[ull},) < ppiay () < ||u||p(m (2.4

nh_)rr;OHun —Ulp@) =0 & nler;Opp(x) (up, —u) =0. (2.5

”qu(m) < Pp(x) (u) + 1. (2.6

- +

oty () < Nl + 0l (27

Now, we define the space W1P@)(Q) as WLP@)(Q) = {u € LP®)(Q) | |Vu| € LP@)(Q)}, equipped with the norm
[ullwrrer = llwllp) + [Vellpa)- (2.8)

Let Wol’p(I)(Q) denote the subspace of W1P(#)(Q) which is the closure of C§°(Q) with respect to the norm (2.8)).
Proposition 2.10. [8, 15 22]

e The two spaces W, "? (z)(Q) and WP (Q) are a Banach spaces separable and reflexive.
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e If p(x) satisfies the log-Holder continuity condition, i.e., there is a constant « > 0 such that for every z,y €
Q,z ¢ y with |z — y| < 1 one has

@
px) —pWy)| < ——, 2.9
R I (29)
then there exists a constant C' > 0, such that
1,p(z
lullp) < ClVullpe), Ve Wo ™ (9). (2.10)

e If pe C(Q) for any x € Q, then the imbedding Wol’p(ac)(Q) — LP(®)(Q) is compact.

Remark 2.11. ¢ By (2) of Lemma we know that ||Vu||,,) and [lu|| are equivalent norms on Wol’p(z)(Q).

e The dual space of Wo*™(Q) is W—1#'(®)(Q), which endowed with the norm

N
el -1,y = inf {1l o) + D Ntllroy -
=1

where the infinimum is taken on all possible decompositions v = uy — divF with ug € Lp/(’:)(Q) and F' =
(Uh R ,UN) c (LP (JC)(Q))N_

Let us define U = Wol’p(x) (Q) x Wol’q(m)(Q) endowed with the norm ||(u,v)||y = max(||ul1 p(), [[V|l1,q(z)) Where
ull1,p) = [|Vllpz) and (U, || - ||) is a Banach space, separable and reflexive.
2.3 Properties of (p(x), g(x))-Laplacian operators

Now, we discuss the (p(z), g(x))-Laplacian operator

—Dp@yu = —div([VulP@ V), and = Ay = —div(|Vo|"P V).

We consider the following functional:

|V |P(®) |Vola(®)
J(u,v z/ dr + dx
)= o) o a@)

We know that (see [14]) J € C1(U,R) and the (p(z), q(x))-Laplacian operator is the derivative operator of J in
the weak sense. Denote T'=J' : U — U*, then for any (w,®) € U

(T(u,v), (w,)) :/ |Vu|p(w)*2Vqudx+/ |Vo|1®)=2VuVipde,  Yu,v e U.
Q Q

Theorem 2.12. [I4]

e T:U — U* is a continuous, bounded and strictly monotone operator.
e T:U — U* is a mapping of type (S4).

e T:U — U* is a homeomorphism.

The proof of the above theorem can be found in [14].
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3 Basic assumptions and the main results

In the present section, we study the existence of distributional solutions for the systems based on the degree
theory in Section [2, where Q C RY is a bounded domain with a Lipschitz boundary 09, p,q € C, () satisfies the
log-Holder continuity (2.9), r,s € C1.(Q), 2 <r~ <r(z) <rt <p” <p(z) <pt <o0,2<s” <s(z) <st <qg <
q(r) <q" <ooand g,h: QxR xRY — R are a real-valued functions such that

(A1) (Continuity) g, h are the Carathéodory functions ( i.e., g(z,-,-) is continuous in (¢;,t3) for almost every z € Q
and g(-,t1,1) is measurable in z for each (t;,t;) € R x RY).

(Az) (Growth) There exist a positive constants ki, ko, b € LF'*)(Q),d € LY ®)(Q), b(x),d(z) > 0 and o, 8 € C,(Q)
with 2 < a™ <a(z) <at <p™,2< B~ <B(z) < BT < ¢, such that

l9(@, t1,t2)] < kr(b(@) + [02] )T 4 (1| 7Y, and [h(x, &1, &) < ka(d(x) + |67 4+ (€77,
Definition 3.1. We say that (u,v) € U is a distributional solution of the system (|1.1]) if for any (w, ) € U we have

/|Vu\p(m)_2Vqudx+/ |Vv\q(m)_2VvV1/1dx=/()\|u|r(”’)_2u—|—g(x,v,Vv))wdx+/ (o) @ =20+ h(z, u, Vu))pdz.
Q Q Q Q

(3.1)
Remark 3.2. Note that [, [Vu[P(®=2VuVwdz + [, [Vo|1®=2VuVide = (T(u,v), (w,1)) as defined in subsection

AMu["@ =2y e LF'@(Q), plo)s@)2y e LY@(Q), g(z,0,Vv) € LY@ (Q) and h(z,u,Vu) € L' @) (Q) under
(u,v) € U, the assumptions A,) and the given hypotheses about the exponents p, ¢, and s becaose: b € LP (*)(Q) and

d € L7®(Q), y(w) = (r(z) — Dp'(v) € C1(Q) with y(z) < p(x), K(z) = (B(x) — )p/(z) € C1(Q) with k(z) < p(),
9(x) = (s(z) — 1)¢'(x) € C;(Q) with 8(x) < q(z) and §(z) = (a(z) — 1)p'(z) € CL(Q) with a(x) < ¢(z). Then, by the
continuousembedding, we can conclude that LP(*) < [Y@) [p(@) y [r(@)  [a(@) «y 10) apnd L) s [9()  Hence,
since (w, 1)) € LP®) x LI®) we have

/Q(/\|u|r(z)_2u + g(x,v, Vv))wdz + /Q(u\v\s(x)_zv + h(z,u, Vu))pde € L*(Q) x LY(Q).
This implies that the integral
/Q()\|u|r(”)_2u + g(z,v, Vv))wdx + /Q(,u|v|5(””)_2v + h(z,u, Vu))pdzx

exists.
Lemma 3.3. Assume that the assumptions (A;) and (As) hold. Then the operator S : U — U* given by

(u, V) €U,

(S(u,v), (w,9)) = — /Q(Mur(w)*?u+g(x,v,v1;))wdx — /Q(mvf(m)% + h(x,u, Vu))dz, V(w,¢) € U
is compact.
Proof . We divide the proof into three steps.
Step 1 Let ¢ : WP (Q) — LV'@)(Q), ¢ : W™ (Q) — L7 ®)(Q) be two operators defined by

ou(z) = —Au(z)]"®2u(z) for u e Wol’p(z) and z € Q,

and
dv(z) = —plv(z)]* @20 for v e WOLq(x) and z € Q.
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In this step, we show that the operators ¢ and ¢ are continuous and bounded. It is clear that the operators ¢
and ¢ are continuous. Next, we show that ¢ and ¢ are bounded. Let u € WO1 P (I)(Q), by inequalities (2.6) and
(2.7), we obtain
”(pu”p’(w) < Py’ (z) (‘pu) +1
/ |)\|u|’“(z)’1|p'(z)dx +1
Q

IN

’— 7+
(AP + AP ) pya) +1
’— 1+
(AP + AP )(|U|W(m) + \uh(x )+ 1.

IN

Then, we have by (2.10) and LP(®) < L7(*) that

lpullriay < const(llull] ) + Nl ) + 1.

that means ¢ is bounded on WO1 P Similarly, we can show that ¢ is bounded on WO1 (@),

Step 2 We define the operators o : Wol’p(w)(Q) — LP@)(Q), x Wol’q(w)(Q) — L7@)(Q) by
Yu(z) = —h(z,u, Vu) for u € Wol’p(a:) and x € §,

and
xw(z) = —g(z,w, Vw) for w e Wol’q(x) and z € Q.

We will show that 1 and x are bounded and continuous. For any u € VVO1 P(@) (©), we have, by the inequalities ([2.6])
and (2.7) and the condition (Az) that

[Pullpzy < pp(a)y(@Wu) +1
/ (@, u(z), Vu(z)) [P @ +1
Q

const(/ (|d| + |uf@—t 4 \VU\B(I)fl)p/(Z)dz>
Q

const (pp’(ac) (d) + Pr(x) (u) + Pr(z) (vu)> +1

- +
< const (142 + NIy + Il + lullie) + IVulie, + IVull,)) +1

IN

IN

Hence, we have by the continuous embedding LP(*) — L#(*) and ([2.10) that

[9ullyey < const (], + A2 + Ty + Nl ) +1

Consequently, 9 is bounded on VVO1 ?(#) Gimilarly, we can show that y is bounded on I/VO1 4(®)  Now, we prove that
the operators ¢ and x are continuous. To this purpose, let (u,,v,) converge to (u,v) in U. Then

(z)

. 1 . 1
U, — u and Vu, — Vu in Wy " and v, — v and Vv, — Vv in Wo’q(m).

Hence there exist two subsequences denote again by (uy), (v,,) and measurable functions w; (resp. wy) in LP(¥)(Q)
(resp. in LI®)(Q)) and @, (resp.wy ) in (LP®) Q)Y (resp. in (LI®)(Q))N), such that
un (z) = u(z) and Vu,(x) — Vu(x),

vp(x) = w(z) and Vo, (x) — Vo(z),
Jun (2)] < wi(2), [Vun(2)] < |@1(2)] and fon (2)] < ws(2), [V (2)] < |@2(2)],
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for almost all x € Q and all n € N. From (A;) and (As3), we obtain
h(z, un(x), Vuy () = h(z,u(z), Vu(z)) for almost all = € €,

and
By n (), Vean(2))] < const (d(x) + wr (@) 7O+ e (@) 7@ 1),

for almost all z € Q and all n € N and d + |w; [P@)~1 4 @, [F®)~1 ¢ LP'(#)(Q). Taking into account the equality
poor B = 900 = [ (bl (), V() = bl o), Tl O,
Q

then, from the equivalence ([2.5)) and the Lebesgue dominated convergence theorem, we obtain du,, — Ju in L”/(z)(Q),
that is, ¥ is continuous. Similarly, we obtain that x is continuous.

Step 3 Let Z; : LP'()(Q) — Wol’p/(l)(Q)7 Z; : LY@(Q) — Wol’q,(m)(ﬂ), be the adjoint operators of the operators
I : WP (Q) = LP@(Q), T, : W '™ (Q) — LI@)(Q), respectively.

Then we define Ziop : W@ (Q) — WP @ (@), Tiop : W'D (Q) — w7 @ @), Trov : Wi (Q) —
WP (@), and Tiox : Wi (Q) — Wy'? ) (€). On another hand, as the operators Z; and T, are compact, then
Z; and I3 are compact. Therefore, the compositions Zop, Z50¢, Z70¥ and Z5o0x are compact. We conclude that
S =Top + L300 + L7 0¥ + Li0x is compact, which completes the proof of Lemm O

Theorem 3.4 ([36], Theorem 26A). Let the operator equation
Au=b, ue X (3.2)

together with the corresponding Galerkin equations

a(unawk) = <bawk>7 k= 17 2 (33)
where A : X — X* is a monotone, coercive, and hemicontinuous operator on the real, separable, reflexive B-space X.
Assume {wy,ws, -} is a basis in X. Then the following assertions hold:
1. Solution set. For each b € X*, equation (3.2) has a solution. The solution set of (3.2)) is bounded, convex, and
closed.

2. Galerkin method. If dim X = oo, then for each n € N, the Galerkin equation (3.3)) has a solution w,, € X,, and
the sequence (u,) has a weakly convergent subsequence

u, = u in X as n — o0,

where u is a solution of the original equation .

3. Uniqueness. If the operator A is strictly monotone, then equation (resp. equation ) is uniquely solvable
inX (resp. X,).

4. Inverse operator. If A is strictly monotone, then the inverse operator A~! : X* — X exists. This operator is
strictly monotone, demicontinuous, and bounded.
If A is uniformly monotone, then A~! is continuous.
If A is strongly monotone, then A~! is Lipschitz continuous.

5. Strong convergence of the Galerkin method. Let dim X = co. If the operator A is strictly monotone, then the
sequence of Galerkin solutions (u,) converges weakly in X to the unique solution u of equation .
If A is uniformly monotone, then (u,) converges strongly in X to the unique solution u of .

6. Nonseparable spaces. IfX is not separable, then the assertions 1, 3, and 4 remain true.

Theorem 3.5. Suppose that the assumptions (A4;) and (Az) hold true. Then problem (|1.1]) has least one distributional
solution (u,v) in U.
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Proof . Let (u,v) € U, (w,%) € U, we define the operator S as defined in Lemma [3.3 and the operator T' as defined
in subsection 23]

(S(u,v), (w,¢)) = — / ()\|u|”(””)_2u + g(z,v, Vv))wdx — / (M|U|S(”C)_2v + h(z, u, Vu))pdz,
Q Q
(T(u,v), (w,)) = / |Vu[P@) 2V uVwds + / (V|1 =2V Vipd.
Q Q

Then (u,v) € U is a distributional solution of (1.1)) if and only if

T(u,v) = =S(u,v). (3.4)

According to the propertles of the operator 7" seen in Theorem [2.12] and by using the Minty-Browder Theorem [3.4]
the inverse operator L = T~! : U* — U is bounded, continuous and satlsﬁes condition (Sy). On another side, thanks
to Lemma the operator S is bounded, continuous and quasimonotone. Consequently, equation (3.4)) is equivalent
to

(u,v) = L(w, ) and (w, ) + SoL(w, ) = 0. (3.5)

Folowing the terminology of [36], the equation (w, )+ SoL(w, ) = 0 is an abstract Hammerstein equation in the
reflexive space W12 (#)(Q) x W14 () (Q). Since the equation is equivalent to (3.5, then to solve (3.4), it is
thus enough to solve . To solve , we will using the degree theory introduced in subsection For this , we
first show that the set

Y = {(w,y) € U*|(w, ) + tSoL(w, ) = 0 for some t € [0, 1]}

is bounded. Indeed, let us up (u,v) = L(w, ) for all (w,v) € X, then || L(w, ¥)|lv = |[(v, v)|lv = max([|Vully), [VVllqe))-
If [[Vullpe < 1 and |[Vollgny < 1. Then ||L(w,¥)|ly < 1, that means {L(w,?) : (w,?) € X} is bounded. If
[Vullpz) > 1 and ||[Vol|g) > 1, then by using the assumption (As), the inequalities (2.1)), . the implication (2
and the Young inequality, we obtain the estimate

IL(w, )" ) = ()l
Pp(z) (VU) + pg(z) (Vv)
(T(u, ), (u,v))
= ((w,¥), L(w,¥))
= —t{SoL(w, ), L(w,))

— t</ ()\IuIT(x)—Qu+g(a:,v,Vv))udx+/ (,u|v|8(:c)—2v+h(x,u,Vu))UdCC)
@ Q

IN

r rt 1 1
< const (”u”r(z) + lullv@y + 10l @) vllpe) + = Pa2) (v) + aiﬂa(x)(u)
1 1
+ ana(m)(VU) + aipa(r)( ) + ”'UH x) + HU”s(m + ”d”q/(r)”U”q(M
b 3 () i) () + 2= Py (V) + 2= (0)
B- PB(x) B PB() BI- PB(z) B PB(z)
+
< const (||U||r ) F el + [0l + [0l + VoIS,

+MMZHMLWW%m+MM@HWW%J
then, thanks to LP(*) < L@ [p() <y po(@) [a(@) <y [5(2) and L) —y [BE) and , we get
nuwwwm“”<amuuwwwm””-wuwwm+uwwwmmﬁb
If [Vullp@) > 1 and [Vl <1 (resp. if [Vullpy < 1 and [[Volly) > 1), we can also get that ||L(w,v)]|v is

bounded. Consequently {L(w,)|(w,) € X} is bounded. Since the operator S is bounded, it is obvious from (3.5
that the set 3 is bounded in U*. However, there exists n > 0 such that

[[(w, )]

v <n forall (w,¢) e X
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which says that

(w,¥) +tSoL(w,) # 0 for all (w,¢) € 90¥,(0) and all t € [0,1],

where 3, (0) is the ball of radus 1 and center 0 in U*. By Lemma we conclude that

I+ SoL € Fr,(£,(0)) and I =ToL € Fr(3,(0)).

Since the operators I, S and L are bounded, then I 4+ SoL is bounded. We conclude that

I+ SoL € Fr g(2,(0)) and I € Fr g(%,(0)).

Next, we consider the homotopy H : [0, 1] x 3,(0) — U* given by

H(t,w, ) = (w,¥) + tSoL(w,v) for (t,w,) € [0,1] x ,(0).

Hence, according to the properties of the degree deg stated in Theorem we obtain
deg(I + SoL, 27](0)3 O) = deg(Iﬂ 27](0)’ 0) =1,

which implies that 3(w,) € X,(0) such that

(w, ) + SoL(w, ) = 0.

Which implies that (u,v) = L(w, ) is a distributional solution of (1.1). This completes the proof. O
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