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Abstract

Let G = (V,E) be a finite, simple, and undirected graph without an isolated vertex. We define a dominating D of
V (G) as a total pitchfork dominating set if 1 ≤ |N(t) ∩ V −D| ≤ 2 for every t ∈ D such that G[D] has no isolated
vertex. In this paper, the effects of adding or removing an edge and removing a vertex from a graph are studied on the
order of minimum total pitchfork dominating set γt

pf (G) and the order of minimum inverse total pitchfork dominating

set γ−t
pf (G). Where γt

pf (G) is proved here to be increasing by adding an edge and decreasing by removing an edge,
which are impossible cases in the ordinary total domination number.
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1 Introduction

Let G = (V,E) be a graph without isolated vertices has vertex set V of order n and edge set E of size m. The
degree of a vertex v of a graph G is denoted by deg(v) and defined as the number of edges incident with v where v is
pendant vertex when deg(v) = 1 and isolated when deg(v) = 0. For graph basic concepts and theoretic terminology
one can see [21]. The study of domination and its applications has a large area in graph theory. For a detailed survey
of domination, we refer to [22, 23, 24]. Ore [27] introduced the expression dominating sets in graphs. Several sorts
of dominations are given in [1, 11, 13, 18, 26, 28]. The effects of removing an edge or vertex or adding an edge are
studied on more types of graph domination as in [12, 14, 15, 16, 17, 25, 29]. Al-Harere and Abdlhusein introduced
pitchfork domination in 2020, where they proved several bounds and properties for this parameter see [1]-[10]. The
effects of adding or removing an edge and removing a vertex from the graph on the order of minimum total pitchfork
dominating set are studied here. The order of the total pitchfork dominating set is proved here to be increasing by
adding an edge and decreasing by removing an edge, which are impossible cases in the ordinary total dominating set.
The study of these effects has an important advantage to learning ways of treatments for any added or damaged nods
or links of the system or networks to avoid losing some properties of the system and to give the best services with
minimum costs.
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2 Changing and Un-Changing γt
pf(G)

In this section, we discuss the stability of γt
pf (G) when we deleting a vertex or edge or adding an edge from G. If

G− v has a total pitchfork dominating set, then we partition the vertices of G into three sets:

V 0 = {v ∈ V : γt
pf (G− v) = γt

pf (G)}, V + = {v ∈ V : γt
pf (G− v) > γt

pf (G)} and V − = {v ∈ V : γt
pf (G− v) < γt

pf (G)}.

Similarly, edges set can be partitioned into:

E0
∗ = {e ∈ E : γt

pf (G ∗ e) = γt
pf (G)}, E+

∗ = {e ∈ E : γt
pf (G ∗ e) > γt

pf (G)} and E−
∗ = {e ∈ E : γt

pf (G ∗ e) < γt
pf (G)},

where

∗ =

{
−, if e ∈ G

+, if e ∈ G.

Theorem 2.1. For any graph G having a γt
pf−set. If there is a vertex v ∈ V such that G− v having a total pitchfork

domination, then V ∗
− ̸= ϕ, where ∗ = 0 or − or +.

Proof . Assume that D is a γt
pf−set in G, then we show that V ∗

− is non empty set as follows:

Case 1: V 0
− ̸= ϕ: If v ∈ V − D is an end vertex dominated by u which is dominates other vertex w, then

γt
pf (G− v) = γt

pf (G) and v ∈ V 0
−. Hence, V 0

− ̸= ϕ, see Figure 1.

(a) G (b) G− v

Figure 1: γt
pf (G− v) = γt

pf (G)

Case 2: V −
− ̸= ϕ: If v ∈ D is adjacent with one or more vertices of D which are dominate the same vertex from

V −D, then γt
pf (G− v) < γt

pf (G) and v ∈ V −
− . Hence, V −

− ̸= ϕ. For example see Figure 2.

(a) G (b) G− v

Figure 2: γt
pf (G− v) < γt

pf (G)

Case 3: V +
− ̸= ϕ: If G has three joined cycles subgraphs C3, when we delete the vertex of one cycle which is

adjacent with other cycle, then the order of D will increase. Then, γt
pf (G− v) > γt

pf (G) and v ∈ V +
− . Hence, V +

− ̸= ϕ.
For example see Figure 3. □

(a) G (b) G− v

Figure 3: γt
pf (G− v) > γt

pf (G)
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Theorem 2.2. For any graph G having a γt
pf−set. If e ∈ E and G − e having a total pitchfork domination, then

E∗
− ̸= ϕ, where ∗ = 0 or − or +.

Proof . Assume that D is a γt
pf−set in G, then we show that E∗

− is non empty set as follows:

Case 1: E0
− ̸= ϕ: If a vertex v ∈ D is adjacent with some vertices of D, then we can delete an edge e = v u for any

u ∈ D to get the result. So if a vertex w ∈ V −D is dominated by some vertices of D one of them such u dominates
two vertices. Then, we can delete an edge e = uw to get γt

pf (G− e) = γt
pf (G). Thus, e ∈ E0

− and E0
− ̸= ϕ, see Figure

4.

(a) G (b) G− e

Figure 4: γt
pf (G− e) = γt

pf (G)

Case 2: E+
− ̸= ϕ: If a graph G has two cycles joined by a bridge e incident on two vertices of D, then D in G− e

must contain two vertices of every cycle. So γt
pf (G− e) > γt

pf (G). Thus, e ∈ E+
− and E+

− ̸= ϕ, see Figure 5.

(a) G (b) G− e

Figure 5: γt
pf (G− e) > γt

pf (G)

Case 3: E−
− ̸= ϕ: Suppose that there is a vertex u ∈ D dominates exactly two end vertices and adjacent with more

than one vertex of D. Let v ∈ D is adjacent with u where every vertex which is dominated by v is also dominated by
other vertex of D. So v is adjacent with a vertex of D dominates only one vertex. Let e = u v, then in G− e we can
put v ∈ V −D to be D − v is a γt

pf−set of G− e. Hence, γt
pf (G− e) < γt

pf (G) and E−
− ̸= ϕ, see Figure 6. □

(a) G (b) G− e

Figure 6: γt
pf (G− e) < γt

pf (G)

According to case 3 of the above theorem, we proved that the order of a total pitchfork dominating set can be
decreasing by removing an edge. This case is impossible in the ordinary total dominating set [19].

Theorem 2.3. For any graph G having a γt
pf−set. If e /∈ E and G + e having a total pitchfork domination, then

E∗
+ ̸= ϕ, where ∗ = 0 or − or +.

Proof . Assume that D is a γt
pf−set in G, then we show that E∗

+ is non empty set as follows:

Case 1: E0
+ ̸= ϕ: If a vertex v ∈ D is dominating only one vertex, then adding an edge between v and any other

vertex of V −D will not affect on the order of γt
pf−set. Also, when we add an edge between any two vertices of V −D

or between any two vertices of D will not affect on the order of γt
pf−set. Hence, γt

pf (G + e) = γt
pf (G) and E0

+ ̸= ϕ.
For example see Figure 7.
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(a) G (b) G+ e (c) G+ e

Figure 7: γt
pf (G+ e) = γt

pf (G)

Case 2: E+
+ ̸= ϕ: If every vertex v ∈ D dominates exactly two vertices, then adding an edge between v and any

other vertex of V −D which isn’t dominated by it will increase the order of γt
pf−set. Hence, γt

pf (G+ e) > γt
pf (G) and

E+
+ ̸= ϕ. For example see Figure 8.

(a) G (b) G+ e

Figure 8: γt
pf (G+ e) > γt

pf (G)

Case 3: E−
+ ̸= ϕ: If v ∈ D dominates only one end vertex w and adjacent with a vertex from D which also

dominates only one vertex. When we add e between w and any vertex of D dominates one vertex and non-adjacent
with v, then D − {v} is a γt

pf of G+ e. Hence, γt
pf (G+ e) < γt

pf (G) and E−
+ ̸= ϕ. For example see Figure 9. □

(a) G (b) G+ e

Figure 9: γt
pf (G+ e) < γt

pf (G)

According to case 2 of the above theorem, we proved the order of a total pitchfork dominating set can be increasing
by adding an edge. This case is impossible in the ordinary total dominating set [20].

3 Changing and Un-Changing γ−t
pf (G)

In this section, we discuss the stability of γ−t
pf (G) when G is modified by removing a vertex or edge and when

adding an edge. If G− v has an inverse total pitchfork dominating set, then we partition the vertices of G into three
sets:

V̈ 0 = {v ∈ V : γ−t
pf (G− v) = γ−t

pf (G)}, V̈ + = {v ∈ V : γ−t
pf (G− v) > γ−t

pf (G)}, and V̈ − = {v ∈ V : γ−t
pf (G− v) < γ−t

pf (G)}.

Similarly, edges set can be partitioned into:

Ë0
∗ = {e ∈ E : γ−t

pf (G ∗ e) = γ−t
pf (G)}, Ë+

∗ = {e ∈ E : γ−t
pf (G ∗ e) > γ−t

pf (G)}, and Ë−
∗ = {e ∈ E : γ−t

pf (G ∗ e) < γ−t
pf (G)},

where

∗ =

{
−, if e ∈ G

+, if e ∈ G.

The vertices of a γ−t
pf (G) are referred by red color, while vertices of a γt

pf (G) are referred by black color.
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Theorem 3.1. For any graph G having a γ−t
pf −set. If e ∈ E and G− e having an inverse total pitchfork domination,

then Ë∗
− ̸= ϕ, where ∗ = 0 or +.

Proof . Assume that D−1 is a γ−t
pf −set in G, then we show that Ë∗

− is non empty set as follows:

Case 1: Ë0
− ̸= ϕ: If a vertex v ∈ V − D−1 is dominated by two or more vertices of D−1, then we can delete

e = v w such that w ∈ D−1 and dominated exactly two vertices. Hence, γ−t
pf (G − e) = γ−t

pf (G). Thus, e ∈ Ë0
− and

Ë0
− ̸= ϕ. For example see Figure 10.

(a) G (b) G− e

Figure 10: γ−t
pf (G− e) = γ−t

pf (G)

Case 2: Ë+
− ̸= ϕ: If a vertices v, w ∈ D−1 are adjacent only together in G[D−1], when we delete e = v w, then we

must increase the order of D−1 to be v and w not isolated in G[D−1]. Hence, γ−t
pf (G − e) > γ−t

pf (G). Thus, e ∈ Ë+
−

and Ë+
− ̸= ϕ. For example see Figure 11. □

(a) G (b) G− e

Figure 11: γ−t
pf (G− e) > γ−t

pf (G)

Theorem 3.2. For any graph G having a γ−t
pf −set. If e /∈ E and G+ e having an inverse total pitchfork domination,

then Ë∗
− ̸= ϕ, where ∗ = 0 or + or −.

Proof . Assume that D−1 is a γ−t
pf −set in G, then we show that Ë∗

− is non empty set as follows:

Case 1: Ë0
− ̸= ϕ: If a vertex v ∈ V −D−1 is dominated by only one vertex of D−1, then we can add e = v w for

any w ∈ D−1 dominates exactly one vertex. Hence, γ−t
pf (G + e) = γ−t

pf (G). Thus, e ∈ Ë0
− and Ë0

− ̸= ϕ. For example
see Figure 12.

(a) G (b) G+ e (c) G+ e
(d) G+ e1 +
e2

Figure 12: γ−t
pf (G+ e) = γ−t

pf (G)

Case 2: Ë+
− ̸= ϕ: For any vertex v ∈ D−1 dominates exactly two vertex. If we add an e = v u for any u ∈ V −D−1,

then v dominates three vertices, that is contradiction. So u ∈ D−1. Hence, γ−t
pf (G+ e) > γ−t

pf (G). Thus, e ∈ Ë+
− and

Ë+
− ̸= ϕ. For example see Figure 13.

Case 3: Ë−
− ̸= ϕ: For any two adjacent vertices u, v ∈ D−1 and dominate the same one vertex and deg(u) =

deg(v) = 1 in G[D−1]. If we add an e = v w for any w ∈ D−1, then u ∈ V −D−1. Hence, γ−t
pf (G+ e) < γ−t

pf (G). Thus,

e ∈ Ë−
− and Ë−

− ̸= ϕ. For example see Figure 14. □
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(a) G (b) G+ e

Figure 13: γ−t
pf (G+ e) > γ−t

pf (G)

(a) G (b) G+ e

Figure 14: γ−t
pf (G+ e) < γ−t

pf (G)

Proposition 3.3. For any graph G having a γ−t
pf −set. If v ∈ V and G−v having an inverse total pitchfork domination,

then V̈ 0
− ̸= ϕ.

Proof . Assume that D−1 is a γ−t
pf −set in G. Let v ∈ V such that v /∈ D and v /∈ D−1, if every vertex from D or

D−1 which dominates v is also dominates other vertex. Then, γ−t
pf (G− v) = γ−t

pf (G) and v ∈ V̈ 0
−. Hence, V̈ 0

− ̸= ϕ. For
example see Figure 15. □

(a) G (b) G− v

Figure 15: γ−t
pf (G− v) = γ−t

pf (G)

Remark 3.4. For any graph G with a total pitchfork dominating set. If G − v have an end vertex, then G − v has
no inverse total pitchfork dominating set.

Remark 3.5. For any graph G of order n ≤ 4 with a total pitchfork dominating set. Then, G−v has no inverse total
pitchfork dominating set.

Remark 3.6. For any graph G with a total pitchfork dominating set. If v is a support vertex in G, then G− v has
no total pitchfork dominating set.

Proposition 3.7. For any graph G with a unique total pitchfork dominating set D. If D−1 = V −D, then G− v has
no inverse total pitchfork dominating set for any v ∈ V .

Proof . Let v ∈ V , then if G− v has no total pitchfork domination, then it has no inverse total pitchfork domination.
Suppose that G − v has a total pitchfork domination and let D be a γt

pf−set of G − v. Then, γt
pf (G − v) > n−1

2 , so
G− v has no inverse total pitchfork dominating set. □

Proposition 3.8. For any cycle graph Cn ;(n > 3) having an inverse total pitchfork domination. Then, G − v and
G− e has no inverse total pitchfork dominating set for any v ∈ V and e ∈ E.

Proof . Since Cn − v and Cn − e are a path graph which have a pendent vertex and no inverse total pitchfork
dominating set (see [8]). □

Theorem 3.9. For any wheel graph G = Wn (n ≥ 3) having an inverse total pitchfork domination. Then, G− v has
an inverse total pitchfork domination and γ−t

pf (G− v) = γ−t
pf (G) if and only if v ∈ K1 and n ≡ 0 (mod 4).
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Proof . Let v ∈ K1 and n ≡ 0 (mod 4), since Wn = Cn + K1, then G − v = Cn. Since Cn having an inverse
total pitchfork domination if and only if n ≡ 0 (mod 4) according to [8]. Hence, G − v has an inverse total pitchfork
domination and D−1 = V −D. Therefore, γ−t

pf (G− v) = γ−t
pf (G).

Suppose that G− v has an inverse total pitchfork domination such that γ−t
pf (G− v) = γ−t

pf (G) for any v ∈ Cn. Let

D−1 be a γ−t
pf (G− v). Since Wn has an inverse total pitchfork domination if n ≡ 0 (mod 4) or n = 3. Then, there are

two cases:

Case1: If n = 3, then there is a vertex in D does not dominate by D−1, which is a contradiction.

Case2: If n ≡ 0 (mod 4), then since the vertex of K1 does not belong to D−1 because it is adjacent with more than
two vertices of D. Then, γt

pf (G) = γt
pf (G − v). Therefore, |D−1| < |D|, so there is a vertex in D does not dominate

by D−1 since it was dominated by only v. Hence, we get a contradiction. Thus, G− v has no inverse total pitchfork
domination. □

Proposition 3.10. For any complete graph G = Kn ;(n ≥ 3) having an inverse total pitchfork domination. Then,
G− v has no inverse total pitchfork dominating set for any v ∈ V .

Proof . Since Kn having an inverse total pitchfork domination if and only if n = 4 and D−1 = V −D (see[8]). Then,
G− v has three vertices and has no γ−t

pf −set. □
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