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Abstract

This paper is devoted to studying the existence of a solution to the Dirichlet problem for a specific class of elliptical
anisotropic equations of the type{

A(u) + g(x, u) = f in Ω
u = 0 on ∂Ω,

(0.1)

in the anisotropic Orlicz-Sobolev spaces, where A is a Leray-Lions operator A(u) =

N∑
i=1

− ∂

∂xi
(ai(x,D

iu)), the

Carathéodory function g(x, s) is a non-linear lower order term that verify some natural growth and sign conditions,
where the data f is framed in anisotropic Orlicz-Sobolev spaces, and it is described by an Orlicz function that does not
meet the ∆2-condition. Within this framework, we prove the existence of a weak solution for our strongly nonlinear
elliptic problem.
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1 Introduction

The purpose of this study is to investigate the existence of a weak solution to the nonlinear Dirichlet problem{
A(u) + g(x, u) = f in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain of RN , N ≥ 2 is an integer and the operator A(u) =

N∑
i=1

− ∂

∂xi
(ai(x,D

iu)) is a Leray-

Lions operator, ai(x, ζ) : Ω × R −→ R is a Carathéodory function for all i = 1, ..., N, satisfying the non polynomial
growth condition, the monotonicity and coercivity conditions in anisotropic Orlicz-Sobolev spaces W 1L−→

M
(Ω) given
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by W 1L−→
M
(Ω) = {u ∈ LM0

/Diu ∈ LMi
, i = 1, 2..., N}, with

−→
M denoting a vector of N-Orlicz functions i.e,

−→
M =

(M1, ...,MN ), where Mi are N-Orlicz functions for all i = 1, ..., N does not satisfy the ∆2 condition. The perturbing
term g is nonlinear lower order term that verify some natural growth and sign condition g(x, σ)σ ≥ 0. The second
term f belongs to W−1E−−→

M∗(Ω).

The solvability of the problem (1.1) has been studied by many authors. For example, Browder demonstrated this
result in classical Sobolev spaces in [15], and others have used this result in different frameworks ([3, 6, 16, 17]). In a
different setting, Gossez et al. proved the existence result for problem (1.1) in Orlicz-Sobolev spaces in [20]. Sidi El
Vally also proved the existence of a weak solution to this problem in Musielak Orlicz spaces in [28]. More recently, M.
Bendahmane et al. proved the existence of this result in anisotropic Sobolev spaces using Hedberg-type approximation
in [13].

The study of physical processes in anisotropic continuous medium has piqued the interest of researchers in the
field of mathematical modeling. This has resulted in the formulation of equations that aim to describe these processes
accurately. Recent research by Elarabi, Lahmi, and Ouyahya, as presented in their work ([18]), focuses on demon-
strating the existence of a weak solution to a nonlinear Dirichlet problem in an anisotropic Orlicz-Sobolev space. This
problem involves the equation Au = f in the domain Ω. Further research in anisotropic Orlicz spaces can be found in
the following works, as referenced in ([4, 5, 7, 8, 9, 10, 11, 12, 14, 24, 25, 26, 27]).

The objective of this study is to investigate the presence of a weak solution to problem (1.1) in anisotropic Orlicz-
Sobolev spaces, without requiring the ∆2 condition on the N-functions. By relaxing this assumption, we aim to expand
our understanding of the existence of weak solutions and their behavior in more general function spaces.

This paper is structured as follows. Section 2 provides an introduction to the necessary preliminaries, notations,
and functional spaces. Additionally, we discuss certain technical results that will be required in the subsequent sections.
Section 3 covers the solvability of the main result.

2 Preliminaries

We can begin by recalling some definitions and properties from Orlicz spaces (as described in [2, 21, 23]). Addi-
tionally, we will present the anisotropic Orlicz-Sobolev spaces.

2.1 N-function.

Let M : R+ −→ R+ be an N-function i.e. M is continuous, convex, with M(t) > 0 for t > 0, M(t)
t −→

0 as t −→ 0 and M(t)
t −→ +∞ as t −→ +∞. Equivalently, M admits the representation M(t) =

∫ t

0
m(x)dx, where

m : R+ −→ R+ is non-decreasing and right-continuous function, with m(t) > 0 for t > 0, and m(t) −→ +∞ as

t −→ +∞. The N-function M∗ conjugate to M is defined by M∗(t) =
∫ t

0
m∗(x)dx, where m∗ : R+ −→ R+ is given by

m∗(t) = sup{s; m(s) ≤ t}. The N -function M is said to satisfy the ∆2-condition if, for some k > 0,

M(2t) ≤ kM(t) for all t ≥ 0.

Moreover, we have the following Young’s inequality

ts ≤ M(t) +M∗(s) for all t, s ≥ 0.

Given two N-functions P and Q, we write P ≪ Q to indicate that P grows essentially less rapidly than Q i.e for

each ϵ > 0, P (t)
Q(ϵt) −→ 0 as t −→ ∞. This is the case if and only if

lim
t−→∞

Q−1(t)

P−1(t)
= 0.

Let Ω be an open subset of RN , N ∈ N. The Orlicz class LM (Ω) (resp. the Orlicz space LM (Ω)) is defined as the
set of (equivalence classes of) real-valued measurable functions u on Ω such that:∫

Ω

M(u(x)) dx < +∞ (resp.

∫
Ω

M
(u(x)

λ

)
dx < +∞ for some λ > 0).
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Notice that LM (Ω) is a Banach space under the so-called Luxemburg norm, namely

∥u∥M = inf
{
λ > 0 /

∫
Ω

M
(u(x)

λ

)
dx ≤ 1

}
and LM (Ω) is a convex subset of LM (Ω). Indeed, LM (Ω) is the linear hull of LM (Ω). The closure in LM (Ω) of the set
of bounded measurable functions with compact support in Ω̄ is denoted by EM (Ω). The equality EM (Ω) = LM (Ω)
holds if and only if M satisfies the ∆2-condition, for all t or for t large according to whether Ω has infinite measure or

not. The dual of EM (Ω) can be identified with LM∗(Ω) by means of the pairing

∫
Ω

u(x)v(x) dx, and the dual norm

on LM∗(Ω) is equivalent to ∥.∥M∗ . For two complementary N-functions M and M∗, if u ∈ LM (Ω) and v ∈ LM∗(Ω),
we have the following Hölder’s inequality∫

Ω

|u(t)v(t)|dx ≤ 2 ∥ u ∥M∥ v ∥M∗ .

We say that un converges to u for the modular convergence in LM (Ω) if, for some λ > 0,∫
Ω

M(
un(x)− u(x)

λ
)dx −→ 0.

Lemma 2.1 (cf. [20]). Let (un), u ∈ LM (Ω), vn, v ∈ LM∗(Ω) such that:

un −→ u in LM (Ω) for the convergence modular

and
vn −→ v in LM∗(Ω) for the convergence modular

then ∫
Ω

unvn −→
∫
Ω

uv as n −→ ∞.

2.2 Anisotropic Orlicz-Sobolev space

Let Ω be an open subset of RN , Mi be N-functions for i = 1, ..., N, we denote
−→
M = (M1, ...,MN ) and Di = ∂·

∂xi
.

The anisotropic Orlicz space L−→
M
(resp. E−→

M
) is defined by

L−→
M
(Ω) =

N∏
i=1

LMi
(Ω) (resp. E−→

M
(Ω) =

N∏
i=1

EMi
(Ω)),

endowed with the following norm

∥u∥ =

N∑
i=1

∥ui∥Mi
, (2.1)

where u = (u1, ...., uN ). In order to introduce the anisotropic Orlicz-Sobolev spaces it will be interesting to define the
function M0 given by

M0(x) = max
i=1,...,N

Mi(x) (2.2)

Remark 2.2. It is easy to check that:

� (i) The function M0 is an N-function.

� (ii) The following embedding LM0
(Ω) ↪→ LMi

(Ω) is continuous for all i.
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This remark allows us to define the anisotropic Orlicz-Sobolev spaces W 1L−→
M
(Ω) and W 1E−→

M
(Ω))

W 1L−→
M
(Ω) = {u ∈ LM0

(Ω); Diu ∈ LMi
(Ω), i = 1, 2, ..., N}

and
W 1E−→

M
(Ω) = {u ∈ EM0(Ω); D

iu ∈ EMi(Ω), i = 1, 2, ..., N},
who are Banach spaces under the norm

∥u∥
1,
−→
M

= ∥u∥M0
+

N∑
i=1

∥Diu∥Mi
. (2.3)

The space W 1
0E−→

M
(Ω) is defined as the (norm) closure of the space D(Ω) in W 1E−→

M
(Ω) and the space W 1

0L−→
M
(Ω)

as the σ(L−→
M
(Ω), E−−→

M∗(Ω)) closure of D(Ω) in W 1L−→
M
(Ω). Let

−→
M∗ = (M∗

1 , ...,M
∗
N ). The dual of the spaces W 1

0L−→
M
(Ω)

and W 1
0E−→

M
(Ω) are defined respectively by

W−1L−−→
M∗(Ω) = {f ∈ D′(Ω); f = −

∑
1≤i≤N

Difi with fi ∈ LM∗
i
(Ω)}

and
W−1E−−→

M∗(Ω) = {f ∈ D′(Ω); f = −
∑

1≤i≤N

Difi with fi ∈ EM∗
i
(Ω)}.

These spaces are equipped by their usual quotient norms. It is easy to see that W 1
0E−→

M
(Ω) and W−1E−−→

M∗(Ω) are
separable Banach spaces.

Proposition 2.3. [18] Let Ω be a bounded open subset of RN . Then there exists a constant C = C(Ω, N) such that
for all u ∈ W 1

0L−→
M
(Ω) ∫

Ω

N∑
i=1

Mi(u(x))dx ≤ C

∫
Ω

N∑
i=1

Mi(CDiu(x))dx (2.4)

Lemma 2.4 ([18]). Suppose that Ω has the segment property. Then

� D(Ω) is σ(

N∏
i=1

LMi(Ω),

N∏
i=1

EM∗
i
(Ω)) dense in W 1

0L−→
M
(Ω).

� (W 1
0L−→

M
(Ω),W 1

0E−→
M
(Ω),W−1L−−→

M∗(Ω),W
−1E−−→

M∗(Ω)) constitutes a complementary system.

Let T the mapping from D(T ) ⊂ W 1
0L−→

M
(Ω) into W−1L−−→

M∗(Ω) defined by

<Tu, v> =

∫
Ω

N∑
i=1

ai(x,D
iu)Div dx, ∀v ∈ W 1

0L−→
M
(Ω)

where D(T ) = {u ∈ W 1
0L−→

M
(Ω); Au ∈ L−−→

M∗(Ω)}.which the corresponding mapping T in the following complementary

system (Y, Y0, Z, Z0) where

(Y, Y0, Z, Z0) = (W 1
0L−→

M
(Ω),W 1

0E−→
M
(Ω),W−1L−−→

M∗(Ω),W
−1E−−→

M∗(Ω))

satisfies the following conditions i)− iv) (similar to the conditions of Proposition 1. and Proposition 5. in [19]) with
respect to some u ∈ Y0 and f ∈ Z0:

(i) (finite continuity) i.e. Y0 ⊂ D(T ) and T is continuous from each finite-dimensional subspace of Y0 into Z for
σ(Z, Y0),

(ii) (Sequential pseudo-monotonicity) for any sequence un ⊂ D(T ) such that un −→ u in Y for σ(Y,Z0), Tun −→
χ ∈ Z for σ(Z, Y0) and lim sup<un, Tun> ≤ <u, χ> it follows that u ∈ D(T ), Tu = χ and <un, Tun> −→ <u, Tu>,

(iii) Tu remains bounded in Z whenever u ∈ D(T ) remains bounded in Y and <u, Tu> remains bounded from the
above,

(iv) <u, Tu− f> > 0 when u ∈ D(T ) has sufficiently large norm in Y.
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3 Essential assumptions and main result

Let Ω is an open and bounded set of RN satisfying the segment property and the differential operator A :
W 1

0L−→
M
(Ω) −→ W−1L−−→

M∗(Ω) in divergence form

A(u) = −
N∑
i=1

∂

∂xi
(ai(x,D

iu)). (3.1)

We make the following assumptions:

A1) ai(x, ζ) : Ω× R −→ R are a Carathéodory functions for all i = 1, ..., N such that ai(x, 0) = 0.

A2) There exist N-functions Mi (i = 1, ..., N), a function a0 ∈ EM∗
i

and positive constant c such that for a.e.

x ∈ Ω, for all ζ ∈ R and all i = 1, 2, . . . , N , |ai(x, ζ)| ≤ a0(x) + (M∗
i )

−1Mi(c|ζ|).

A3) For a.e x in Ω and ζ, ζ ′ ∈ R with ζ ̸= ζ ′, [ai(x, ζ)− ai(x, ζ
′)](ζ − ζ ′) > 0.

A4) There exist functions bi ∈ EM∗
i
(Ω), δ(x) ∈ L1(Ω) and positive constant d such that for some fixed element

φ in W 1
0E−→

M
(Ω), (ai(x, ζ))(ζ −Diφ(x)) ≥ dMi(|ζ|)− bi(x)ζ − δ(x).

B1) g : Ω× R → R be a Carathéodory function satisfying the sign condition: g(x, s)s ≥ 0.

B2) For each r ≥ 0, there exist hr ∈ L1(Ω) such that

|g(x, s)| ≤ hr for all s ∈ R, for a.a x ∈ Ω and for all s ∈ R with |s| ≤ r. (3.2)

Let H ⊂ W 1
0L−→

M
(Ω) be a convex set, then:

C1) For each u ∈ H ∩ L∞(Ω), there exists a sequence un ∈ H ∩ L∞(Ω) ∩ W 1
0E−→

M
(Ω) such that un → u for

σ(LMi
(Ω), LM∗

i
(Ω)), with ∥un∥∞ bounded.

C2) For each u ∈ H, there exists a sequence un ∈ H∩L∞(Ω) and a constant k such that un → u for σ(LMi(Ω), LM∗
i
(Ω))

and |un(x)| ≤ k|u(x)| for a.e x ∈ Ω.

Lemma 3.1. (cf. [18]) Suppose that A1) and A2) hold true. Then the mapping

ϕ : E−→
M
(Ω) −→ L−−→

M∗(Ω)

w = (wj)1≤j≤N 7−→ (ai(x,D
iwi)1≤i≤N

is finitely continuous from ΠN
i=1EMi(Ω) to the σ(ΠN

i=1LM∗
i
(Ω),ΠN

i=1EMi(Ω)) topology of ΠN
i=1LM∗

i
(Ω).

3.1 Existence results

Our main result is the following theorem.

Theorem 3.2. Let f ∈ W−1E−−→
M∗(Ω). Assume that A1) − A4) and B1) − B2) are satisfied. Then there exists u ∈

W 1
0L−→

M
(Ω) such that

g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω)

< A(u), v > +

∫
Ω

g(x, u)vdx =< A(u), v > ∀v ∈ W 1
0L−→

M
(Ω) ∩ L∞(Ω)

(3.3)

where

<Tu, v> =

∫
Ω

N∑
i=1

ai(x,D
iu)Div dx, ∀v ∈ W 1

0L−→
M
(Ω)
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The proof of Theorem 3.2 is devided into several steps: we show first the existence of solutions to the approximate
problem of (3.3) and a priori estimates, the convergence of approximate solution and then passing to the limit in the
approximate problems will yeild the main result.

Step 1: Approximate problem

Let gn(x, u) =

 g(x, u) if |g(x, u)| ≤ n

ksign(g(x, u)) if |g(x, u)| > n
and we define the operator Gn : W 1

0L−→
M
(Ω) −→ R by Gn(v) =∫

Ω
gn(x, u)vdx.

Remark 3.3. It is easy to check that Gn : W 1
0L−→

M
(Ω) −→ W−1L−−→

M∗(Ω) is well defined.

Now we show that the mapping T + Gn : D(T ) ⊂ W 1
0L−→

M
(Ω) −→ W−1L−−→

M∗(Ω) satisfies i) − iv). The finite

continuite of T +Gn follows from Lemma 3.1. Let us now show the condition (ii). Let uk → u weakly in W 1
0L−→

M
(Ω)

for σ(W 1
0L−→

M
(Ω),W−1E−−→

M∗(Ω)) such that (T + Gn)uk → h weakly in W−1L−−→
M∗(Ω) for σ(W−1L−−→

M∗(Ω),W
1
0E−→

M
(Ω))

and limn→+∞ < (T + Gn)uk, uk − u >≤ 0. Thus, there exists a subsequence still denoted by uk such that ; un → u
a.e in Ω. Since gn is continous, gn(x, uk) → gn(x, u) a.e in Ω. By using the dominated convergence Lebesgue theorem,
we have gn(x, uk) → gn(x, u) in LM∗

i
, since uk ⇀ u weakly in LMi , ∀i = 1, ..., N. We obtain∫

Ω

gn(x, uk)(uk − u)dx → 0.

Hence, we get Tuk ⇀ h−Gnu weakly in W−1L−−→
M∗(Ω). Since T is pseudo-monotone, we have h = Tu+Gnu. On

the other hand, since Gn is bounded, it easy to show that T +Gn is bounded. Now, we show that the mapping T +Gn

satisfies the condition (iv). Let f ∈ W−1E−−→
M∗(Ω), such that f =

N∑
i=1

Difi, fi ∈ EM∗
i
. We have

< u, (T +Gn)u− f > = < u, Tu− f +Gnu >=< u, Tu− f > + < u,Gnu > .

By using the sign condition, we deduce our result. Finally, the operator T + Gn satisfies (i)-(iv). Then, we can
apply [18, theorem 3.2] to deduce the existence of a weak solution to the approximate problem. Thereforem there
exists un ∈ W 1

0L−→
M
(Ω) solution of the approximate problem

< Tun, un > +

∫
Ω

gn(x, un)undx =< f, un > for all v ∈ W 1
0L−→

M
(Ω). (3.4)

Step 2: Apriori estimates

Taking un as a test function we deduce: < Tun, un > +
∫
Ω
gn(x, un)undx =< f, un >, in virtue of (iii) and B1),

we deduce the following estimates:
∥un∥W 1

0 L−→
M

(Ω) ≤ C0 (3.5)

∥Tun∥W−1L−−→
M∗ (Ω) ≤ C1 (3.6)∫

Ω

gn(x, un)dx ≤ C2, (3.7)

where Ci is a positive constant not depending on n.

Step 3: The convergence of approximate solution

In virtue of (3.5), (3.6) and (3.7), we deduce that:

un → u in W 1
0L−→

M
(Ω) for σ(W 1

0L−→
M
(Ω),W−1E−−→

M∗(Ω))

Tun ⇀ χ in W−1L−−→
M∗(Ω) for σ(W−1L−−→

M∗(Ω),W
1
0E−→

M
(Ω))

un → u a.e in Ω.
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and gn(x, un) → g(x, u) a.e in Ω. Now, it remains to show that g(x, u) ∈ L1(Ω). Let β > 0, we get

|gn(x, un)| ≤ sup
|t|≤β

|g(x, t)|+ β−1|gn(x, un)un| ≤ hr(x) + δ−1|gn(x, un)un|

and let E is a measurable subset of Ω and ϵ > 0, we get∫
E

|gn(x, un)|dx ≤
∫
E

hr(x)dx+ δ−1

∫
E

gn(x, un)undx ≤
∫
E

hr(x)dx+ δ−1C2.

where C2 is the constant of (3.7). For |E| is sufficiently small and δ =
2C2

ϵ
, we get

∫
E

|gn(x, un)|dx ≤
∫
E

hr(x)dx+ δ−1C2 ≤ ϵ.

Then, by using Vitali’s theorem, we obtain gn(x, un) → g(x, u) inL1(Ω), then g(x, u) ∈ L1(Ω). On the other hand,
by using (3.7) and Fatou Lemma. We have∫

Ω

lim
n→+∞

inf gn(x, un)undx =

∫
Ω

g(x, u)udx ≤ lim
n→+∞

inf

∫
Ω

gn(x, un)undx ≤ C2.

thus,

∫
Ω

g(x, u)udx ≤ C2. Then, it follows that g(x, u)u ∈ L1(Ω).

Step 4: Passing to the limit

By passing to limit in (3.3), we deduce

< χ, v > +

∫
Ω

g(x, u)vdx =< f, v >, ∀v ∈ W 1
0L−→

M
(Ω) ∩ L∞(Ω).

To complete the proof, it remains to show that χ = Tu. Indeed, taking v = un in (3.3) and by using Fatou’s
Lemma and (C1) and (C2) we deduce:

lim
n→+∞

sup < Tun, un >≤< f, v > −
∫
Ω

g(x, u)udx =< χ, u > . (3.8)

Hence, we conclude by (ii), χ = Tu. Finally, < Tu, v > +
∫
Ω
g(x, u)vdx =< f, v > .
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