Int. J. Nonlinear Anal. Appl. 16 (2025) 4, 373–380 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2024.32784.4873



# Nonexistence of sub-elliptic critical problems with Hardy-type potentials on Carnot group

Ke Wu, Jinguo Zhang\*

School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, P.R. China

(Communicated by Abdolrahman Razani)

## Abstract

Using the Pohozaev-type arguments, we prove the nonexistence results for sub-elliptic problems with critical Sobolev-Hardy exponents and Hardy-type potentials on the Carnot group.

Keywords: Nonexistence, Critical Sobolev-Hardy exponent, Pohozaev identity, Carnot group 2020 MSC: Primary 35R03; 35J70; Secondary 35B33

### 1 Introduction and the main results

In this paper, we are concerned with the following sub-elliptic problem:

$$\begin{cases} -\Delta_{\mathbb{G}}u - \gamma \frac{\psi^2 u}{d(z)^2} + \mu \frac{\psi^2 u}{d(z,a)^2} = K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^{*}-2} u}{d(z)^{\alpha}} + |u|^{q-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where  $-\Delta_{\mathbb{G}}$  is the sub-Laplacian operator on Carnot group  $\mathbb{G}$ ,  $\Omega \subset \mathbb{G}$  is a bounded domain with smooth boundary,  $0, a \in \Omega$ , d is the natural gauge and the geometrical function  $\psi$  is define by  $\psi = |\nabla_{\mathbb{G}} d(z)|$ ,  $K(z) \in C^1(\Omega)$ , the parameters  $\gamma \in (-\infty, \gamma_{\mathbb{G}}), \mu \in (0, +\infty)$  and  $q \geq 2^*$ .

We begin with some basic definitions and useful results for Carnot group, see [1, 3, 6, 13] for some details. A connected and simply connected Lie group  $(\mathbb{G}, \cdot)$  is a Carnot group of step k if its Lie algebra  $\mathfrak{g}$  admits a step k stratification. This means that there exist non-trivial linear subspaces  $V_1, \dots, V_k$  of  $\mathfrak{g}$  such that

$$\mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_k,$$

where  $[V_1, V_i] = V_{i+1}$  for  $i \in \{1, 2, \dots, k-1\}$  and  $[V_1, V_k] = \{0\}$ . Let  $m_i = \dim(V_i)$  for  $i = 1, \dots, k$ , by means of the natural identification of  $\mathbb{G}$  with its Lie algebra via the exponential map, it is not restrictive to suppose that  $\mathbb{G}$  is a homogeneous Lie group on  $\mathbb{R}^N := \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_k}$  equipped with a group-automorphisms (called dilations)  $\delta_{\gamma} : \mathbb{G} \to \mathbb{G}$  of the form

$$\delta_{\gamma}(z) = (\gamma^1 z^{(1)}, \gamma^2 z^{(2)}, \cdots, \gamma^k z^{(k)}),$$

\*Corresponding author

Received: December 2023 Accepted: April 2024

Email addresses: wukemath@163.com (Ke Wu), jgzhang@jxnu.edu.cn (Jinguo Zhang)

where  $z = (z^{(1)}, z^{(2)}, \dots, z^{(k)}) \in \mathbb{G}$ . On Carnot group  $\mathbb{G}$ , the topological dimension is defined by  $N = \sum_{i=1}^{k} m_i$ , and the homogeneous dimension is denoted that  $Q = \sum_{i=1}^{k} i \cdot m_i$ . Observe that  $\mathbb{G} \cong \mathbb{R}^N$ . In what follows, we assume that  $Q \ge 3$ .

Let  $X_1, X_2, \dots, \dots, X_m$  be the left invariant vector fields of  $V_1$ , the operator

$$\Delta_{\mathbb{G}} = \sum_{i=1}^{m} X_i X_i$$

is called a sub-Laplacian on  $\mathbb{G}$ . We shall denote by  $\nabla_{\mathbb{G}} = (X_1, \dots, X_m)$  the related horizontal gradient. Moreover, for any  $C^1$  vector field  $u = (u_1, u_2, \dots, u_m)$ , we shall indicate by  $\operatorname{div}_{\mathbb{G}} u := \sum_{i=1}^m X_i u_i$ , the divergence with respect to the vector fields  $X_i$ 's. Finally, when  $Q \geq 3$ , the sub-Laplacian possess the following property: there exists a suitable homogeneous symmetry norm d on  $\mathbb{G}$ , which we shall refer to as the  $\Delta_{\mathbb{G}}$ -gauge, such that

$$\Gamma(z) = \frac{C}{\mathrm{d}(z)^{Q-2}}, \quad \forall z \in \mathbb{G}$$

is a fundamental solution of  $-\Delta_{\mathbb{G}}$  with pole at 0, for a suitable constant C > 0. By definition, a homogeneous norm on  $\mathbb{G}$  is a continuous function  $d(\cdot) : \mathbb{G} \to [0, \infty)$  such that:  $d(\delta_{\gamma}(z)) = \gamma d(z)$  for every  $\gamma > 0$  and every  $z \in \mathbb{G}$ , d(z) = 0if and only if z = 0. We say that the homogeneous norm  $d(\cdot)$  is symmetric if  $d(z^{-1}) = d(z)$  for all  $z \in \mathbb{G}$ . If  $d(\cdot)$ is a homogeneous norm on  $\mathbb{G}$ , then  $d(z, y) = d(y^{-1} \circ z)$  is a pseudo-distance on  $\mathbb{G}$ . Note that any two continuous homogeneous norms are equivalent, i.e. within constant multiplicative constant factors of each other. As customary, we will denote by  $B_d(z_0, \rho)$  the d-ball with center  $z_0 \in \mathbb{G}$  and radius  $\rho > 0$  given by

$$B_{\rm d}(z_0,\rho) = \{ z \in \mathbb{G} : {\rm d}(z_0^{-1} \circ z) < \rho \}.$$

In this paper, we work in the Sobolev-Stein space  $S_0^1(\Omega)$ , defined as the completion of  $C_0^{\infty}(\Omega)$  with respect to the norm  $||u||_{S_0^1(\Omega)} = (\int_{\Omega} |\nabla_{\mathbb{G}} u|^2 dz)^{\frac{1}{2}}$ . On  $S_0^1(\mathbb{G})$ , the Hardy inequality is known as

$$\gamma_{\mathbb{G}} \int_{\mathbb{G}} \frac{\psi^2 |u|^2}{\mathrm{d}(z)^2} dz \le \int_{\mathbb{G}} |\nabla_{\mathbb{G}} u|^2 dz, \quad \forall u \in C_0^{\infty}(\mathbb{G}),$$
(1.2)

where  $\gamma_{\mathbb{G}} = (\frac{Q-2}{2})^2$  is the best constant in the above inequality. For  $\alpha \in [0, 2)$ , the following Hardy-Sobolev inequality

$$S_{\alpha} \left( \int_{\mathbb{G}} \frac{\psi^{\alpha} |u|^{2_{\alpha}^{*}}}{\mathrm{d}(z)^{\alpha}} dz \right)^{\frac{2}{2_{\alpha}^{*}}} \leq \int_{\mathbb{G}} |\nabla_{\mathbb{G}} u|^{2} dz, \quad \forall u \in C_{0}^{\infty}(\mathbb{G})$$
(1.3)

holds for some positive constant  $S_{\alpha}$ . In here,  $2^*_{\alpha} = \frac{2(Q-\alpha)}{Q-2}$  is called the critical exponent of the embedding  $S_0^1(\mathbb{G}) \hookrightarrow L^{2^*_{\alpha}}(\mathbb{G}, \frac{\psi^{\alpha}}{d(z)^{\alpha}}dz)$  and Q denotes the homogeneous dimension of the space  $\mathbb{G}$  with respect to the dilation. Observe that  $2^* = 2^*_0 = \frac{2Q}{Q-2}$  is the critical Sobolev exponent.

Associated with problem (1.1), we consider the energy functional

$$I(u) = \frac{1}{2} \int_{\Omega} \left( |\nabla_{\mathbb{G}} u|^2 - \gamma \frac{\psi^2 |u|^2}{\mathrm{d}(z)^2} + \mu \frac{\psi^2 |u|^2}{\mathrm{d}(z,a)^2} \right) dz - \frac{1}{2^*_{\alpha}} \int_{\Omega} K(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{\mathrm{d}(z)^{\alpha}} dz - \frac{1}{q} \int_{\Omega} |u|^q dz.$$

From (1.2) and (1.3), we knows that I is well-defined and  $I \in C^1(S_0^1(\Omega) \cap L^q(\Omega), \mathbb{R})$ , and then its critical points correspond to solutions of (1.1).

Recently, the kind of sub-elliptic Dirichlet problem with singular potentials on Carnot group

$$-\Delta_{\mathbb{G}}u - \gamma \frac{\psi^2 u}{\mathrm{d}(z)^2} = f(z, u) \quad \text{in } \ \Omega \subset \mathbb{G}$$

have been widely studied. We refer to [1, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and the references therein. Garofalo et al [5, 6] establish the existence, regularity and nonexistence results for sub-elliptic problems on Heisenberg group. In [7], the author extends partially the existence and nonexistence results due to [4] again on Carnot group of the form

$$-\Delta_{\mathbb{G}}u - \mu \frac{\psi^2 u}{\mathrm{d}(z)^2} = \lambda u + |u|^{2^* - 2}u \text{ in }\Omega, \quad u = 0 \text{ on }\partial\Omega.$$

$$(1.4)$$

In this paper the author proved that: if  $0 \le \mu \le \mu_{\mathbb{G}} - 1$ , problem (1.4) has at least one positive solution  $u \in S_0^1(\Omega)$  for any  $0 < \lambda < \Lambda_1(\mu)$ ; if  $\mu_{\mathbb{G}} - 1 < \mu < \mu_{\mathbb{G}}$ , there exists  $\lambda^* \in (0, \Lambda_1(\mu))$  such that problem (1.4) has at least one positive solution  $u \in S_0^1(\Omega)$  for  $\lambda^* < \lambda < \Lambda_1(\mu)$ , where  $\Lambda_1(\mu) > 0$  is the first eigenvalue of the operator  $L_{\mu} := -\Delta_{\mathbb{G}} \cdot -\mu \frac{\psi^2}{d(z)^2}$ . In particular, the author state some qualitative properties of ground state solutions to the following limit problem:

$$-\Delta_{\mathbb{G}}u - \mu \frac{\psi^2 u}{\mathrm{d}(z)^2} = |u|^{2^* - 2}u, \quad u \in S^{1,2}(\mathbb{G}).$$

Here the Sobolev-Stein space  $S^{1,2}(\mathbb{G})$  is the completion of  $C_0^{\infty}(\mathbb{G})$  with respect to the norm  $(\int_{\mathbb{G}} |\nabla_{\mathbb{G}} u|^2 dz)^{\frac{1}{2}}$ . Inspired by the above works, by using the variational methods and the mountain-pass theorem, the existence of positive solution to the critical sub-elliptic system is established in [16]. Moreover, by means of the Moser iteration method, some asymptotic properties of its nontrivial solution at the singular point are verified.

However, there are few results about the nonexistence of sub-elliptic equation with multiple critical Sobolev-Hardy terms and multiple singular points. To the best of our knowledge, the problem of nonexistence of sub-elliptic solutions with multiple Hardy-type terms and critical exponent has never been considered before on the Carnot group in a non-Euclidean setting. We would like to point out that since an important feature of the sub-Laplacian is its degenerate property, it turn out from several technical reasons that studying our degenerate equation (1.1) is not directly by using a classical Pohozaev identity. The purpose of this paper is to prove Theorem 1.2, for this we recall the definition of  $\delta_{\gamma}$ -starshaped domains.

**Definition 1.1.** Let  $\Omega$  be a  $C^1$  connected open set,  $0 \in \Omega$ . We say that  $\Omega$  is a  $\delta_{\gamma}$ -starshaped domain with respect to the origin if

$$\langle Z, \nu \rangle(z) \ge 0, \quad \forall z \in \partial \Omega,$$

where Z is the infinitesimal generator of the dilations  $\delta_{\gamma}$  and  $\nu = (\nu_1, \nu_2, \cdots, \nu_N)$  is the outward normal to  $\Omega$ .

In the above definition, the smooth vector field Z is the infinitesimal generator of the one-parameter group of non-isotopic dilations  $\delta_{\gamma}$ , that is, the vector field such that

$$\left[\frac{d}{d\gamma}u(\delta_{\gamma}(z))\right]_{\gamma=1} = Zu$$

For a generic Carnot group of step k, Z has the following expression

$$Z = \sum_{i=1}^{k} \sum_{j=1}^{m_i} i z_j^{(i)} \frac{\partial}{\partial z_j^{(i)}}$$

We recall that Z is characterized by the property that a function  $u : \mathbb{G} \to \mathbb{R}$  is homogeneous of degree k with respect to  $\delta_{\gamma}$ , i.e.  $u(\delta_{\gamma}(z)) = \gamma^k u(z)$  if and only if Zu = ku. Moreover, the following properties hold for Z (see [6]):

$$[X_i, Z] = X_i, \quad \forall i = 1, 2, \cdots, m, \qquad \operatorname{div} Z = Q.$$

Now we state our main results as follows.

**Theorem 1.2.** Let  $\Omega$  is a  $\delta_{\gamma}$ -starshaped domain with respect to the origin in  $\mathbb{G}$ . Assume that  $K \in C^1(\overline{\Omega})$  and  $ZK(z) \leq 0$ ,  $Zd(z, a) \leq 0$  for a.e.  $z \in \Omega$ . Then problem (1.1) does not possess nontrivial nonnegative solution  $u \in S_0^1(\Omega) \cap L^q(\Omega)$  such that  $\frac{Zu}{d(z)} \in L^2(\Omega)$  for any  $\mu > 0$ .

The result in Theorem 1.2 can be easily generalized to the following sub-elliptic critical problem with multiple singular points:

$$\begin{cases} -\Delta_{\mathbb{G}}u - \gamma \frac{\psi^2 u}{d(z)^2} + \sum_{k=1}^m \mu_k \frac{\psi^2 u}{d(z, a_k)^2} = K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^{-2}} u}{d(z)^{\alpha}} + |u|^{q-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.5)

where  $a_k \in \Omega$ ,  $1 \le k \le m$  and  $m \in \mathbb{N}$ . Thus we have the following result.

**Theorem 1.3.** Let  $\Omega$  is a  $\delta_{\gamma}$ -starshaped domain with respect to the origin in  $\mathbb{G}$ , and assume that  $K \in C^1(\overline{\Omega})$ ,  $ZK(z) \leq 0$  and  $Zd(z, a_k) \leq 0$  ( $\forall k \in \{1, 2, \dots, m\}$ ) for a.e.  $z \in \Omega$ . Then problem (1.5) does not possess nontrivial nonnegative solution  $u \in S_0^1(\Omega) \cap L^q(\Omega)$  such that  $\frac{Zu}{d(z)} \in L^2(\Omega)$  for any  $\mu_k > 0$ 

Furthermore, Theorem 1.3 can be generalized to the following sub-elliptic problem with multiple critical Sobolev-Hardy terms and multiple singular points:

$$\begin{cases} -\Delta_{\mathbb{G}}u - \gamma \frac{\psi^2 u}{\mathrm{d}(z)^2} + \sum_{k=1}^m \mu_k \frac{\psi^2 u}{\mathrm{d}(z, a_k)^2} = \sum_{j=1}^l K_j(z) \frac{\psi^{\alpha_j} |u|^{2^*_{\alpha_j} - 2} u}{\mathrm{d}(z, b_j)^{\alpha_j}} + |u|^{q-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.6)

where  $a_k, b_j \in \Omega, m, l \in \mathbb{N}$  and  $2^*_{\alpha_j} = \frac{2(Q-\alpha_j)}{Q-2}, 0 < \alpha_j < 2, 1 \le j \le l$ . Thus we have the following result.

**Theorem 1.4.** Let  $\Omega$  is a  $\delta_{\gamma}$ -starshaped domain with respect to the origin in  $\mathbb{G}$ , and  $a_k$ ,  $b_j \in \Omega$ ,  $1 \le k \le m$ ,  $1 \le j \le l$ ,  $m, l \in \mathbb{N}$ . Assume that  $K \in C^1(\overline{\Omega}), ZK(z) \le 0, Zd(z, a_k) \le 0$  and  $K_j(z)Zd(z, b_j) \ge 0$  for a.e.  $z \in \Omega$ . Then problem (1.6) does not possess nontrivial nonnegative solution  $u \in S_0^1(\Omega) \cap L^q(\Omega)$  such that  $\frac{Zu}{d(z)} \in L^2(\Omega)$  for any  $\mu_k > 0$   $(k \in \{1, 2, \dots, m\})$ .

A short overview of the article is in order. In Section 2 we prove a Pohozaev-type identity of our sub-elliptic singular problem and we deduce a nonexistence result on bound  $\delta_{\gamma}$ -starshaped domain for  $\mu > 0$  and  $q \ge 2^*$ .

## 2 Proof of the main results

For  $(z, u) \in \Omega \times \mathbb{R}$ , set

$$f(z,u) = \lambda \frac{\psi^2 u}{\mathrm{d}(z)^2} - \mu \frac{\psi^2 u}{\mathrm{d}(z,a)^2} + K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^* - 2} u}{\mathrm{d}(z)^{\alpha}} + |u|^{q-2} u.$$

Then

$$F(z,u) = \int_0^u f(z,t)dt = \frac{\lambda}{2} \frac{\psi^2 |u|^2}{\mathrm{d}(z)^2} - \frac{\mu}{2} \frac{\psi^2 |u|^2}{\mathrm{d}(z,a)^2} + \frac{1}{2_\alpha^*} K(z) \frac{\psi^\alpha |u|^{2_\alpha^*}}{\mathrm{d}(z)^\alpha} + \frac{1}{q} |u|^q$$

and

where

$$ZF(z,u) = \langle Z, \nabla_z F(z,u) \rangle + f(z,u)Zu, \qquad (2.1)$$

$$\langle Z, \nabla_z F(z, u) \rangle = \lambda \psi Z \psi \frac{|u|^2}{d(z)^2} - \lambda \frac{\psi^2 |u|^2}{d(z)^3} Z d(z) - \mu \psi Z \psi \frac{|u|^2}{d(z, a)^2} + \mu \frac{\psi^2 |u|^2}{d(z, a)^3} Z d(z, a) + \frac{1}{2_{\alpha}^*} Z K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^*}}{d(z)^{\alpha}} + \frac{1}{2_{\alpha}^*} K(z) \Big( \frac{\alpha \psi^{\alpha-1} Z \psi |u|^{2_{\alpha}^*}}{d(z)^{\alpha}} - \alpha \frac{\psi^{\alpha} |u|^{2_{\alpha}^*}}{d(z)^{\alpha+1}} Z d(z) \Big)$$

$$= -\lambda \frac{\psi^2 |u|^2}{d(z)^2} + \mu \frac{\psi^2 |u|^2}{d(z, a)^3} Z d(z, a) + \frac{1}{2_{\alpha}^*} Z K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^*}}{d(z)^{\alpha}} - \frac{\alpha}{2_{\alpha}^*} K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^*}}{d(z)^{\alpha}},$$

$$(2.2)$$

where we have used that  $Z\psi = 0$  and Zd(z) = d(z).

**Proof of Theorem 1.2.** Due to the lack os regularity of solution at 0 and  $a \in \Omega$ , we begin by considering approximating domains  $\Omega_{\rho_n} = \Omega \setminus (B_d(0, \rho_n) \cup B_d(a, \rho_n))$ , where  $B_d(z, \rho)$  denotes the d-ball with center at z and radius  $\rho$ , here  $\rho_n \to 0$  as  $n \to \infty$ . Clearly,  $\Omega_{\rho_n} \to \Omega$  as  $n \to \infty$ . Multiplying equation (1.1) by Zu and integrating over  $\Omega_{\rho_n}$ , we get

$$-\int_{\Omega_{\rho_n}} \Delta_{\mathbb{G}} u Z u \, dz = \int_{\Omega_{\rho_n}} f(z, u) Z u \, dz.$$
(2.3)

For the left hand side of (2.3), the following Rellich-type identity holds for u on  $\Omega_{\rho_n}$  (see [6]):

$$-\int_{\Omega_{\rho_n}} \Delta_{\mathbb{G}} u Z u \, dz = \frac{2-Q}{2} \int_{\Omega_{\rho_n}} |\nabla_{\mathbb{G}} u|^2 dz + \frac{1}{2} \int_{\partial\Omega_{\rho_n}} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle d\sigma - \int_{\partial\Omega_{\rho_n}} \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u d\sigma, \tag{2.4}$$

where  $\nu_{\mathbb{G}} = (\nu_{\mathbb{G}}^1, \cdots, \nu_{\mathbb{G}}^N)$  denotes the vector field with components  $\nu_{\mathbb{G}}^i = \langle X_i, \nu \rangle$ , here  $\nu = (\nu_1, \cdots, \nu_N)$  is the outward normal to  $\partial \Omega$ .

Concerning the right hand side of (2.3), by (2.1) and (2.2), it is easy to see that

$$\begin{split} \int_{\Omega_{\rho_n}} f(z,u) Zudz &= \int_{\Omega_{\rho_n}} Z(F(z,u)) dz - \int_{\Omega_{\rho_n}} \langle Z, \nabla_z F(z,u) \rangle dz \\ &= -\int_{\Omega_{\rho_n}} \operatorname{div} ZF(z,u) dz + \int_{\partial\Omega_{\rho_n}} F(z,u) \langle Z,\nu \rangle d\sigma - \int_{\Omega_{\rho_n}} \langle Z, \nabla_z F(z,u) \rangle dz \\ &= -Q \int_{\Omega_{\rho_n}} \left[ \frac{\lambda}{2} \frac{\psi^2 |u|^2}{d(z)^2} - \frac{\mu}{2} \frac{\psi^2 |u|^2}{d(z,a)^2} + \frac{1}{2^*_{\alpha}} K(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{d(z)^{\alpha}} + \frac{1}{q} |u|^q \right] dz \\ &+ \lambda \int_{\Omega_{\rho_n}} \frac{\psi^2 |u|^2}{d(z)^2} dz - \mu \int_{\Omega_{\rho_n}} \frac{\psi^2 |u|^2}{d(z,a)^3} Zd(z,a) dz \\ &- \frac{1}{2^*_{\alpha}} \int_{\Omega_{\rho_n}} ZK(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{d(z)^{\alpha}} dz + \frac{\alpha}{2^*_{\alpha}} \int_{\Omega_{\rho_n}} K(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{d(z)^{\alpha}} dz + \int_{\partial\Omega_{\rho_n}} F(z,u) \langle Z,\nu \rangle d\sigma \\ &= -\frac{Q-2}{2} \int_{\Omega_{\rho_n}} \lambda \frac{\psi^2 |u|^2}{d(z)^2} dz + \frac{Q-2}{2} \int_{\Omega_{\rho_n}} \mu \frac{\psi^2 |u|^2}{d(z,a)^2} dz - \mu \int_{\Omega_{\rho_n}} \frac{\psi^2 |u|^2}{d(z,a)^3} Zd(z,a) dz \\ &- \frac{Q}{q} \int_{\Omega_{\rho_n}} |u|^q dz - \frac{Q-\alpha}{2^*_{\alpha}} \int_{\Omega_{\rho_n}} K(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{d(z)^{\alpha}} dz - \frac{1}{2^*_{\alpha}} \int_{\Omega_{\rho_n}} ZK(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{d(z)^{\alpha}} dz \\ &+ \int_{\partial\Omega_{\rho_n}} F(z,u) \langle Z,\nu \rangle d\sigma. \end{split}$$

Then, inserting (2.4) and (2.5) into (2.3), we deduce that

$$\begin{split} \int_{\partial\Omega_{\rho_n}} \left[ \frac{1}{2} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle - \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u - F(z, u) \langle Z, \nu \rangle \right] d\sigma &= \frac{Q-2}{2} \int_{\Omega_{\rho_n}} |\nabla_{\mathbb{G}} u|^2 dz - \frac{Q-2}{2} \int_{\Omega_{\rho_n}} \lambda \frac{\psi^2 |u|^2}{\mathrm{d}(z)^2} dz \\ &\quad + \frac{Q-2}{2} \int_{\Omega_{\rho_n}} \mu \frac{\psi^2 |u|^2}{\mathrm{d}(z, a)^2} dz - \mu \int_{\Omega_{\rho_n}} \frac{\psi^2 |u|^2}{\mathrm{d}(z, a)^3} Z \mathrm{d}(z, a) dz \\ &\quad - \frac{Q}{q} \int_{\Omega_{\rho_n}} |u|^q dz - \frac{Q-\alpha}{2^*_{\alpha}} \int_{\Omega_{\rho_n}} K(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{\mathrm{d}(z)^{\alpha}} dz \\ &\quad - \frac{1}{2^*_{\alpha}} \int_{\Omega_{\rho_n}} Z K(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{\mathrm{d}(z)^{\alpha}} dz. \end{split}$$

$$(2.6)$$

Now, we computing the integral over  $\partial\Omega_{\rho_n} = \partial\Omega \cup \partial B_{\mathrm{d}}(0,\rho_n) \cup \partial B_{\mathrm{d}}(a,\rho_n)$  in right side of (2.6). First, on  $\partial B_{\mathrm{d}}(0,\rho_n)$ , since  $\nu = -\frac{\nabla \mathrm{d}}{|\nabla \mathrm{d}|}$ , we have  $\langle Z,\nu\rangle = -\frac{Z\mathrm{d}}{|\nabla \mathrm{d}|} = -\frac{\mathrm{d}}{|\nabla \mathrm{d}|}$  and  $|\langle \nabla_{\mathbb{G}}u,\nu_{\mathbb{G}}\rangle| = |\langle \nabla_{\mathbb{G}}u,\frac{\nabla_{\mathbb{G}}\mathrm{d}}{|\nabla \mathrm{d}|}\rangle| \leq \psi |\frac{\nabla_{\mathbb{G}}u}{|\nabla \mathrm{d}|}| \leq c |\frac{\nabla_{\mathbb{G}}u}{|\nabla \mathrm{d}|}|$ , which and Federer's coarea formula [2] imply that

$$\int_{\partial B_{d}(0,\rho_{n})} |\nabla_{\mathbb{G}}u|^{2} |\langle Z,\nu\rangle| d\sigma = \rho_{n} \int_{\partial B_{d}(0,\rho_{n})} |\nabla_{\mathbb{G}}u|^{2} \frac{1}{|\nabla d|} d\sigma$$

$$= \int_{0}^{\rho_{n}} ds \int_{\partial B_{d}(0,\rho_{n})} |\nabla_{\mathbb{G}}u|^{2} \frac{1}{|\nabla d|} d\sigma$$

$$= \int_{B_{d}(0,\rho_{n})} |\nabla_{\mathbb{G}}u|^{2} dz \to 0 \text{ as } n \to \infty,$$
(2.7)

$$\begin{aligned} \left| \int_{\partial B_{d}(0,\rho_{n})} \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u d\sigma \right| &\leq c \left( \int_{\partial B_{d}(0,\rho_{n})} \frac{|\nabla_{\mathbb{G}} u| |Z u|}{|\nabla d|} d\sigma \right) \\ &\leq c \rho_{n} \left( \int_{\partial B_{d}(0,\rho_{n})} \frac{|\nabla_{\mathbb{G}} u|^{2}}{|\nabla d|} d\sigma \right)^{\frac{1}{2}} \left( \int_{\partial B_{d}(0,\rho_{n})} \frac{|Z u|^{2}}{d(z)^{2} |\nabla d|} d\sigma \right)^{\frac{1}{2}} \\ &= c \left( \rho_{n} \int_{\partial B_{d}(0,\rho_{n})} \frac{|\nabla_{\mathbb{G}} u|^{2}}{|\nabla d|} d\sigma \right)^{\frac{1}{2}} \left( \rho_{n} \int_{\partial B_{d}(0,\rho_{n})} \frac{|Z u|^{2}}{d(z)^{2} |\nabla d|} d\sigma \right)^{\frac{1}{2}} \\ &= c \left( \int_{0}^{\rho_{n}} ds \int_{\partial B_{d}(0,\rho_{n})} \frac{|\nabla_{\mathbb{G}} u|^{2}}{|\nabla d|} d\sigma \right)^{\frac{1}{2}} \left( \int_{0}^{\rho_{n}} ds \int_{\partial B_{d}(0,\rho_{n})} \frac{|Z u|^{2}}{d(z)^{2} |\nabla d|} d\sigma \right)^{\frac{1}{2}} \\ &= c \left( \int_{B_{d}(0,\rho_{n})} |\nabla_{\mathbb{G}} u|^{2} dz \right)^{\frac{1}{2}} \left( \int_{B_{d}(0,\rho_{n})} \left( \frac{Z u}{d(z)} \right)^{2} dz \right)^{\frac{1}{2}} \to 0 \text{ as } n \to \infty, \end{aligned}$$

and

$$\left| \int_{\partial B_{d}(0,\rho_{n})} F(z,u) \langle Z,\nu \rangle d\sigma \right| = \rho_{n} \int_{\partial B_{d}(0,\rho_{n})} F(z,u) \frac{1}{|\nabla d|} d\sigma$$
$$= \int_{0}^{\rho_{n}} ds \int_{\partial B_{d}(0,\rho_{n})} F(z,u) \frac{1}{|\nabla d|} d\sigma$$
$$= \int_{B_{d}(0,\rho_{n})} F(z,u) dz \to 0 \text{ as } n \to \infty.$$
(2.9)

Similarly, on  $\partial B_{d}(a, \rho_n)$ , we have

$$\int_{\partial B_{d}(a,\rho_{n})} |\nabla_{\mathbb{G}} u|^{2} |\langle Z,\nu\rangle| d\sigma \to 0 \text{ as } n \to \infty,$$
(2.10)

$$\left| \int_{\partial B_{\rm d}(a,\rho_n)} \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u d\sigma \right| \to 0 \text{ as } n \to \infty, \tag{2.11}$$

and

$$\left| \int_{\partial B_{d}(a,\rho_{n})} F(z,u) \langle Z,\nu \rangle d\sigma \right| \to 0 \text{ as } n \to \infty.$$
(2.12)

On  $\partial\Omega$ , it is easy to get that

$$\int_{\partial\Omega} \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u d\sigma = \int_{\partial\Omega} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle d\sigma.$$
(2.13)

Moreover, by using the assumption u = 0 on  $\partial \Omega$ , we get

$$\int_{\partial\Omega} F(z,u) \langle Z,\nu \rangle d\sigma = 0.$$
(2.14)

Then, from (2.7)- (2.14) it follows that

$$\begin{split} &\int_{\partial\Omega_{\rho_n}} \left[\frac{1}{2} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle - \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u - F(z, u) \langle Z, \nu \rangle \right] d\sigma \\ &= \int_{\partial\Omega\cup\partial B_{\mathrm{d}}(0,\rho_n)\cup\partial B_{\mathrm{d}}(a,\rho_n)} \left[\frac{1}{2} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle - \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u - F(z, u) \langle Z, \nu \rangle \right] d\sigma \\ &\to \frac{1}{2} \int_{\partial\Omega} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle d\sigma - \int_{\partial\Omega} \langle \nabla_{\mathbb{G}} u, \nu_{\mathbb{G}} \rangle Z u d\sigma \\ &= -\frac{1}{2} \int_{\partial\Omega} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle d\sigma \quad \text{as } n \to \infty. \end{split}$$

Now, by the integrability of the functions  $\frac{\psi^2 |u|^2}{d(z)^2}$ ,  $\frac{\psi^2 |u|^2}{d(z,a)^2}$ ,  $|u|^q$  and  $\frac{\psi^{\alpha} |u|^{2_{\alpha}^*}}{d(z)^{\alpha}}$ , and letting  $n \to \infty$  in (2.6), we get the following identity on the whole  $\Omega$ :

$$-\frac{1}{2} \int_{\partial\Omega} |\nabla_{\mathbb{G}} u|^{2} \langle Z, \nu \rangle d\sigma = \frac{Q-2}{2} \int_{\Omega} |\nabla_{\mathbb{G}} u|^{2} dz - \frac{Q-2}{2} \int_{\Omega} \lambda \frac{\psi^{2} |u|^{2}}{d(z)^{2}} dz + \frac{Q-2}{2} \int_{\Omega} \mu \frac{\psi^{2} |u|^{2}}{d(z,a)^{2}} dz - \mu \int_{\Omega} \frac{\psi^{2} |u|^{2}}{d(z,a)^{3}} Z d(z,a) dz - \frac{Q}{q} \int_{\Omega} |u|^{q} dz \qquad (2.15)$$
$$- \frac{Q-\alpha}{2_{\alpha}^{*}} \int_{\Omega} K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^{*}}}{d(z)^{\alpha}} dz - \frac{1}{2_{\alpha}^{*}} \int_{\Omega} Z K(z) \frac{\psi^{\alpha} |u|^{2_{\alpha}^{*}}}{d(z)^{\alpha}} dz.$$

On the other hand, since  $u \in S_0^1(\Omega) \cap L^q(\Omega)$  is a solution of (1.1), one has

$$\int_{\Omega} |\nabla_{\mathbb{G}} u|^2 dz = \int_{\Omega} f(z, u) u dz = \int_{\Omega} \left( \lambda \frac{\psi^2 |u|^2}{\mathrm{d}(z)^2} - \mu \frac{\psi^2 |u|^2}{\mathrm{d}(z, a)^2} + K(z) \frac{\psi^\alpha |u|^{2_\alpha^*}}{\mathrm{d}(z)^\alpha} + |u|^q \right) dz.$$
(2.16)

Then, it follows from (2.15), (2.16) and  $\frac{Q-2}{2} = \frac{Q-\alpha}{2_{\alpha}^*}$  that

$$\frac{1}{2} \int_{\partial\Omega} |\nabla_{\mathbb{G}} u|^2 \langle Z, \nu \rangle d\sigma = \mu \int_{\Omega} \frac{\psi^2 |u|^2}{\mathrm{d}(z,a)^3} Z \mathrm{d}(z,a) dz 
+ \left(\frac{Q}{q} - \frac{Q-2}{2}\right) \int_{\Omega} |u|^q dx + \frac{1}{2^*_{\alpha}} \int_{\Omega} Z K(z) \frac{\psi^{\alpha} |u|^{2^*_{\alpha}}}{\mathrm{d}(z)^{\alpha}} dz.$$
(2.17)

Since  $\Omega$  is  $\delta_{\gamma}$ -starshaped domain at 0, we have  $\langle Z, \nu \rangle > 0$  for all  $z \in \partial \Omega$ . Again  $q \ge 2^*$ , thus  $\frac{Q}{q} - \frac{Q-2}{2} \le \frac{Q}{2^*} - \frac{Q-2}{2} = 0$ . So, from (2.17) we conclude that  $u \equiv 0$  for all  $\mu > 0$ . By sub-elliptic unique continuation argument (see [6, Cor. 10.7]), we have that u to be nonnegative, thus  $u \equiv 0$  in  $\Omega$ . That is the problem (1.1) does not possess nontrivial solution in  $S_0^1(\Omega) \cap L^q(\Omega)$  for any  $\mu > 0$ .

**Proof of Theorems 1.3 and 1.4.** The proof of Theorems 1.3 and 1.4 can be obtained from Theorem 1.2, we omit it here.

### 3 Conclusion

Using Pohozaev's methods, we obtain nonexistence results for critical sub-Laplacian problems on Carnot groups with Hardy-type potentials. These results generalize the corresponding results in Euclidean spaces.

## References

- A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.
- [2] H. Federer, Geometric Measure Theory, Die Grundlehren der Mathematischen Wissenschaften, 153, Springer, New York, 1969.
- [3] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207.
- [4] A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differ. Equ. 177 (2001), 494–522.
- [5] N. Garofalo and E. Lanconelli, Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), no. 1, 71–98.
- [6] N. Garofalo and D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot Groups, Math. Ann. 318 (2000), 453–516.
- [7] A. Loiudice, Critical problems with Hardy potential on Stratified Lie groups, Adv. Differ. Equ. 28 (2023), 1–33.
- [8] A. Razani, Entire weak solutions for an anisotropic equation in the Heisenberg group, Proc. Amer. Math. Soc. 151 (2023), no. 11, 4771–4779.

- [9] A. Razani, Solutions for nonhomogeneous Kohn-Spencer Laplacian on Heisenberg group, Appl. Anal. (2023). https://doi.org/10.1080/00036811.2023.2297866
- [10] A. Razani and G.M. Figueiredo, Degenerated and competing horizontal (p,q)-Laplacians with weights on the Heisenberg group, Numer. Funct. Anal. Optim. 44 (2023), no. 3, 179–201.
- [11] A. Razani and F. Safari, *Existence results to a Leray-Lions type problem on the Heisenberg Lie groups*, Boundary Value Prob. **2023** (2023), Article number: 18.
- [12] A. Razani and F. Safari An elliptic type inclusion problem on the Heisenberg Lie group, Math. Slovaca 73 (2023), no. 4, 957–968.
- M. Ruzhansky and D. Suragan, Hardy inequalities on homogeneous groups, 100 Years of Hardy Inequalities, Birkhäuser, Cham, 2019. https://doi.org/10.1007/978-3-030-02895-4
- [14] J. Zhang, Existence and multiplicity of positive solutions to sub-elliptic systems with multiple critical exponents on Carnot groups, Proc. Math. Sci. 133 (2023), Art. 10.
- [15] J. Zhang, Sub-elliptic problems with multiple critical Sobolev-Hardy exponents on Carnot groups, Manuscripta Math. 172 (2023), 1–29.
- [16] J. Zhang, On the existence and multiplicity of solutions for a class of sub-Laplacian problems involving critical Sobolev-Hardy exponents on Carnot groups, Appl. Anal. 102 (2023), no. 15, 4209–4229.
- [17] J. Zhang and S. Zhu, On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups, Comm. Anal. Mech. 15 (2023), no. 2, 70–90.