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Abstract

This paper provides sufficient conditions that guarantee the existence of positive solutions to a boundary value problem
of a nonlinear fractional differential equation on the half line. Our analysis takes advantage of a theory on cones and
mixed monotone operators combined with the diagonalization method. The paper also contains some examples that
are numerically solved by the Adomian Decomposition Method.
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1 Introduction

Fractional calculus has received very much momentum in depth as well as in scope in the last few decades. It is
an applicable branch of mathematics which involves fractional integration and differentiation. Fractional differential
equations [11, 24, 25, 30] have gained a bold platform in many areas of science and engineering, see [12, 13, 22, 27, 29,
23, 33].

Mathematics has emerged as a powerful tool for modeling the physically complicated problems. The accuracy
of the approximate solution is a major problem which depends on two factors: the accuracy of model and method.
Classical derivatives are local and not able to model some physical problems because of their limited domain in order
and lack of diverse types of derivatives. In this regard, fractional derivatives, for e.g [5, 10, 9, 20, 24], eliminate the
mentioned shortcoming of the classical ones by letting a vast domain of degrees and providing different derivatives for
the sake of getting better results.

The discussion about the theory of boundary value problems on infinite intervals was originally began by [2].
After this initial step, results of fractional boundary value problems (FBVP for short) on the interval which is not
compact are of paramount importance. Many studies have focused on the solvability of FBVP on the half line, for
similar survey on finite intervals one can see [3, 8, 21, 16, 31, 32]. Researchers apply different methods to explore the
solvability of FBVP on the half line, as main methods, we can refer to the the extension of continuous solutions on
the corresponding finite intervals under a diagonalization process, fixed point theorems in special Banach space or in
special Frechet space; see [1, 6, 26, 35] and the references therein.
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In [4], the authors studied the existence of a FBVP with Riemann-Liouville derivative on infinite interval by the
classical nonlinear alternative of Leray–Schauder type combined with the diagonalization process. Another study, [34],
directly deal with the existence of a class of a FBVP with Riemann-Liouville derivative on an infinite interval using
the theory of cone and operators. The method of mixed monotone operator which was introdiced in [18], has wide
applications in science and technology and been of great interest in nonlinear differential and integral equations, see
[14, 15, 36]. To our knowledge, there is no contribution which obtaine the existence of positive solutions for a FBVP
with caputo derivative on an unbounded domain using mixed monotone operator combined with the diagonalization
process besid showing numerical results. [7] studied the existence of solutions for the boundary value problem of third
order differential equation of the form{

u′′′(t) + q(t)f(t, u(t), u′(t), u′′(t)) = 0, 0 < t < +∞
u(0) = 0, u′(0) = a1, u′(+∞) = b1.

(1.1)

Inspired by the work above, this paper deals with the existence of solutions to the following boundary value problem
for fractional differential equation,{

CDα
au(t) + q(t)f(u(t), u′(t)) = 0, 0 < t < +∞

u(0) = 0, u′(0) = 0, u′(+∞) = l
(1.2)

where CDα denotes the Caputo derivative of fractional order 3 < α ≤ 4, ϕ ∈ C[0,+∞) with ϕ(t) > 0 for 0 < t < +∞,
the nonlinear f ∈ C([0,+∞)× (0,+∞)× R2,R) and l is a positive constant.

The rest of this paper is as follows. In section 2, we state some necessary definitions and preliminaries. Section
3 is devoted to the existence on the finite interval, by mixed monotone operator and, and the existence of positive
solutions to problem(1.2) by using the diagonalization process. Section 4 contains two supporting examples. In section
5, we have addressed the numerical solution of equations using the Adomian method and neural networks.

2 Preliminaries of fractional calculus

Let I := (0,+∞) and recall the space E = C1[0, b], equipped with the norm

∥x∥ = max{max
t∈I

|x(t)|,max
t∈I

|x′(t)|}

Definition 2.1. [24] The Riemann-Liouville fractional integral of the function h ∈ L1(I) of order α > 0 is given by

Iα0 h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds, t > 0;

where Γ is the gamma function.

Definition 2.2. [24] For a function h ∈ L1(I) and α > 0, the α-th Caputo fractional-order derivative of h is defined
by

CDα
0 h(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1h(n)(s)ds

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.3. [24] The equality Dα
0+I

α
0+ = f(t), α > 0 holds for f ∈ L(0, b)

Lemma 2.4. [24] Let α > 0, then

Iα0
CDα

0 h(t) = h(t) + c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1;

where n = [α] + 1 and for i = 0, 1, . . . , n− 1, ci ∈ R.
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In order to obtain the existence result for the problem (1.2), first, we show the existence of solutions to the following
problem, which is on bounded domain, by mixed monotone operator.{

CDα
0 u(t) + q(t)f(u(t), u′(t)) = 0, t ∈ Ib := (0, b), 3 ≤ α < 4,

u(0) = u′(0) = u′′′(0) = 0, u′′(b) = l.
(2.1)

In order to obtain the existence of positive solutions to problem (2.1), we will consider the existence of positive
solutions to the following modified problem{

CDα−1
a v(t) + q(t)f(I1v(t), v(t)) = 0, 0 < t < b, 2 ≤ α− 1 < 3

v(0) = v′′(0) = 0, v′(b) = l.
(2.2)

Indeed, we have results as follows:

Lemma 2.5. Let u(t) = I1v(t), v ∈ C1[0, b]. Then one can transform (2.1) into (2.2). Moreover, if v ∈ C1([0, b], [0,∞))
is a solution of problem (2.2), then the function u(t) = I1v(t) is a positive solution of problem (2.1).

Proof . Put u(t) = I1v(t) into (2.1), by the definition of Riemann-Liouville fractional derivative and Lemma (2.3), we
can obtain that u′(t) = DIv(t) = v(t). Also, we have v(0) = u′(0) = 0, v(b) = u′(b) = l. Now, let v ∈ C([0, b], [0,∞))
be a solution for problem (2.2). Then from the definition of the Caputo fractional derivative and Lemma (2.4), there
has

CDα
0 u(t) =

d3

dt3
I3−αu(t) =

d3

dt3
I3−αIv(t) =

d3

dt3
I4−αv(t) = Dα−1v(t)

= q(t)f(Iv(t), v(t))

= q(t)f(u(t), u′(t));

moreover
u(0) = 0, u′(0) = v(0) = 0, v′(b) = u′′(b) = l, v′′(0) = u′′′(0) = 0.

So, u(t) = I1v(t) is a positive solution of problem (2.1). □

Lemma 2.6. Let α ∈ (3, 4] and h : I → R be continuous. A function v(t) is a unique solution of the fractional
boundary value problem {

CDα−1
0 v(t) + h(t) = 0, 0 < t < b, 2 ≤ α− 1 < 3

v(0) = v′′(0) = 0, v′(b) = l,
(2.3)

if and only if v(t) is a solution of the fractional integral equation

v(t) = lt+

∫ b

0

Gb(t, s)h(s)ds. (2.4)

where the Green’s function G(t, s) is defined by

Gb(t, s) =


t

Γ(α− 2)
(b− s)α−3 − 1

Γ(α− 1)
(t− s)α−2; 0 ≤ s ≤ t ≤ b

t

Γ(α− 2)
(b− s)α−3 0 ≤ t ≤ s ≤ b

(2.5)

Proof . Assume v(t) satisfies (2.3), in view of Lemma 2.4, by exerting the fractional integral Iα−1
0 on (2.1) under the

boundary conditions, we obtain
v(t) = c0 + c1t+ c2t

2 − Iα−1h(t)

where
c0 = 0, c1 = l + Iα−2h(b), c2 = 0.

So,

v(t) = lt+
1

Γ(α− 2)

(∫ t

0

[
−1

(α− 1)
(t− s)α−2 + t(b− s)α−3

]
h(s), ds+

∫ b

t

t(b− s)α−3h(s), ds

)
Conversely, it is clear that if v(t) satisfies (2.4), then (2.3) holds. □
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Lemma 2.7. The function G(t, s) defined by (2.5) satisfies

( (b− s)α−3

Γ(α− 2)
− 1

Γ(α− 1)

(b− s)α−2

b

)
t ≤ Gb(t, s) ≤

t

Γ(α− 2)
(b− s)α−3 (2.6)

Proof . It is clear that G(t, s) ≤ t

Γ(α− 2
(b− s)α−3, for 0 ≤ t ≤ s ≤ b. On the other hand, for 0 ≤ s ≤ t ≤ b, we have

∂(G(t,s)
t )

∂t
= − 1

Γ(α− 1)
(t− s)α−3t2 [t(α− 2)− (t− s)] < 0

thus

min
G(t, s)

t
=

G(b, s)

b
=

(b− s)α−3

Γ(α− 2)
− 1

Γ(α− 1)
(b− s)α−2.

This completes the proof of the Lemma. □

Let P be a normal cone of a Banach space E, and e ∈ P with ∥e∥ ≤ 1, e ̸= θ (θ is zero element of E). Define
Qe = {x ∈ P | there exist constants m,M > 0 such that 1

M e(t) ≤ x ≤ Me(t)}. The following definition and theorem
are essential in proving the results (see [17, 18, 19]).

Definition 2.8. Assume T : Qe ×Qe → Qe. T is said to be a mixed monotone operator if T (x, y) is non-decreasing
in x and non-increasing in y, i.e., if x1 ≤ x2 implies T (x1, y) ≤ T (x2, y) and y1 ≥ y2(y1, y2 ∈ Qe) implies T (x, y1) ≤
T (x, y2) for any x1, x2, y1, y2. x

∗ ∈ Qe is called a fixed point of T if T (x∗, x∗) = x∗.

Theorem 2.9. Suppose that T : Qe×Qe → Qe is a mixed monotone operator and there exists a constant δ, 0 < δ < 1
such that

T

(
tx,

1

t
y

)
≥ tδT (x, y) , ∀x, y ∈ Qe, t > 0.

Then T has a unique fixed point x∗ ∈ Qe.

3 Main results

From now on, we suppose:

(H1) f(x, y) = g(x) + h(y) where g : [0,+) → [0,+∞) is continuous and non-decreasing and h : (0,+∞) → (0,+∞)
is continuous and non-increasing.

(H2) There exists δ ∈ (0, 1) such that

g(tx) ⩾ tδg(x) (3.1)

and

h(t−1x) ⩾ tδh(x) (3.2)

for all t, x > 0 ;

(H3) For b > 0, Ib := [0, b]; let P be a normal cone of C1(Ib) defined by

P = {v ∈ C1(Ib)|v(t) ⩾ 0, 0 ≤ t ≤ b}

also define

Qe = {v ∈ P | 1
M

e(t) ⩽ v(t) ⩽ Me(t), t ∈ (0, b)}

where e(t) = t, M is a positive constant that

M > max

{
1,
(
l +

Θ1(s)

Γ(α− 2)

)(1−δ)−1

,
(
l +

Θ2(s)

Γ(α− 2)

)−(1−δ)−1}
, (3.3)
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in which

Θ1(s) =

[
b2δg(1)

∫ b

0

q(s)(b− s)α−3ds+ h(1)

∫ b

0

q(s)(b− s)α−3s−δds

]

and

Θ2(s) =

[
g(1)

∫ b

0

(
(b− s)α−3 − 1

(α− 1)

(b− s)α−2

b

)
q(s)

(
s2

2

)δ

ds

+ b−δh(1)

∫ b

0

(
(b− s)α−3 − 1

(α− 1)

(b− s)α−2

b

)
q(s) ds

]

and

0 <

∫ b

0

q(s)(b− s)α−3s−δds < ∞ (3.4)

0 <

∫ b

0

(
(b− s)α−3 − 1

(α− 1)

(b− s)α−2

b

)
q(s)(

s2

2
)δds < ∞

Remark 3.1. From (3.1) and (3.2), one can derive g(t) ≥ tδg(1), g(x̄) ⩽ x̄δg(1), h(t−1) ≥ tδh(1), t−δh(y) ⩾
h(ty), h(t) ≤ t−δh(1)

Proof . with x = 1, there is

g(t) ≥ tδg(1). (3.5)

and when t = 1
x̄ , letting x = x̄, respectively in (3.1), we obtain

g(x̄) ⩽ x̄δg(1). (3.6)

Now, from (3.2) with x = 1, we have

h(t−1) ≥ tδh(1) (3.7)

let x = ty in (3.2), one has

t−δh(y) ≥ h(ty) (3.8)

choosing y = 1 in (3.8) yields

h(t) ≤ t−δh(1) (3.9)

□

Theorem 3.2. Suppose that (H1)-(H3) hold. Then problem (2.2) has a unique positive solution u(t) = I1v(t) with
vb ∈ Qe.

Proof . Let v ∈ Qe , thus, there are Iv(t) > 0, v(t) > 0 for t ∈ [0, b]. Thus from the monotonicity of Riemann-
Liouville fractional integral Iα, α > 0, (H1) and (3.6), (3.9), we have for v ∈ Qe

g(Iv(t)) ≤ g(IMe(t))

= g(M
t2

2
)

≤ g(Mb2)

≤ (Mb2)δg(1)
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and

h(v(t)) ≤ h(M−1e(t))

= h(M−1t)

≤ (M−1t)−δh(1)

On the other hand, by (H1) and (3.5), (3.7), we have

g(Iv(t)) ≥ g(IM−1e(t))

= g(M−1 t
2

2
)

⩾ (M−1 t
2

2
)δg(1)

and

h(v(t)) ≥ h(Me(t))

= h(Mt)

≥ h(Mb)

≥ (Mb)−δh(1),

Now, we define the operator Tb : Qe ×Qe → Qe by

Tb(x, y)(t) = lt+

∫ b

0

Gb(t, s)q(s)[g(Ix(s)) + h(y(s))]ds (3.10)

where Gb(t, s) is defined in (2.5). We will show that Tb maps Qe × Qe → Qe. In fact, for v, w ∈ Qe, by (2.6,), (3.3)
and (3.10), we see that

T (x, y)(t) ≤ lt+
tM δ

Γ(α− 2)
Θ1(s) (3.11)

≤ tM δl +
tM δ

Γ(α− 2)
Θ1(s)

= tM δ

(
l +

Θ1(s)

Γ(α− 2)

)
≤ Mt

where Θ1(s) is introduced in (3.3) and

T (x, y)(t) ≥ lt+
tM−δ

Γ(α− 2)
Θ2(s) (3.12)

≥ tM−δl +
tM−δ

Γ(α− 2)
.Θ2(s)

= tM−δ

(
l +

1

Γ(α− 2)
Θ2(s)

)
≥ M−1t

where Θ2(s) is introduced in (3.3). From (3.11), (3.12), we see that T : Qe ×Qe ⊆ Qe.

Secondly, we show that T is a mixed monotone operator. If x1 ≤ x2, from the monotonocity of Riemann-Liouville
integral and (H1), we have T (x1, y)(t) ≤ T (x2, y)(t) That is T is non-decreasing in x for any y ∈ Qe. Similarly, If
y1 ≥ y2, we have T (x, y1)(t) ≤ T (x, y2)(t). That is T is non-increasing in y for any v ∈ Qe Hence, T : Qe ×Qe → Qe
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is a mixed monotone operator. Finally, for x, y ∈ Qe, t ∈ [0, b], from (H2), we have

T (tx, t−1y)(t) = lt+

∫ b

0

G(t, s)q(s)
[
g(tIx(s)) + h(t−1y(s))

]
ds

≥ ltδ + tδ
(∫ b

0

G(t, s)q(s) [g(Ix(s)) + h(y(s))]

)
ds

= tδ
(
l +

∫ b

0

G(t, s)q(s) [g(Ix(s)) + h(y(s))] ds

)
= tδT (x, y)(t).

Hence,
T (tx, t−1y)(t) ≥ tδT (x, y)(t).

Thus, we have shown that all the conditions of Theorem 2.9 hold. So, there exists unique v∗ ∈ Qe such that
T (v∗, v∗) = v∗, that is, problem (2.2) has a unique positive solution. Since v∗ ∈ C([0, 1], [0,+∞), there are I0v

∗ ≥
0, v∗ ≥ 0 for all t ∈ (0, b) . Hence f(Iv(t), v(t)) is continuous for v∗ ∈ C([0, 1], [0,+∞), t ∈ (0, b). Now, using Lemma
(2.5), we see that u∗ = Iv∗ is a positive solution of (2.1) which is unique. We now use the following diagonalization
process. For k ∈ N, let

yk(t) =

{
uk(t) t ∈ [0, bk],

uk(bk) t ∈ [bk,∞).
(3.13)

Here {bk}k ∈ N∗ is a sequence of numbers satisfying 0 < b1 < · · · < bk < · · · ↑ ∞ Let S = {yk}∞k=1. Notice that
|yk(t)| ≤ Mt for t ∈ [0, b1], k ∈ N. Also for k ∈ N and t ∈ [0, b1], we have

ynk
(t) =

l

b1
t+

∫ b1

0

q(s)Gb1(t, s)f(Iybk(s), ybk(s))ds.

Thus, for k ∈ N and t, x ∈ [0, b1], we have

ybk(t)− ybk(x) =
l

b1
(t− x) +

∫ b1

0

[Gb1(t, s)−Gb1(x, s)] q(s)f(Iybk(s), ybk(s))ds.

and by (3.11)
|ybk(t)− ybk(x)| ≤ M |t− x|.

The Arzel‘a-Ascoli Theorem guarantees that there is a subsequence N∗
1 of N and a function z1 ∈ C([0, b1],R) with

ybk → z1 in C([0, b1],R) as k → ∞ through N∗
1 . Let N1 = N∗

1 \ 1. Notice that |ybk(t)| ≤ Mt for t ∈ [0, b2], k ∈ N. Also
for k ∈ N and t, x ∈ [0, b2], we have

|ybk(t)− ybk(x)| ≤ M |t− x|.

The Arzel‘a-Ascoli Theorem guarantees that there is a subsequence N∗
2 of N1 and a function z2 ∈ C([0, b2],R) with

ybk → z2 in C([0, b2],R) as k → ∞ through N∗
2 . Note that z1 = z2 on [0, b2] since N∗

2 ⊆ N1. Let N2 = N∗
2 \ 2.

Proceed inductively to obtain for m ∈ {3, 4, · · · a subsequence N∗
m of Nm \1 and a function zm ∈ C([0, bm],R) with

ybk → zm in C([0, bm],R) as k → ∞ through N∗
m. Let Nm = N∗

m \m. Define a function u as follows. Fix t ∈ (0,∞)
and let m ∈ N with s ≤ bm. Then define u(t) = zm(t). Then u ∈ C([0,∞],R), u(0) = 0 and |u(t)| ≤ M for t ∈ [0,∞).
Again fix t ∈ (0,∞) and let m ∈ N with s ≤ bm. Then for n ∈ Nm, we have

ybk(t) =
l

bm
t+

∫ bm

0

Gbm(t, s)q(s)f(Iybk(s), ybk(s))d.

Let bk → ∞ through Nm to obtain

zm(t) =
l

bm
t+

∫ bm

0

Gbm(x, s)q(s)f(Izm(s), zm(s))ds,
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that is

u(t) =
l

bm
t+

∫ bm

0

Gbm(t, s)q(s)f(Iu(s), u(s))ds (3.14)

we can use this method for each t ∈ [0, bm] , for each m ∈ N. Thus{
CDα

au(t) + q(t)f(u(t), u′(t)) = 0, for t ∈ [0, bm],

u(0) = 0, u(bm) = l.
(3.15)

for each m ∈ N and α ∈ (2, 3]. This completes the proof of the theorem. □

4 Example

Example 4.1. Consider the nonlinear problem
CD

10

3
0 u(t) + t

−
1

4 (u2 + 2u+
1

4
√
u′
) = 0, 0 < t < +∞,

u(0) = 0, u′(0) = 0, u′(+∞) = l,

(4.1)

We let q(t) = t
−
1

4 and f(u) = u2 + 2u+
1

4
√
u′

= g(u) + h(u′) where g(u) = u2 + 2u and h(u′) =
1

4
√
u′
. Noting for

l ∈ (0, 1), u > 0, u′ > 0 and 0 < δ = max{δ1, δ2} < 1 , since for each δ1 ∈ (0, 1) , δ2 ≤ 1

4
and l ∈ (0, 1), we have

l1 > lδ and l2 ≥ lδ, so

g(lu) = l2u2 + 2lu ≥ lδ1(u2 + 2u),

h(l−1u′) = l
1
4 (u′)−

1
4 ≥ lδ2(u′)−

1
4

we note that δ = 1
2 , then

∫ b

0
s

−3
4 (b− s)

1
3 ds = b

7
12 β( 14 ,

4
3 ) where β is the β function. So, we have

0 <

∫ b

0

s
−3
4 (b− s)

1
3 ds < ∞

and in the same way, we have

1√
2

∫ b

0

s
3
4 ((b− s)

1
3 − 3

7

(b− s)
4
3

b
)ds =

1

7
√
2

(
3β(

4

3
,
11

4
) + 4β(

4

3
,
7

4
)

)
b

25
12

so,

0 <

∫ b

0

s
−1
4

(
(b− s)

1
3 − 3

7

(b− s)
4
3

b

)
(
s2

2
)

1
2 ds < ∞

Thus, the assumptions (H1)-(H3) hold. Then Theorem(3.2) implies that problem (4.1) has a positive solution in
C1(0,∞).

Example 4.2. Consider the nonlinear problem CD
15
4
0 u(t) +

√
πt(u

1
5 + u

1
4 +

1
8
√
u′
) = 0, 0 < t < +∞

u(0) = 0, u′(0) = 0, u′(+∞) = l
(4.2)

We let f(u) = u
1
5 + u

1
4 +

1
8
√
u′

= g(u) + h(u′) where g(u) = u
1
5 + u

1
4 and h(u′) =

1
8
√
u′
.
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Noting for l ∈ (0, 1), u > 0, u′ > 0 and δ =
1

4
,

g(lu) = l
1
5u

1
5 + l

1
4u

1
4 ≥ l

1
4 (u

1
5 + u

1
4 ),

h(l−1u′) = l
1
8u′ ≥ l

1
4u′

So
√
π
∫ b

0
s

3
4 (b− s)

3
4 ds =

√
πβ( 74 ,

7
4 )b

5
2 , where β is the β function. So, we have

0 <

∫ b

0

s
3
4 (b− s)

1
2 ds < ∞

and in the same way, we have
√
π

4
√
2

∫ b

0

s
3
2

(
(b− s)

3
4 − 4

11

(b− s)
7
4

b

)
ds =

√
π
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√
2

(
4B

(
7

4
,
7

2

)
+ 7B

(
7

4
,
5

2

))
b

13
4 .

So,

0 <
1
4
√
2

∫ b

0

√
πs

(
(b− s)

3
4 − 4

11

(b− s)
7
4

b
(
s2

2
)

1
4

)
ds < ∞.

Thus, the assumptions (H1)-(H3) hold. Then Theorem(3.2) implies that problem (4.2) has a positive solution in
C1(0,∞).

5 Numerical results

The Adomian Decomposition Method (ADM) is a powerful technique for solving nonlinear ordinary and partial
differential equations. It was introduced by George Adomian in the 1980s as an alternative to traditional analytical
and numerical methods.

The key idea behind the Adomian Decomposition Method is to decompose the solution of a differential equation
into a series of components. These components are typically expressed as infinite series of functions. The solution is
then approximated by truncating this series at a finite order.

In this section, we employ the Adomian Decomposition Method to numerically approximate the solution of equation
(1.2). We know that the solution to this equation is equal to the limit as m approaches infinity of the expression
(3.14). Therefore, suppose that bm is a sufficiently large value. Then, an approximation of u will be as follows

u(t) ≈ ũ(t) =
l

bm
t+

∫ bm

0

Gbm(t, s)q(s)f(Iu(s), u(s))ds. (5.1)

Now, we apply the Adomian Decomposition method to a similar approach [28] on the right-hand side of the integral
equation (5.1). To this end, we assume that

ũ(t) =

∞∑
n=0

un(t) =
l

bm
t+

∫ bm

0

Gbm(t, s)q(s)f(Iu(s), u(s))ds, (5.2)

having identified u0 as all terms outside the integral sign, the components un(t), where n ≥ 1, of the unknown function
ũ are consequently fully determined in a recurrent manner if we set

u0(t) =
l

bm
t,

un(t) =
∫ bm
0

Gbm(t, s)q(s)f(Iun−1(s), un−1(s))ds, n ≥ 1.

(5.3)

Given that the integral solution in equation (5.3) cannot be explicitly computed, numerical techniques and a
suitable neural network can be employed to obtain a good approximation of it.

Using a neural network to approximate the functions un(t) involves training a model to learn the mappings between
inputs (values of t ) and outputs (values of un(t) ). This can be achieved through a supervised learning approach
where we provide input-output pairs and let the model learn the underlying relationship. Here’s how we can approach
this task:
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n Example 1 Example 2
2 2.721E0 9.450E0
3 1.220E0 5.486E0
4 9.789E-1 1.201E0
5 6.175E-1 8.045E-1
6 4.571E-1 6.958E-1
7 2.650E-1 3.881E-1
8 8.968E-2 1.020E-1
9 5.485E-2 7.691E-2
10 1.899E-2 3.742E-2

Table 1: The trend of decreasing absolute error in the approximate solutions of Examples 1 and 2 with increasing n.

� Data generation: Generate a dataset consisting of input-output pairs where inputs are values of t and outputs
are values of un(t) for various values of n. We can use the given equations to generate this data.

� Neural network architecture: Design a neural network architecture suitable for function approximation.
Since we are dealing with a regression problem (predicting continuous values), a feedforward neural network
with appropriate hidden layers can be used.

� Training the neural network: Train the neural network using the generated dataset. During training, the
network learns to approximate the functions un(t) by adjusting its weights and biases to minimize a suitable loss
function (e.g., mean squared error).

� Evaluation: Evaluate the trained neural network on a separate validation set to assess its performance. Adjust
the model architecture and training parameters as needed to improve performance.

� Prediction: Use the trained neural network to predict values of un(t) for new values of t as required.

In Algorithm 5, we have depicted this pattern.

Algorithm 1 Explanation of the provided Python code

1: Import Libraries
2: Import necessary libraries: NumPy for numerical operations and PyTorch for building and training neural net-

works.
3: Define Constants
4: Define constants such as bm, α, and l which are used throughout the code.
5: Define Functions
6: Define functions q(t) and f(v, w) using lambda functions. These functions are used in the problem’s equations.
7: Define Gb Function
8: Define function Gb(t, s) which implements the piecewise definition provided in the problem statement.
9: Generate Training Data

10: Generate training data for un(t) for n = 0 to 10 by numerically integrating the provided equations.
11: Convert Data to PyTorch Tensors
12: Convert the NumPy arrays generated in the previous step into PyTorch tensors for further processing.

In Example 4.1, let l = 1/2, and in Example 4.2, let l = 1/3. In both examples, we take bm = 100, and consider the
first n terms of the series (5.2) as an approximation of ũ, denoted by ũn. The numerical results of this approximation
for both examples are reported in Figure 1 with n = 15. Additionally, we present the reduction of the absolute error
of the approximate solution ũn with ũ15 in [0, bm] in Table 5 for both examples.
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Figure 1: Numerical simulation of the solutions of Examples 1 and 2 using the Adomian decomposition method

As illustrated in this table, the numerical method provides a good approximation that converges to the exact
solution.
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