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Abstract

In this paper, we consider a networked fractional SIR model. After proving the existence and uniqueness of the
solution, we obtain the basic reproduction number, the disease-free equilibrium point and the endemic equilibrium
point. By constructing the Lyapunov function, we show that the endemic equilibrium is globally asymptotically stable
when the basic reproduction number is greater than 1, and the disease-free equilibrium is globally asymptotically
stable when the basic reproduction number is less than 1. Finally, numerical simulations are carried out to verify these
theoretical results. Thus, the stability theory of Laplacian diffusion is extended to the graph Laplacian model.
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1 Introduction

In the past few years, many new infectious diseases have emerged worldwide, which have spread rapidly in a short
period of time and caused serious impacts on human health and socio-economic development. To effectively prevent
and control the spread of these diseases, establishing mathematical models has become a powerful and efficient method
that can help us study the speed, impact, and dynamic change mechanisms of disease transmission. As early as the
1930s, scholars began to use mathematical models to study infectious disease dynamics. Classical models of infectious
diseases were originally established in the form of ordinary differential equations. For example, the classical SIR model
for endemic diseases was developed in [7]. Based on this model, a modified version of the SIR model for hepatitis B
virus transmission was established in [9], as follows.

S′ = λ− γSI − (µ0 + ν)S,

I ′ = γSI − (µ0 + µ1 + β)I,

R′ = βI + νS − µ0R,

(1.1)

where S, I and R represent the susceptible, infectious and recovered group, respectively. λ is the birth rate. The
contact rate between susceptible population and infected population is denoted by γ. The disease induced death rate,
the natural death rate and recovery rate are represented by µ1, µ0 and β, respectively. The vaccination rate is ν. All
new births go to the susceptible class only. Recovered population has permanent immunity. Successfully vaccinated
population goes to recovered population.
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Although (1.1) has significant limitations, its importance as the historical starting point for the development of the
entire infectious disease model cannot be overstated. In order to break through the limitations imposed by integer-
order derivatives, fractional derivatives were proposed [13], whose main features can be briefly summarized as follows:
reflecting memory effects, capturing fractals, multi-scale properties and better data fitting. In contrast to classical
models, fractional epidemic models provide powerful tools for combining memory and genetic properties of the system,
such as the main features of immune responses that involve memory [15], whereas classical models ignore or make
it difficult to combine such effects. The presence of memory terms in such models not only takes into account the
history of the processes involved, but also has implications for the current and future development of the processes,
which makes fractional models more consistent with real phenomena than integer-order classical models, since any
real dynamic system depends on the history of its past states. In addition, fractional models have one more degree of
freedom than classical models when fitting data. Thus, we can adapt the model to the actual data and thus better
predict the evolution of the disease. In recent years, scholars have developed a variety of fractional infectious disease
models based on different viral transmissions and have studied the dynamics of the models [4, 1, 2, 5, 3].

By introducing fractional order derivatives into (1.1), the authors in [6] developed a fractional order SIR model of
the following form: 

C
0 D

α

t S(t) = λα − γαSI − (µα
0 + να)S,

C
0 D

α

t I(t) = γαSI − (µα
0 + µα

1 + βα)I,
C
0 D

α

t R(t) = βαI + ναS − µα
0R,

(1.2)

where the Caputo fractional derivative of order α ∈ (0, 1) with the lower limit 0 for a function f is defined as

C
0 D

α

t f(t) =
1

Γ(1− α)

∫ t

0

(t− τ)−α df

dτ
(τ)dτ, t > 0,

and here Γ(·) denotes the Gamma function. The parameters of the model (1.2) correspond to those of model (1.1), and
these modified parameters, for example λα, depend on the fractional order α. It is worth noting that there are several
definitions of fractional derivatives, and here the Caputo fractional derivative was chosen to be used [8]. The main
advantage of using the Caputo fractional derivative is that the initial conditions for fractional differential equations
with Caputo derivatives are the same as those for integer order differential equations, avoiding solvability problems.

In addition, in reality, the movement of people often has an impact on the spread of disease. The movement of
people within a city usually constitutes a complex network connecting cities. Epidemic spread in heterogeneous grids
has been extensively studied in the last two decades [12], and these models usually do not contain weighted maps,
i.e., they assume that the number of people between each city is constant, which is clearly not the case. Recently, in
order to study the phenomenon of migration diffusion of populations between different cities, Tian et al. introduced
weighted graphs in [17, 10, 16] and studied the propagation dynamics of networked SIR, SIRS and SEIR epidemic
models. To the best of our knowledge, no one has introduced a graph Laplace operator in a fractional SIR epidemic
model to study the phenomenon of population migration and diffusion between different cities. Inspired by this, we
consider a networked fractional SIR model of the following form:

C
0 D

α

t S(t, x)− dα1∆ωS(t, x) = λα − γαS(t, x)I(t, x)− (µα
0 + να)S(t, x), (t, x) ∈ (0,+∞)× V,

C
0 D

α

t I(t, x)− dα2∆ωI(t, x) = γαS(t, x)I(t, x)− (µα
0 + µα

1 + βα)I(t, x), (t, x) ∈ (0,+∞)× V,
C
0 D

α

t R(t, x)− dα3∆ωR(t, x) = βαI(t, x) + ναS(t, x)− µα
0R(t, x), (t, x) ∈ (0,+∞)× V,

S(0, x) = S0(x) ≥ ( ̸≡)0, I(0, x) = I0(x) ≥ (̸≡)0, R(0, x) = R0(x) ≥ ( ̸≡)0, x ∈ V,

(1.3)

where V is a vertices of a graph, dαi (i=1,2,3) is the diffusion rate of individuals among vertices dependent on the
fractional order α, and ∆ω is the graph Laplacian operator defined in (1.5).

From a mathematical point of view, a network is a graph G = (V,E) consisting of vertices V = {1, 2, ..., n} and
edges set E. If vertex y is adjacent to vertex x, it is denoted as y ∼ x. A graph is weighted if each adjacent x and y
is assigned a weight ωxy, where ω : V × V → [0,∞) is a function satisfying that ωxy = ωyx and ωxy > 0 if and only if
x ∼ y. Further, we define the graph differential operator Dω as

Dωx :=
∑

y∼x,y∈ V

ω(x, y), (1.4)

and the graph Laplacian operator ∆ω as

∆ωf(x) :=
∑

y∼x,y∈ V

(f(y)− f(x))ω(x, y), (1.5)
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Figure 1: Model flow chart

where f : V → R.
In particular, when the order of the fractional derivative α = 1, the model degenerates to the classical model, and

the global asymptotic stability of the disease-free and endemic equilibrium points is also studied in [17, 10]. Therefore,
our goal is to generalize the stability theory of the classical integer-order networked SIR model to the corresponding
fractional-order model.

2 Existence and uniqueness

This is obvious because the number of susceptible people is non-negative when an epidemic occurs, and the number
of infected people is non-negative if, and only if, the number of susceptible people is zero, or the number of infected
people is zero.

By applying Theorem 3.1 and Remark 3.2 in [11], we can obtain the existence and uniqueness of the solution.

Theorem 2.1. The system (1.3) has a unique solution.

3 The equilibrium point and basic reproduction number

The basic reproduction number is the number of new infections (the number of second generation cases that can
be infected) that can be produced by a case entering a susceptible population under ideal conditions. We’ll call it R0

here. When R0 is greater than 1, then the infection can spread through the whole crowd, become a pandemic, but
less vulnerable groups, part of the infected people died of the infection. The possibility that parts of the population
may develop immunity after recovering from the disease and vaccination against the infection mean that infections
do not generally last forever when the R0 is less than 1, infectious diseases will gradually disappear. The system for
determining the equilibrium is as follows:

dα1∆ωS + λα − γαSI − (µα
0 + να)S = 0,

dα2∆ωI + γαSI − (µα
0 + µα

1 + βα)I = 0,

dα3∆ωR+ βαI + ναS − µα
0R = 0.

(3.1)

According to literature [17], this system is equivalent to the following system:
λα − γαSI − (µα

0 + να)S = 0,

γαSI − (µα
0 + µα

1 + βα)I = 0,

βαI + ναS − µα
0R = 0.

(3.2)

Thus by solving the system (3.2) and according to the basic reproduction number theorem, we obtain the following
theorems.
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Theorem 3.1. WhenR0 < 1, the system(1.3) has a unique disease-free equilibrium point E0 =

(
λα

µα
0 + να

, 0,
ναλα

µα
0 (µ

α
0 + να)

)
.

Theorem 3.2. When R0 > 1, the system(1.3) has a unique endemic equilibrium point E1 = (S∗, I∗, R∗), where

S∗ =
µα
0 + µα

1 + βα

γα
, I∗ =

λανα − (µα
0 + µα

1 + βα)(µα
0 + να)

(µα
0 + µα

1 + βα)γα
, R∗ =

βαI∗ + ναS∗

µα
0

.

Next, we calculate the basic reproduction number R0 according to [18]. Let

F =

γαSI
0
0

 =

F1

0
0


be the rate of appearance of new infections in compartment I, S,R, and

V =

 (µα
0 + µα

1 + βα)I
−λα + γαSI + (µα

0 + να)I
µα
0R− βαI − vαS

 =

V1

V2

V3


be the rate of change of the individual in compartment I, S,R by all other means. Then we have F =

[
∂F1

∂I |E0

]
=[

γαS |E0

]
=

[
γαλα

µα
0 + να

]
, and V =

[
∂V1

∂I |E0

]
=
[
µα
0 + µα

1 + βα
]
. Then we obtain the basic reproduction number

R0 = FV −1 =
γαλα

(µα
0 + µα

1 + βα)(µα
0 + vα)

. (3.3)

It should be noted that when the order of the fractional derivative α → 1 in (1.3), the expression for the basic
reproduction number in (3.3) degenerates to the result in [17].

4 Local stability of the equilibria

Theorem 4.1. If R0 < 1, the disease-free equilibrium E0 of (1.3) is locally asymptotically stable, while if R0 > 1,
then E0 is unstable.

Proof . The Jacobian matrix of the system (1.3) at E0 is

J |E0
=


−(µα

0 + να) − γαλα

µα
0 + να

0

0
γαλα

µα
0 + να

− (µα
0 + µα

1 + βα) 0

να βα −µα
0

 .

Based on ∥λI − J |E0
∥ = 0, we can find that the eigenvalues of the matrix are λ1 = −µα

0 , λ2 = −(µα
0 + να), and

λ3 =
γαλα

µα
0 + να

− (µα
0 + µα

1 + βα) = (µα
0 + µα

1 + βα)[R0 − 1]. So, λ1, λ2 both are negative, and the third eigenvalue λ3

depends on the R0. It can be concluded that all three eigenvalues of J |E0
are negative if and only if R0 < 1. Thus

system (1.3) is locally asymptotically stable around E0. If R0 > 1, then λ3 is positive and two other eigenvalues are
negative, so we conclude that E0 is unstable. □

Theorem 4.2. The endemic equilibrium point E1 of the system (1.3) is locally asymptotically stable if R0 > 1.

Proof . The Jacobian matrix of the system (1.3) at E1 is

J |E1
=


− γαλα

µα
0 + µα

1 + να
−(µα

0 + µα
1 + βα) 0

γαλα − (µα
0 + µα

1 + βα)(µα
0 + να)

µα
0 + µα

1 + βα
0 0

να βα −µα
0

 .
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One of the eigenvalues of J |E1
is λ1 = −µα

0 . To calculate other eigenvalues, we consider the following matrix:

P0 =

 − γαλα

µα
0 + µα

1 + να
−(µα

0 + µα
1 + βα)

γαλα − (µα
0 + µα

1 + βα)(µα
0 + να)

µα
0 + µα

1 + βα
0

 .

Then we can obtain that

trace(P0) = − γαλα

µα
0 + µα

1 + να
< 0,

and
det(P0) = [γαλα − (µα

0 + µα
1 + βα)(µα

0 + να)] = [(µα
0 + µα

1 + βα)(µα
0 + να)][R0 − 1].

When R0 > 1, we have det(P0) > 0. So E1 is locally asymptotically stable if R0 > 1. □

5 Global stability of the equilibria

Theorem 5.1. If R0 < 1 and S+ I +R ≤ λα

µα
0 +να , then the disease-free equilibrium E0 of the system (1.3) is globally

asymptotically stable.

Proof . The Lyapunov function L(t) is defined by L(t) =
1

2

∑
x∈V

I2 +
1

2

∑
x∈V

(
S + I +R− λα

µα

)2

. From Lemma 2.4(a)

in [5] and (1.3) , it follows that

C
0 D

α

t L(t) ≤
∑
x∈V

I
(
C
0 D

α

t I
)
+
∑
x∈V

(
S + I +R− λα

µα

)
C
0 D

α

t

(
S + I +R− λα

µα

)
≤
∑
x∈V

I[dα2∆ωI + γαSI − (µα
0 + µα

1 + βα)I] +
∑
x∈V

(
S + I +R− λα

µα

)
× [dα1∆ωS + dα2∆ωI + dα3∆ωR+ λα − µα

0 (S + I +R)− µα
1 I] . (5.1)

By Lemma 2.1 in [17], we can remove the terms with Laplacian in (5.1). Then, we have

C
0 D

α

t L(t) ≤
∑
x∈V

I[γαSI − (µα
0 + µα

1 + βα)I] +
∑
x∈V

(
S + I +R− λα

µα

)
[λα − µα

0 (S + I +R)− µα
1 I]. (5.2)

From the condition S + I +R ≤ λα

µα
0 + να

, it can be deduced that S ≤ λα

µα
0 + να

and S + I +R ≤ λα

µα
0

. Using R0 < 1,

we can get that

C
0 D

α

t L(t) ≤
∑
x∈V

I2
[

γαλα

µα
0 + να

− (µα
0 + µα

1 + βα)

]
+
∑
x∈V

(
S + I +R− λα

µα

)
[λα − µα

0 (S + I +R)− µα
1 I]

≤
∑
x∈V

I2 (µα
0 + µα

1 + βα)

[
γαλα

(µα
0 + µα

1 + βα)(µα
0 + vα)

− 1

]

+
∑
x∈V

µα
1

µα
0

I

(
S + I +R− λα

µα

)
− µα

0

(
S + I +R− λα

µα

)2

≤ 0, (5.3)

and C
0 D

α

t L(t) = 0 if and only if I = 0 and S + R =
λα

µα
0

. Moreover, we have lim
t→∞

S(t) =
λα

µα
0 + να

and lim
t→∞

R(t) =

ναλα

µα
0 (µ

α
0 + να)

. Thus, lim
t→∞

(S, I,R) = E0. This completes the proof. □

Theorem 5.2. If R0 > 1, then the endemic equilibrium E1 of the system (1.3) is globally asymptotically stable.
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Proof . Let ϕ(x) = x− 1− lnx, x > 0. Define the Lyapunov function L1(t) by L1(t) = F1(t) + F2(t), where

F1(t) =
∑
x∈V

S∗ϕ

(
S

S∗

)
, F2(t) =

∑
x∈V

I∗ϕ

(
I

I∗

)
.

Then L1(t) ≥ 0, for all t ≥ 0. We assume di > 0, i = 1, 2, 3. Substituting the endemic equilibrium into (1.3), we
obtain {

λα = rαS∗I∗ + (µα + να)S∗,

µα
0 + µα

1 + βα = γαS∗.
(5.4)

Below, we evaluate the α-th order Caputo derivatives of Fi, i = 1, 2. By Lemma 2.4(b) in [5], Lemma 2.1 in [17]
and λα = γαS∗I∗ + (µα

0 + να)S∗, we have that

C
0 D

α

t F1(t) =
C
0 D

α

t

(∑
x∈V

S∗ϕ

(
S

S∗

))
≤
∑
x∈V

S − S∗

S
C
0 D

α

t S

=
∑
x∈V

(λα − γαSI − (µα
0 + να)S)

S − S∗

S

=
∑
x∈V

(γαS∗I∗ + (µα
0 + να)S∗ − γαSI − (µα

0 + να)S)
S − S∗

S

=
∑
x∈V

[(µα
0 + να + γαI∗)(S∗ − S) + γαS(I∗ − I)]

S − S∗

S

= −
∑
x∈V

(S − S∗)2(µα
0 + να + γαI∗)

S
−
∑
x∈V

γα(S − S∗)(I − I∗), (5.5)

and

C
0 D

α

t F2(t) ≤
∑
x∈V

I − I∗

I
C
0 D

α

t I ≤
∑
x∈V

I − I∗

I
[γαSI − (µα

0 + µα
1 + βα)I]

=
∑
x∈V

(I − I∗)(γαS − γαS∗) =
∑
x∈V

γα(S − S∗)(I − I∗). (5.6)

Therefore,

C
0 D

α

t L1(t) ≤ −
∑
x∈V

((S − S∗)2(µα
0 + να + γαI∗)

S
≤ 0. (5.7)

Thus, C
0 D

α

t L1(t) ≤ 0 and C
0 D

α

t L1(t) = 0 if and only if S = S∗, I = I∗, and R = R∗. This completes the proof. □

6 Numerical simulations

In order to deal with the numerical solutions of system (1.3), we denote the adjacent matrix of the graph G by G,
and take the mean number of passengers per unit time moving from xi to xj as the weighted matrix (ωij)n×n. Here
we assume that (ωij)n×nis a symmetric matrix. Set S(t, x) = U1(t, i), I(t, x) = U2(t, i), and R(t, x) = U3(t, i), we then
rewrite system(1.3) as the following ordinary differential equations:

C
0 D

α

t Uk(t, i) = fk(U1, U2, U3)(t, i) + dk

n∑
j=1

LijUk(j, t), i = 1, 2, . . . , n, (6.1)

where k = 1, 2, 3. L is called the Laplacian matrix, which is defined by

Lij =

Gijωij , j ̸= i,

−
n∑

j=1

Gijωij , j = i.
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6.1 The case of R0 < 1

In this case, we assume an initial population of 500,000, distribute it equally over 100 nodes, i.e. an initial
susceptible population of 5,000 per node, and set the initial number of infections to exist only at the first node and
to be 12. Theorem 3.1 shows that the system will converge to the disease-free equilibrium point E0 at R0 < 1, so we
take the following parameter values (Time= [t] = one day):

λ = 5, γ = 0.003, β = 0.3, µ0 = 0.001, µ1 = 0.01, ν = 0.25

and the order of the fractional derivative α = 0.99, and we assume that the graph G is a Watts-Strogatz network with
100 nodes, an average node degree of 6, and a reconnection probability of 0.25. An average degree of 6 means that
each node has 3 other nodes connected to its left and right. The 0.25 probability of reconnecting a link indicates that
each node has a probability of 0.25 of connecting to any other node in the figure.

In the first panel of Figure 2, we depict the initial infected population in the network, taking 12 at the first node
and 0 at all other nodes. Using a fractional Euler format to integrate over time, in the other four panels of Figure
2, we plot the spatial density of the infected populations on the network at t = 200, 400, 600, 1000. The results show
that for different nodes, the network exhibits spatially inhomogeneous behavior.

Figure 2: Solutions of I in Watts-Strogatz networks at moments t = 0, 200, 400, 600 and 1000. The node size corre-
sponds to the node degree and the node colour bar corresponds to the overall.
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In Figure 3, the nodes are arranged in a column without regard to their spatial location, and the trend of all nodes
over time is studied. The results show that when R0 < 1, the number of infections basically shows a trend of rising
to a peak and then continuously decreasing to 0.

Figure 3: For R0 < 1, dynamical behavior of the networked fractional SIR model with α = 0.99.

In Figure 4, we consider the dynamical behavior of the system without Laplacian diffusion, using the first node
as an example to study the trend in the number of individual populations over time. The left panel shows the trend
over the entire time period [0, 1000], the right panel shows the details over the time period [0, 200]. The disease-free
equilibrium point of the system (1.3) is given by Theorem 3.1, i.e. E0 = (19.9, 0, 4980.1). The disease-free equilibrium
point obtained by iteration at fractional order α = 0.99 is (25.18, 0.94, 4847.9), which is basically close to the theoretical
result E0. For the corresponding integer-order model, i.e. with derivative order 1, the equilibrium value obtained by
iteration is (19.79, 0.0795, 4853.5), which is closer to the theoretical result E0 than the fractional order α = 0.99.

(a) t ∈ [0, 1000] (b) t ∈ [0, 200]

Figure 4: For R0 < 1, dynamical behavior of the fractional order model without Laplacian diffusion at α = 0.99.

6.2 The case of R0 > 1

For the model with R0 > 1, the initial value of the susceptible population is taken to be 200 people per node,
giving a total of 20,000 people. The number of infected people at the first node is 12, and we take the parameter
values (Time= [t] = one day):

λ = 10, γ = 0.012, β = 0.002, µ0 = 0.0342, µ1 = 0.0136, ν = 0.07.
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In Figure 5, we make a portrait of the spatial densities of infected population on the network for time t = 0, 200, 400, 600, 1000,
showing that, for different nodes, the network exhibits a spatially inhomogeneous behavior.

Figure 5: Solutions of I in the Watts-Strogatz network at moments t = 0, 200, 400, 600 and 1000 for R0 > 1. The node
size corresponds to the node degree and the node colour bar corresponds to the overall.

Figure 6 shows the number of infections over time for all nodes with R0 > 1. It can be seen that the number of
infections increases over time until it peaks and then reaches equilibrium at the peak. Figure 7 depicts the dynamical
behavior of the system without Laplacian diffusion. The right panel shows the trend over the entire time period [0,
1000], and the left panel shows the details over the time period [0, 200]. Taking the first node as an example, we
consider the trend in the number of various populations over time. The endemic equilibrium point of the system (1.3)
is known from Theorem 3.2 to be E1 = (4.15, 192.12, 19.72), and the result obtained by iteration at fractional order
α = 0.99 corresponds to an equilibrium value of (4.16, 192.55, 18.74), almost identical to the theoretical result E1.
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For the corresponding integer-order model, i.e. with derivative order 1, the equilibrium value obtained by iteration
is (4.14, 192.43, 18.98), which is almost identical to that obtained for the fractional-order model at α = 0.99. This
indicates that the experimental results are in agreement with the theoretical analysis.

Figure 6: For R0 > 1, dynamical behavior of the networked fractional SIR model with α = 0.99. The left panel is the
same as the right panel, and the right panel is the other direction of the left panel.

Figure 7: For R0 > 1, dynamical behavior of the fractional order model without Laplacian diffusion at α = 0.99.

6.3 Effect of different fractional orders on the system

From the results obtained in Sections 6.1 and 6.2, it can be seen that the equilibrium point of the system with
fractional order α = 0.99 is similar to that of the integer order 1, and the difference between them corresponding to
the overall trend graph is not obvious. Therefore, we take the number of infections at the first node as an example to
study the trend of the number of infections under different fractional orders, i.e. we only consider the effect of different
fractional orders on the number of infections.

As can be seen in Figure 8, when R0 < 1, for different fractional orders, the number of infected people reaches
the peak at different moments, and as the fractional order decreases, the time to reach the peak is shortening, the
peak is decreasing, and the rate of decline from the peak to 0 is increasing. As can be seen in Figure 9, when R0 > 1,
the rate of increase in the number of infections varies as the fractional order changes. As time increases, the number
of infections eventually reaches equilibrium, and the equilibrium point has different values. The above results show
that the model (1.3) exhibits different dynamical behavior as the fractional order changes, and therefore the fractional
order derivative models have more advantages over the traditional integer order derivative models in modelling.
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Figure 8: Trends in the number of infections at different fractional order steps for R0 < 1, the right panel shows the
trend over the entire time period [0, 1000], the left panel shows the details over the time period [0, 200].

7 Conclusions

In this article, we first introduce a graph Laplace operator to a fractional SIR epidemic model, and prove the
existence of uniqueness of the solution of this model. Then, we complete the calculation of the equilibrium point and
the basic reproduction number. Next, we discuss the stability of the system, and prove the local stability and global
asymptotic stability of the disease-free equilibrium point and the endemic equilibrium point using the matrix form
and the method of constructing Lyapunov functions, respectively. Finally, the correctness of the theoretical analysis
is verified by numerical experiments.
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