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Abstract

In this manuscript, we introduce the concept of generalized αT -contractive pair of mappings with the assistance of
a tri-simulation function and use this concept to establish some coincidence and common fixed point theorems via
α-permissible mapping. We also give an illustrative example which yields the main result. Also, many existing results
in the frame of metric spaces are established. We also apply our main theorem to derive coincidence and common
fixed point results for αT -contractive mapping with the assistance of α-permissible function.
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1 Introduction

The investigation of metric fixed point theory assumes a vital job in light of the fact that it discovers applications
in numerous essential zones such as solution of differential equations, integral equations and so forth. The perception
of standard metric space is a major weapon in functional analysis and topology. The Banach contraction rule is a
one of the predominant outcomes in analysis and has continuously been at the front line of making and providing
remarkable speculations for its researchers.

The crucial perception of this paper is the tri-simulation function which is defined by Gubran et al.[10] to associate
some fixed point results. In 2012, Samet et al.[17] presented fixed point results for a new category of (α − ψ)-
contractive functions. In 2014, Popescu [15] introduced the perception of triangular α−orbital admissible function
and exhibited several fixed point results with the aid of generalized α-Geraghty contraction and triangular α-orbital
admissible function. In 2015, Khojasteh et al. [14] introduced Z-contraction with respect to a simulation function,
which generalizes the Banach contraction rule in [3] by combining various types of non-linear contractions. From there
on, Roldán et al.[16] and Argoubi et al.[1] modified the thought of simulation function and demonstrated some common
fixed point theorems utilizing the newly larger class of simulation functions. In 2016, Karapinar [13] introduced the
notion of α-admissible Z-contraction with the aid of simulation function and established fixed point results with the
assistance of triangular α−orbital admissible mapping in the framework of complete metric space. In 2017, Gubran
et al. [9] established common fixed point results for a pair of self-mappings via simulation function. In 2018, Aydi
et al. [2] proved fixed point results for α-admissible Z-contraction by using triangular α−orbital admissible mapping

Email address: drprofsahilarora@gmail.com (Sahil Arora)

Received: November 2022 Accepted: March 2024

http://dx.doi.org/10.22075/ijnaa.2024.29098.4058


2 Arora

in the context of complete quasi metric space. Afterwards, Chandok et al.[7] exhibited some results via simulation
map for Geraghty type contractive functions. In 2020, Bonab et al.[4] established tripled fixed point results with the
assistance of vector-valued metrics in the frame of generalized metric spaces. In 2021, Gubran et al. [10] introduced
a tri-simulation function involving three variables which is also designed to unify various contractions. In 2022,
Hosseinzadeh et al.[12] proved n-tuple fixed point results on partially ordered cone metric spaces with the aassistance
of α-series. Afterwards, many authors obtained several interesting results in different kind of metric spaces, for
example, see ([5],[6],[8],[11],[18]).

Now, we recollect some elementary results which are used in the sequel.

2 Preliminaries

In 2012, Samet et al. [17] presented the thought of α-admissible function and (ψ, α)-contractive type mappings
and established fixed point results for such mappings as pursues:

Definition 2.1. [17] Let Q : H → H and α : H×H → [0,+∞). Then, Q is named as α−admissible if α(Ω,℧) ≥ 1,
then α(QΩ,Q℧) ≥ 1, for each Ω, ℧ ∈ H.

Definition 2.2. [17] Let Ψ be the class of maps ψ : [0,∞) → [0,∞) fulfils the accompanying properties:

(i)ψ is upper semi-continuous, strictly increasing;

(ii){ψf (ℓ)}n∈Z+ tends to 0 as f → ∞, for all ℓ > 0;

(iii)ψ(ℓ) < ℓ, for every ℓ > 0.

These functions are known as comparison functions.

Definition 2.3. [17] Let Q : H → H be a given self-mapping in a metric space (H, d). Then, Q is termed as (ψ, α)−
contractive type mapping, if there exist two functions ψ ∈ Ψ and α : H×H → [0,+∞) such that

α(Ω, ℘)d(QΩ,Q℘) ≤ ψ(d(Ω, ℘)),

for all Ω, ℘ ∈ H.

In 2014, Popescu [15] introduced the concept of triangular α−orbital admissible as follows:

Definition 2.4. [15] Let Q : H → H be a map and α : H×H → [0,∞) be a function. We say that Q is triangular
α−orbital admissible if

(i) α(Ω,QΩ) ≥ 1 ⇒ α(QΩ,Q2Ω) ≥ 1;

(ii) α(Ω,℧) ≥ 1 and α(℧,Q℧) ≥ 1, then α(Ω,Q℧) ≥ 1.

Definition 2.5. [14] The mapping ξ : [0,∞)× [0,∞) → R is known as simulation function, if the following properties
satisfy:

(ξ1) ξ(0, 0) = 0;

(ξ2) ξ(e, f) < e− f, for all e, f > 0;

(ξ3) If {en}, {fn} are sequences in (0,∞) such that limn→∞{en} = limn→∞{fn} = ℓ ∈ (0,∞), then

lim
n→∞

sup ξ(en, fn) < 0.

In 2015, Argoubi et al. [1] observed that condition (ξ1) can be relaxed and results can be proved without taking
(ξ1) into consideration.

Definition 2.6. [1] The mapping ξ : [0,∞)× [0,∞) → R is known as simulation function if it fulfils (ξ2) and (ξ3).

The family of all simulation functions ξ : [0,∞) × [0,∞) → R is denoted by Z in [1]. In 2015, Roldán et al. [16]
observed that the third condition (namely: ξ3) is symmetric in both arguments of ξ but, in proofs, this property is
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not necessary. In fact, in practice, the arguments of Λ have different meanings and they play different roles. Then,
they slightly modify the condition ξ3 as follows:

(ξ′3) If {qn} and {fn} are sequences in (0,∞) such that limn→∞{qn} = limn→∞{fn} = ℓ and qn < fn, for each
n ∈ Z+, then

lim
n→∞

sup ξ(qn, fn) < 0.

In 2016, Karapinar [13] utilized α−admissible Z-contraction to establish some fixed point results as follows:

Theorem 2.7. [13] Let S be α-admissible Z-contraction with regard to Λ in a complete (H, d) and the accompanying
conditions fulfil:

(i) there exists x0 ∈ H so that α(x0, Sx0) ≥ 1;

(ii) S is triangular α−orbital admissible;

(iv) S is continuous.

Then, there exists Ω ∈ H, so that SΩ = Ω.

In 2018, Aydi et al. [2] established fixed point results for triangular α-admissible contraction mapping via simula-
tions functions in the class of quasi metric spaces as follows:

Theorem 2.8. [2] Let S be α-admissible Z-contraction with regard to Λ in a complete quasi metric space and the
accompanying conditions fulfil:

(i) there exists x0 ∈ H so that α(x0, Sx0) ≥ 1 and α(Sx0, x0) ≥ 1;

(ii) S is triangular α−admissible function;

(iv) S is continuous.

Then, there exists Ω ∈ H, so that SΩ = Ω.

In 2021, Gubran et al. [10] initiated the idea of tri-simulation function involving three variables as follows:

Definition 2.9. [10] The mapping Λ : [0,∞) × [0,∞) × [0,∞) → R is known as tri-simulation function, if the
following properties hold:

(Λ1) Λ(z, y, x) < x− yz, for all x, y > 0, z ≥ 0;

(Λ2) If {en}, {fn}, {gn} are sequences in (0,∞) such that fn < gn, for all n ∈ N, limn→∞ en ≥ 1 and limn→∞{fn} =
limn→∞{gn} = ℓ ∈ (0,∞), then

lim
n→∞

sup Λ(en, fn, gn) < 0.

Let us denote the set of all tri-simulation functions by T .
The authors in [10] utilized the class of auxiliary functions to define αT -contraction as follows.

Definition 2.10. [10] Let Q be a self-mapping in (H, d) and Λ ∈ T . Then, Q is said to be αT -contraction with
regard to Λ, if Λ(α(QΩ,Q℧), d(QΩ,Q℧), d(Ω,℧)) ≥ 0, for every Ω,℧ ∈ H, where α : H×H → R+.

Let Q,W : H → H be two maps. We identify the set of coincidence and common fixed points of Q and W by
C(Q,W) and CF(Q,W), where C(Q,W) = {z ∈ H : Qz = Wz} and CF(Q,W) = {z ∈ H : Qz = Wz = z}.

Throughout the paper, d will stand for metric and (H, d) will denote metric space.

3 Main Results

In this section, we present the idea of generalized αT -contractive pair of mappings with the assistance of tri-
simulation function and utilize this idea to set up outcomes of C(Q,W) and CF(Q,W) in (H, d). We likewise give an
example which yields the principle result. In the displayed work, we broaden the consequences of Gubran et al. [10].
Additionally, many existing outcomes in the casing of metric spaces are built up. We likewise apply our fundamental
Theorem to determine coincidence and common fixed point results for αT -contractive pair of mappings. We prove
our results by defining generalized αT -contractive pair of mappings with respect to Λ, which is a generalization of the
approach of αT -contraction.
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Definition 3.1. Let (H, d) be a metric space and S, T : H → H be given mappings. If there exist Λ ∈ T , ψ ∈
Ψ and α : H×H → [0,∞) such that for each x, y ∈ H, we have

Λ(α(Tx, Ty), d(Sx, Sy), ψ(M(Tx, Ty)) ≥ 0, (3.1)

where

M(Tx, Ty) = max

{
d(Tx, Ty),

d(Tx, Sx) + d(Ty, Sy)

2
,
d(Tx, Sy) + d(Ty, Sx)

2

}
.

Then, (S, T ) is called a generalized αT -contractive pair of mappings. If ψ(M(Tx, Ty)) = d(x, y), then S converts
into αT -contractive mapping with respect to Λ.

Theorem 3.2. Let (H, d) be a complete metric space and S, T : H → H be given mappings such that S(H) ⊆ T (H),
T (H) is closed. Suppose that (S, T ) is generalized αT -contractive pair of mappings and the following conditions fulfils:

(i) S is α−permissible with respect to T ;

(ii) There exists x0 ∈ H so that α(Tx0, Sx0) ≥ 1;

(iii) If {Txn} is a sequence in H such that α(Txn, Txn+1) ≥ 1 and Txn → Tu ∈ T (H) as n tends to ∞, then there
exists a subsequence {Txn(k)} of {Txn} such that α(Txn(k), Tu) ≥ 1, for all k.

Then, S and T possess a coincidence point.

Proof . In view of S(H) ⊆ T (H), we can select a point x1 ∈ H, so that Sx0 = Tx1. In a similar way, we can choose
xn+1 in H so that

Sxn = Txn+1. (3.2)

Using (ii), we get α(Tx0, Sx0) = α(Tx0, Tx1) ≥ 1, Since, S is α−permissible w.r.t T , we get

α(Txn, Txm) ≥ 1, (3.3)

for all m > n ≥ 1. If Sxn+1 = Sxn for some n, then by (3.2), we obtain Sxn+1 = Txn+1. So, S and T have a
coincidence point at x = xn+1 and so we have completed the proof. Further, we assume that d(Sxn, Sxn+1) > 0.
Putting x = xn and y = xn+1 in (3.1), we get

0 ≤ Λ(α(Txn, Txn+1), d(Sxn, Sxn+1), ψ(M(Txn, Txn+1))),

where

M(Txn, Txn+1) = max

{
d(Txn, Txn+1),

d(Txn, Sxn) + d(Txn+1, Sxn+1)

2
,
d(Txn, Sxn+1) + d(Txn+1, Sxn)

2

}
.

Using (3.2), we get

M(Txn, Txn+1) = max

{
d(Sxn−1, Sxn),

d(Sxn−1, Sxn) + d(Sxn, Sxn+1)

2
,
d(Sxn−1, Sxn+1) + d(Sxn, Sxn)

2

}
.

But,

d(Sxn−1, Sxn+1)

2
≤ max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)}.

Therefore,

M(Txn, Txn+1) ≤ max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)}. (3.4)
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Using (3.1), we get

0 ≤ Λ(α(Txn, Txn+1), d(Sxn, Sxn+1), ψ(M(Txn, Txn+1)))

< ψ(M(Txn, Txn+1))− α(Txn, Txn+1)d(Sxn, Sxn+1),

which indicate that
α(Txn, Txn+1)d(Sxn, Sxn+1) < ψ(M(Txn, Txn+1)).

Therefore,

d(Sxn, Sxn+1) ≤ α(Txn, Txn+1)d(Sxn, Sxn+1). (3.5)

By combining above two inequalities, we get

d(Sxn, Sxn+1) < ψ(M(Txn, Txn+1)).

Using (3.4), we obtain

d(Sxn, Sxn+1) ≤ ψ(max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)}). (3.6)

If max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)} = d(Sxn, Sxn+1), therefore, d(Sxn−1, Sxn) ≤ d(Sxn, Sxn+1). By (3.6), we
have d(Sxn, Sxn+1) < ψ(d(Sxn, Sxn+1)). Using property of comparison function, ψ(d(Sxn, Sxn+1)) < d(Sxn, Sxn+1).
So, d(Sxn, Sxn+1) < d(Sxn, Sxn+1), which is a contradiction. So, max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)} = d(Sxn−1, Sxn).
Thus, d(Sxn, Sxn+1) < ψ(d(Sxn−1, Sxn)).Using property of comparison function, ψ(d(Sxn−1, Sxn)) < d(Sxn−1, Sxn).]
Therefore, d(Sxn, Sxn+1)) < d(Sxn−1, Sxn). Hence, we conclude that the sequence {d(Sxn−1, Sxn)} is decreasing se-
quence of non-negative real numbers. Accordingly, there is some r ≥ 0, such that limn→∞ d(Sxn−1, Sxn) = r ≥ 0. We
assert that r = 0. Let us assume that, r > 0. Therefore,

lim
n→∞

α(Txn, Txn+1)d(Sxn, Sxn+1) = r.

Letting n→ ∞ on both sides of (3.5), we get limn→∞ α(Txn, Txn+1) = 1. Moreover by (Λ2), we have

0 ≤ lim
n→∞

sup Λ(α(Txn, Txn+1), d(Sxn, Sxn+1), d(Sxn−1, Sxn)) < 0,

which is a contradiction. Thus, we have

lim
n→∞

d(Sxn−1, Sxn) = 0. (3.7)

Now, we assert that {Sxn} is a Cauchy sequence. Let us imagine, there exists ε > 0, for each n ∈ Z+ and n,m ∈ Z+

with n > m > Z+ such that d(xm, xn) > ε. From (3.7), there exists n0 ∈ Z+ such that

d(Sxn, Sxn+1) < ε, ∀n > n0. (3.8)

Consider {xnk
} and {xmk

} of {xn}, such that

n0 ≤ nk < mk < mk+1 and d(Sxmk
, Sxnk

) > ε, (3.9)

for all k. Also,

d(Sxmk−1
, Sxnk

) ≤ ε, (3.10)

for every k, where mk is picked as the smallest number m ∈ {nk, nk+1, nk+2, . . .} so that (3.9) is satisfied. Also,
nk + 1 ≤ mk for every k. But, nk + 1 ≤ mk is infeasible due to (3.8) and (3.9). Therefore, nk + 2 ≤ mk, for each k.
It yields that nk + 1 < mk < mk + 1 for all k. According to the triangle inequality, (3.9) and (3.10), we obtain

ε < d(Sxmk
, xnk

) ≤ d(Sxmk
, Sxmk−1

) + d(Sxmk−1
, xnk

) ≤ d(xSmk
, Sxmk−1

) + ε.
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Due to (3.7), we deduce that

lim
k→∞

d(Sxmk
, Sxnk

) = ε. (3.11)

By using the triangle inequality, we obtain

d(Sxmk
, Sxnk

) ≤ d(Sxmk
, Sxmk+1

) + d(Sxmk+1
, Sxnk+1

) + d(Sxnk+1
, Sxnk

).

Also, we have

d(Sxmk+1
, Sxnk+1

) ≤ d(Sxmk+1
, Sxmk

) + d(Sxmk
, Sxnk

) + d(Sxnk
, Sxnk+1

).

With the aid of (3.7), we find that

lim
k→∞

d(Sxmk+1, Sxnk+1) = ε. (3.12)

Specifically, there occur n1 ∈ Z+ in order that for all k ≥ n1, we acquire

d(Sxmk
, Sxnk

) >
ε

2
> 0, d(Sxmk+1, Sxnk+1) >

ε

2
> 0. (3.13)

Moreover, since S fulfils (iii) of Theorem 3.2, we acquire

α(Txmk
, Txnk

) ≥ 1.

Since, (S, T ) is generalized αT −contractive pair of mappings, we get

0 ≤ Λ(α(Txmk
, Txnk

), d(Sxmk
, Sxnk

), ψ(M(Txmk
, Txnk

))

= Λ(α(Txmk
, Txnk

), d(Txmk+1, Txnk+1), ψ(M(Txmk
, Txnk

))

< ψ(M(Txmk
, Txnk

)− α(Txmk
, Txnk

)d(Txmk+1, Txnk+1)

< ψ(M(Txmk
, Txnk

)).

Consequently, we have

0 < d(Txmk+1, Txnk+1)

< α(Txmk
, Txnk

)d(Txmk+1, Txnk+1)

< ψ(M(Txmk
, Txnk

))

< d(Txmk
, Txnk

).

From above inequality, together with (3.11) and (3.12), we conclude that

sn = α(Txmk
, Txnk

)d(Txmk+1, Txnk+1) → ε and tn = d(Txmk
, Txnk

) → ε.

With the aid of (Λ2), we acquire

0 ≤ lim
k→∞

supΛ(α(Txmk
, Txnk

), d(Txmk+1, Txnk+1), d(Txmk
, Txnk

)) < 0,

which is a contradiction. Hence, {Txn} is a Cauchy sequence. Since T (H) is closed, so there exists u ∈ H such that

lim
n→∞

Txn = Tu.

Now, we show that S and T possess a coincidence point u ∈ H. On the contrary, assume that d(Su, Tu) > 0.

0 ≤ Λ(α(Txnk
, Tu), d(Sxnk

, Su), ψ(M(Txnk
, Tu)))
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< ψ(M(Txnk
, Tu))− α(Txnk

, Tu)d(Sxnk
, Su).

Thus,

α(Txnk
, Tu)d(Sxnk

, Su) < ψ(M(Txnk
, Tu)). (3.14)

Since by condition (iii) of Theorem 3.2, we have α(Txn(k), Tu) ≥ 1. By the use of triangle inequality, we obtain

d(Tu, Su) ≤ d(Tu, Sxnk
) + d(Sxnk

, Su)

≤ d(Tu, Sxnk
) + α(Txnk

, Tu)d(Sxnk
, Su).

Using (3.14), we get d(Tu, Su) ≤ d(Tu, Sxnk
) + ψ(M(Txnk

, Tu)), where

M(Txnk
, Tu) = max

{
d(Txnk

, Tu),
d(Txnk

, Sxnk
) + d(Tu, Su)

2
,
d(Txnk

, Su) + d(Tu, Sxnk
)

2

}
.

According to the above equality, we get

d(Tu, Su) ≤ d(Tu, Sxnk
) + ψ(M(Txnk

, Tu)),

≤ d(Tu, Sxnk
) + ψ

(
max

{
d(Txnk

, Tu),
d(Txnk

, Sxnk
) + d(Tu, Su)

2
,
d(Txnk

, Su) + d(Tu, Sxnk
)

2

})
.

Letting k → ∞ in the above inequality yields

d(Tu, Su) ≤ ψ(
d(Tu, Su)

2
) < (

d(Tu, Su)

2
),

which is a contradiction. Hence, our contemplation is faulty and d(Su, Tu) = 0, which indicates that u ∈ C(T, S). □

Theorem 3.3. In conjunction with the assumptions of above Theorem, assume that for all z1, z2 ∈ C(T, S), there
exists z3 ∈ H such that α(Tz1, T z3) ≥ 1, α(Tz2, T z3) ≥ 1 and S, T commute at u ∈ C(T, S). Then, there exists a
unique u ∈ H such that u ∈ CF(S, T ).

Proof . We wish to take three steps:

Step 1. We want to prove that if z1, z2 ∈ C(T, S), then gz1 = gz2. By given assumption, there exists z ∈ H such
that

α(Tz1, T z) ≥ 1, α(Tz2, T z) ≥ 1. (3.15)

Also, S(H) ⊆ T (H). Now, we define the sequence {zn} in H by Tzn+1 = Szn, for all n ≥ 0 and z0 = z. Since, every
α−permissible pair of mappings are α−admissible, we have from (3.15) that α(Tz1, T zn) ≥ 1 and α(Tz2, T zn) ≥ 1.
Applying inequality (3.1), we obtain

0 ≤ Λ(α(Tz1, T zn), d(Sz1, Szn), ψ(M(Tz1, T zn))) < ψ(M(Tz1, T zn))− α(Tz1, T zn)d(Sz1, Szn).

Then α(Tz1, T zn)d(Sz1, Szn) < ψ(M(Tz1, T zn)). Using (3.5), we obtain

d(Sz1, Szn) ≤ α(Tz1, T zn)d(Sz1, Szn). (3.16)

Also, d(Sz1, Szn) = d(Tz1, T zn+1). Therefore,

d(Tz1, T zn+1) ≤ ψ(M(Tz1, T zn)), (3.17)

where

M(Tz1, T zn) = max

{
d(Tz1, T zn),

d(Tz1, Sz1) + d(Tzn, Szn)

2
,
d(Tz1, Szn) + d(Tzn, Sz1)

2

}
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≤ max{d(Tz1, T zn), d(Tz1, T zn+1).

Using (3.17), we get d(Tz1, T zn+1) ≤ ψ(max{d(Tz1, T zn), d(Tz1, T zn+1)}). Let us imagine that d(Tz1, T zn) > 0,
for each n. If max{d(Tz1, T zn), d(Tz1, T zn+1)} = d(Tz1, T zn+1), then,

d(Tz1, T zn+1) ≤ ψ(d(Tz1, T zn+1)) < d(Tz1, T zn+1),

which is a contradiction. Thus, we have max{d(Tz1, T zn), d(Tz1, T zn+1)} = d(Tz1, T zn). So, d(Tz1, T zn+1) ≤
ψ(d(Tz1, T zn)), that is, {d(Tz1, T zn)} is a monotonically decreasing sequence in R+. Thus, we can find ℓ ≥ 0
such that limn→∞ d(Tz1, T zn) = ℓ. We claim that ℓ = 0. Let us imagine that 0 < ℓ. With the assistance of (3.15), we
get

α(Tz1, T zn)d(Tz1, T zn+1) = ℓ.

Letting sn = α(Tz1, T zn)d(Tz1, T zn+1), tn = d(Tz1, T zn) and taking (Λ2) into account, we get that

0 ≤ lim
n→∞

sup Λ(α(Tz1, T zn), d(Tz1, T zn+1), d(Tz1, T zn)) < 0,

which is a contradiction. Thus, we have limn→∞ d(Tz1, T zn) = ℓ = 0. With the assistance of same approach, we can
prove that limn→∞ d(Tz2, T zn) = 0. Therefore, Tz1 = Tz2. Now, we exhibit the presence of a common fixed point.
Let z1 ∈ C(T, S), that is, Tz1 = Sz1. Due to the commutativity of S and T at their coincidence points, we get

T 2z1 = TTz1 = TSz1 = STz1. (3.18)

Let us suppose that, Tz1 = u. From (3.18), we get Tu = Su. Thus, u ∈ C(T, S). From the given assumption,
Tz1 = Tu = u = Su. Then, u ∈ CF(T, S). Now, we exhibit that fixed point is unique. Imagine that S and T possess
another common fixed point z3. Then, z3 ∈ CF(T, S). From the given assumption, we have z3 = Tz3 = Tu = u.
Consequently, the common fixed point of S and T is unique. □

Corollary 3.4. [10] Let S : H → H be given map in complete (H, d). If there exists Λ ∈ T and α : H×H → [0,∞]
such that

Λ(α(Ω,℧), d(SΩ, S℧), d(Ω,℧)) ≥ 0,

for every Ω,℧ ∈ H and fulfilling the following situations:

(i) There exists Ω0 ∈ H such that α(Ω0, SΩ0) ≥ 1;

(ii) S is α− permissible;

(iii) If {Ωn} ∈ H, so that α(Ωn,Ωn+1) ≥ 1, for all n and Ωn → Θ1 ∈ H as n→ ∞, then there exists a subsequence
{Ωn(k)} of {Ωn}, such that α(Ωn(k),Θ1) ≥ 1, for every k. Then, S possess a fixed point.

Proof . The result proceeds from main Theorem 3.2. □

Corollary 3.5. Let S : H → H, be a given function in complete metric space. If there exist Λ ∈ T and α : H×H →
[0,∞] such that

Λ(α(Ω,℧), d(SΩ, S℧),M(SΩ, S℧)) ≥ 0,

where

M(SΩ, S℧) = max

{
d(Ω,℧),

d(Ω, SΩ) + d(℧, S℧)
2

,
d(Ω, S℧) + d(℧, SΩ)

2

}
,

for every Ω,℧ ∈ H and fulfilling the following conditions

(i) there exists Ω0 ∈ H such that α(Ω0, SΩ0) ≥ 1;

(ii) S is α-permissible;

(iii) If {Ωn} ∈ H, such that α(Ωn,Ωn+1) ≥ 1 and Ωn → Θ1 ∈ H as n → ∞, then there exists a subsequence
{Ωn(k)} of {Ωn}, such that α(Ωn(k),Θ1) ≥ 1, for every k. Then, S possess a fixed point.
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Proof . The result proceeds from main Theorem 3.2 by placing T as Identity function. □

Example 3.6. Consider H = [0,+∞) associated with the metric

d(Ω,℧) =

{
0, if Ω = ℧,
max{Ω,℧}, otherwise,

for all Ω,℧ ∈ H. Define the self mappings S and T by S(ℓ) = ℓ and T (ℓ) = 2ℓ for ℓ ∈ H, with ψ(t) = t
2 . Let

Λ : H×H×H → R be defined as

Λ(ρ, σ, ℘) = ρ℘− σ + 2

σ + 1
σ.

Now, we formalize the mapping α as

α(Θ1,Θ2) =

{
1, if (Θ1,Θ2) ∈ [0, 1],

0, otherwise.

If M(TΩ, T℧) = d(TΩ, T℧). Thus,

Λ(α(TΩ, T℧), d(SΩ, S℧), ψ(M(TΩ, T℧)) = Λ(α(TΩ, T℧), d(SΩ, S℧), ψ(d(TΩ, T℧))
= Λ(1,℧, 2℧)

= 2℧− ℧+ 2

(℧+ 1)

℧
2

=
4℧(℧+ 1)− ℧(℧+ 2)

2(℧+ 1)

=
4℧2 + 4℧− ℧2 − 2℧

2(℧+ 1)

=
3℧2 + 2℧
2(℧+ 1)

≥ 0.

If

M(TΩ, T℧) =
d(TΩ, SΩ) + d(T℧, S℧)

2
or

d(TΩ, S℧) + d(T℧, SΩ)
2

.

Thus,

Λ(α(TΩ, T℧), d(SΩ, S℧), ψ(M(TΩ, T℧)) = Λ(1,℧,Ω+ ℧)

= Ω + ℧− ℧+ 2

(℧+ 1)

℧
2

=
(2Ω + 2℧)(℧+ 1)− ℧(℧+ 2)

2(℧+ 1)

=
2(Ω℧+Ω) + ℧2

2(℧+ 1)
≥ 0.

Clearly, (S, T ) is a generalized αT -contractive pair of mappings and ψ(t) = t
2 . Now, all the assumptions of Theorem

3.2 and Theorem 3.3 are satisfied. Therefore, S and T have a coincidence point. Also, 0 ∈ C(S, T ) and 0 ∈ CF(S, T ).

4 Application to the integral equation

In this section, we give an application of the integral equation.
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Theorem 4.1. Let us consider the non-linear Fredholm integral equation

S1x(t) = S2(t) +

∫ b

a

F (t, s, x(s))ds, (4.1)

for some a, b ∈ R with a < b, S2 : [a, b] → R and F : [a, b]2 ×R → R be two continuous functions. Also, imagine that
the subsequent properties hold:

(i) S1 : C[a, b] → C[a, b] is a continuous mapping;

(ii) F satisfying

| F (t, s, x(s)) | + | F (t, s, y(s)) | ≤ 1

b− a
ψ(max

{
| S2x(t) | + | S2y(t) |,

(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,

(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

}
− 2 | S2(t) |,

for all t, s ∈ [a, b]. Then, the non-linear Fredholm integral equation (4.1) owns a unique solution in C[a, b].

Proof . We know that C[a, b] is complete with respect to the metric σ : C[a, b]× C[a, b] −→ R+ defined as

σ(x, y) = sup
t∈[a,b]

| x(t)− y(t) |,

where x, y ∈ C[a, b]. Let d : C[a, b]× C[a, b] −→ R+ having

d(x, y) = sup
t∈[a,b]

| x(t) | +supt∈[a,b] | y(t) |,

where x, y ∈ C[a, b]. Now,

| S1x(t) | + | S1y(t) | =| S2(t) +

∫ b

a

F (t, s, x(s))ds | + | S2(t) +

∫ b

a

F (t, s, y(s))ds |

≤| S2(t) | + |
∫ b

a

F (t, s, x(s))ds | + | S2(t) | + |
∫ b

a

F (t, s, y(s))ds |

≤ 2 | S2(t) | + |
∫ b

a

F (t, s, x(s))ds | + |
∫ b

a

F (t, s, y(s))ds |

≤ 2 | S2(t) | +
∫ b

a

| F (t, s, x(s)) | ds+
∫ b

a

| F (t, s, y(s)) | ds

≤ 2 | S2(t) | +
∫ b

a

(| F (t, s, x(s)) | + | F (t, s, y(s)) |)ds

≤ 2 | S2(t) | +
∫ b

a

(
1

b− a
ψ(max

{
| S2x(t) | + | S2y(t) |,

(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,

(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

}
− 2 | S2(t) |

)
ds

= 2 | S2(t) | +
(

1

b− a
ψ(max

{
| S2x(t) | + | S2y(t) |,

(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,

(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

}
− 2 | S2(t) |

)∫ b

a

ds

= ψ

(
max

{
| S2x(t) | + | S2y(t) |,

(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,
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(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

})
≤ ψ

(
max

{
p(S2x, S2y),

p(S2x, S1x) + p(S2y, S1y)

2
,
p(S2x, S1y) + p(S2y, S1x)

2

})
= ψ(M(S2x, S2y)),

for all x, y ∈ C[a, b] and t ∈ [0,∞]. Consequently,

sup
t∈[a,b]

| S1x(t) | + sup
t∈[a,b]

| S1y(t) |≤ ψ(M(S2x, S2y)),

which indicates that
d(S1x, S1y) ≤ ψ(M(S2x, S2y)).

Now, we formalize the mapping η : H×H → [0,∞) as

α(Θ1,Θ2) =

{
1, if (Θ1,Θ2) ∈ [0, 1],

0, otherwise.

Thus, Λ(α(Θ1,Θ2), d(S1x, S1y), ψ(M(S2x, S2y))) ≥ 0. Therefore, by Theorem 3.2, the non-linear Fredholm integral
equation (4.1) owns a solution. □

5 Conclusion

In this work, we investigate the existence of a coincident point of generalized α-permissible T -contraction. The
proposed work contributes to the formulation of a unique common fixed point with the help of commutative property
of two maps. The presented theorems enhance various results present in the literature. Specifically speaking, we
established the results for new contraction via new kind of simulation function in three variables. Additionally, an
illustrative example and corollaries are provided to demonstrate the main results. Moreover, as an application, we
employ the achieved result to earn the existence criteria of the solution of a kind of non-linear Fredholm integral
equation.
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