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Abstract

In this article, firstly we investigate some properties of the boundary curvature of the numerical range. In the next,
we define M(T ) as the smallest constant such that dist(λ, σ(T )) ≤ M(T )Rλ(T ), for all λ ∈ ∂W (T ), where Rλ(T ), the

radius curvature at the point λ, is defined. Also, we investigate for non-convexoid T , M(T ) = sup dist(λ,σ(T ))
Rλ(T ) , where

the supremum on the right-hand side is taken along all points λ ∈ ∂W (T ) with finite non-zero curvature. Finally, the
value of M(T ) will be calculated for the self-inverse operators.
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1 Introduction and Preliminaries

The numerical range was initially proposed by Toeplitz [29] in 1918 for matrices. This idea was subsequently
expanded upon by Lumer [16] in 1961 and Bauer [4] in 1962 for linear operators on Banach spaces. In 1975, Lightbourne
and Martin [15] delivered a thorough exposition of it for semi-norms. For further insights into the numerical range of
bounded linear operators on Hilbert spaces, the numerical range of bounded linear operators on Banach spaces, and
the numerical range of an element of C∗−algebras, readers are directed to references [6, 7, 30, 31].

The determination of the norm of self-commutators of the operator T has been a subject of debate in numerous
academic works. In the year 2009 , Abdollahi established the correlations among these norm magnitudes, particu-
larly for self-inverse operators. Moreover, in specific scenarios involving automorphic composition operators, it was
illustrated that these discoveries facilitated the replacement of laborious calculations with more efficient options, as
indicated in [1].

Boundary curvature holds significant importance in the fields of engineering, physics, and chemistry. The concept
of curvature, representing the bending or deviation at a specific point, is symbolized by k(t). In the realm of curvature
calculations, a fundamental grounding in mathematics suffices. In the year 2009, Pengzi and Luen-Fai [19] delved into
a comprehensive exploration of the volume function concerning constant scalar curvature metrics with a designated
boundary metric. Their research not only outlined the essential criteria for a metric to be deemed a critical point but
also showcased that geodesic balls exclusively function as critical points in space forms. The classical existence and
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uniqueness theory of Jenkins-Serrin was extended for the constant mean curvature equation by Hauswirth et al. in
2009. This study permits prescribed boundary data, including plus or minus infinity, on entire arcs of boundary (see
[13, 14]).

In 2013, Pokorný and Rataj [20] demonstrated that for any compact domain in a Euclidean space with a delta-
convex boundary, there exists a unique Legendrian cycle such that the associated curvature measures satisfy a local
version of the Gauss–Bonnet formula. In 2016, Šprlák and Novák [27] conducted a study on modeling the Earth’s
gravitational field, where gravitational curvatures introduce new types of visibility. Initially, the gravitational curvature
tensor was decomposed into 6 parts, then expanded using third-order tensor spherical harmonics. Subsequently,
boundary-value problems for gravitational curvature were formulated and solved in spectral and spatial domains for
four combinations of gravitational curvatures.

In 2017, one of the applications of boundary curvatures was explained by Zhong et al. [32], the distribution of grain
boundary curvatures is analyzed as a function of 5 independent crystallographic parameters in austenitic and ferritic
steel. Local curvatures and integral mean curvatures are obtained from three-dimensional electron backscattered
diffraction data [24, 25, 26].

In the following, we discuss some applications of boundary curvature, Marcel Campen et al. [8] presented an
effective algorithm for calculating a discrete metric with specified Gaussian curvature at all interior vertices and
geodesic curvature along a mesh boundary in 2021. After that, Niewczas et al. [18] conducted a study to examine the
impact of the grain boundary curvature model type on the predictions of static recrystallization (SRX) simulations
using cellular automata (CA) in 2022. The issue of calculating M(A) for the matrix A was initially discussed in the
works of Toeplitz and Hausdorff. The concept of a constant M and M = supn Mn was introduced by Mantis in 1997,
with a negative outcome. The determination of M(A) for 2 × 2 matrices, as well as certain special 3 × 3 matrices,
has been addressed in various articles. In this paper the definitions and important theorems concerning the boundary
curvature of the numerical range are presented. Finally, The value of M(T ) will be calculated for the numerical range
of self-inverse operators T .

2 Main Results

In this section, consider the numerical range of the operator T from the bounded operators on the Hilbert space
H (T ∈ B(H)) defined as W (T ) := {⟨Tx, x⟩ : x ∈ H, ∥x∥ = 1} where ∥.∥ denotes the norm and ⟨., .⟩ is the inner
product on the Hilbert space. W (T ) forms a subset of the complex plane. The key property of the numerical range
is its convexity, as per the Töplitz-Hausdorff theorem. Another notable aspect is its spectrum operator, which has
been studied by some researchers (for example, [3, 23]). W (T ) is a connected set with a piecewise analytic boundary
∂W (T ). For further details, see [12]. Therefore, for all except finitely many points λ ∈ ∂W (T ), the radius of curvature
Rλ(T ) of ∂W (T ) at λ is well defined. According to the convention, Rλ(T ) = 0 if λ is a corner point of W (T ), and
Rλ(T ) = ∞ if λ lies inside a flat portion of ∂W (T ). Suppose dist(λ, σ(T )) denote the distance from λ to σ(T ), we
define M(T ) the smallest constant so that

dist(λ, σ(T )) ≤ M(T )Rλ(T ), ∀ λ ∈ ∂W (T ), (2.1)

where Rλ(T ) is defined. By attention to Donoghe’s theorem dist(λ, σ(T )) = 0 whenever Rλ(T ) = 0. Therefor,
M(T ) = 0 for all convexoid element T . As a reminder, a convexoid element is an element in which the numerical
range is equal to the convex hull of its spectrum. For non-convexoid T , For non-convexoid T ,

M(T ) = sup
dist(λ, σ(T )

Rλ(T )
. (2.2)

The supremum on the right-hand side is taken over all points λ ∈ ∂W (T ) with finite non-zero curvature. Computing
M(T ) for any given T is an intriguing challenge. Similarly, computing M(A) for any arbitrary n×n matrix A remains
an interesting open problem.

Definition 2.1. For each infinite, convex and compact subset C of the complex plane, λ(θ) we define it as follows.

λ(θ) = max{Re(e−iθz) : z ∈ C}, 0 ≤ θ ≤ 2π.

For each infinite, convex and compact subset λ(θ) of the complex plane X, we define it as follows.
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Lemma 2.2. If A ∈ Cn×n, then the following relation holds for λ(θ).

λ(θ) = maxσ(AR cos θ +AJ sin θ), 0 ≤ θ ≤ 2π,

where AR is the real part and AJ is the imaginary part of the matrix A in the following form.

AR =
1

2
(A+A∗), AJ =

1

2i
(A−A∗).

Proof . If we put C = W (A) in definition 2.1, where A is matrix n× n. Then we have:

λ(θ) = maxW (Re(e−iθA))

= maxσ(Re(e−iθA))

= maxσ(cos θ.Re(A) + sin θ.Im(A)), 0 ≤ θ ≤ 2π

= maxσ(AR cos θ +AJ sin θ), 0 ≤ θ ≤ 2π.

□

Proposition 2.3. The parametric representation of ∂W (T ) in the form of A = (x(θ), y(θ)) which is 0 ≤ θ ≤ 2π such
that: {

x(θ) = λ(θ) cos θ − λ
′
(θ) sin θ

y(θ) = λ(θ) sin θ + λ
′
(θ) cos θ.

Proof . The equation of the tangent line at point A ∈ ∂W (T ) is:

x(θ) cos θ + y(θ) sin θ − λ(θ) = 0. (2.3)

On the other hand, the slope of the tangent line is as follows.

y
′
(θ)

x′(θ)
= − cot θ.

As a result, we have
x

′
(θ) cos θ + y

′
(θ) sin θ = 0. (2.4)

Now, if we take the derivative of the equation of the tangent line of relation (2.3) with respect to θ, we have:

x
′
(θ) cos θ − x(θ) sin θ + y

′
(θ) sin θ + y(θ) cos θ − λ

′
(θ) = 0,

as a result
−x(θ)sinθ + y(θ)cosθ = λ

′
(θ). (2.5)

It can be concluded from relations (2.3) and (2.5),{
x(θ) cos θ + y(θ) sin θ = λ(θ),

−x(θ) sin θ + y(θ) cos θ = λ
′
(θ).

(2.6)

Now we have (2.6) equations from solving the device:{
x(θ) cos θ sin θ + y(θ) sin2 θ = λ(θ) sin θ,

−x(θ) cos θ sin θ + y(θ) cos2 θ = λ
′
(θ) cos θ.

Hence, y(θ)(sin2 θ + cos2 θ) = λ(θ) sin θ + λ
′
(θ) cos θ. Then, y(θ) = λ(θ) sin θ + λ

′
(θ) cos θ . Therefore,{

x(θ) cos2 θ + y(θ) sin θ cos θ = λ(θ) cos θ,

x(θ) sin2 θ − y(θ) cos θ sin θ = −λ
′
(θ) sin θ.
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Then x(θ)(cos2 θ + sin2 θ) = λ(θ) cos θ − λ
′
(θ) sin θ and so x(θ) = λ(θ) cos θ − λ

′
(θ) sin θ. Therefore, the machine’s

calculations lead to the following answer and the end of the proof.{
x(θ) = λ(θ) cos θ − λ

′
(θ) sin θ

y(θ) = λ(θ) sin θ + λ
′
(θ) cos θ

□

Lemma 2.4. (Elliptic Lemma): Let A ∈ C2×2, then W (A) is an ellipse, and the eigenvalues of the matrix A are the
foci of the ellipse.

In the continuation of this article, while examining the numerical range of self-inverse operators of T , we will
calculate the value of M(T ) exactly for them.

Definition 2.5. The operator T is said to be self inverse if we have T 2 = I. The self-inverse operator T is called
non-trivial if T ̸= ±I.

Now we calculate the non-trivial inverse of the M(T ) value for the self-operators. Let the operator T be self-inverse,
i.e., T 2 = I but T ̸= ±I, so σ(T ) = ±1. Also ∂W (T ) is an ellipse with foci at ±1 and major/minor axis ∥T∥ ± 1

∥T∥ .

The equations of ∂W (T ) are as follows:

∂W (T ) = a cos θ + ib sin θ with a2 = b2 + 1.

Therefore, we perform preliminary calculations as follows:{
x = a cos θ =⇒ x

′
= −a sin θ =⇒ x

′′
= −a cos θ,

y = b sin θ =⇒ y
′
= b cos θ =⇒ y

′′
= −b sin θ.

So

Kλ(T ) =
∥x′

y
′′ − y

′
x

′′∥
(x′2 + y′2)

3
2

=
|ab sin2 θ + ab cos2 θ|
(a2 sin2 θ + b2 cos2 θ)

3
2

=
|ab|

(a2 sin2 θ + b2 cos2 θ)
3
2

.

In the end it is the result:

Rλ(T ) =
(a2 sin2 θ + b2 cos2 θ)

3
2

|ab|
. (2.7)

According to the relation (7), the radius of curvature is:

Rλ(T ) =
(a2(1− cos2 θ) + b2 cos2 θ)

3
2

|ab|

=
(a2 − a2 cos2 θ + b2 cos2 θ)

3
2

|ab|

=
(a2 − cos2 θ(a2 − b2))

3
2

|ab|

=
(a2 − cos2 θ)

3
2

|ab|
.

So we have

Rλ(T ) =
(a2 − cos2 θ)

3
2

|ab|
. (2.8)
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On the other hand, the distance of point λ = (x, y) on the border of the ellipse from the nearest center of the
ellipse, i.e. F = (1, 0), is calculated as follows:

dist(λ, σ(T )) =
√
(x− 1)2 + y2

=
√
(a cos θ − 1)2 + (b sin θ)2

=
√
a2 cos2 θ − 2a cos θ + 1 + b2 sin2 θ

=
√

a2 cos2 θ − 2a cos θ + 1 + b2(1− cos2 θ)

=
√

cos2 θ(a2 − b2)− 2a cos θ + 1 + b2

=
√
cos2 θ − 2a cos θ + a2

=
√

(a− cos θ)2 = |a− cos θ|.

As a result, we have
dist(λ, σ(T )) = |a− cos θ|. (2.9)

We have relations (2.8) and (2.9),

dist(λ, σ(T ))

Rλ(T )
=

ab(a− cos θ)

(a2 − cos2 θ)

3
2

=⇒ M(T ) = sup
(ab(a− cos θ)

(a2 − cos2 θ)

3
2)

.

Now, with a simple general mathematical calculation, the value of M(T ) is obtained as follows:

M(T ) = max

{√
a2 − 1

a
,

a

a+ 1

}
. (2.10)

We know

2b = ||T || − 1

||T ||
, 2a = ||T ||+ 1

||T ||
.

Therefore, by placing in relation (2.10), the value of M(T ) is:

M(T ) = max

{√
1
4 (||T ||2 + 2 + 1

||T ||2 )− 1

1
2 (||T ||+

1
||T || )

,

1
2 (||T ||+

1
||T || )

1
2 (||T ||+

1
||T || ) + 1

}

= max

{√
||T ||4+1−2||T ||2

4||T ||2

||T ||2+1
2||T ||

,

||T ||2+1
2||T ||

||T ||2+2||T ||+1
2||T ||

}

= max

{√
(||T ||2−1)2

4||T ||2

||T ||2+1
2||T ||

,

||T ||2+1
2||T ||

(||T ||+1)2

2||T ||

}

= max

{
||T ||2 − 1

||T ||2 + 1
,

||T ||2 + 1

(||T ||+ 1)2

}

Therefore, the important result of the article in summary from the above calculation process leads to the proof of
the following basic theorem.

Theorem 2.6. Suppose the T operator is inverse and non-trivial, then we have

M(T ) = max

{
∥T∥2 − 1

∥T∥2 + 1
,

∥T∥2 + 1

(∥T∥+ 1)2

}
. (2.11)
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Example 2.7. Let the operator T : R2 → R2 be defined by T (x, y) = (−y,−x). This operator is self-inverse since
T 2 = I, where I is the identity operator. Moreover, T is non-trivial since T ̸= ±I.

To calculate the maximum value of the norm of the operator T using the above theorem, we first need to compute
the norm of the operator T as follows:

∥T∥ = sup
∥x∥=1

∥T (x)∥.

Now, applying the above definition, we can calculate the norm of T as follows:

∥T (x, y)∥ = ∥(−y,−x)∥ =
√

(−y)2 + (−x)2 =
√

x2 + y2.

By substituting x = cos(θ) and y = sin(θ), we have:

∥T (x, y)∥ =
√

x2 + y2 = 1.

Now, by substituting ∥T∥ = 1 into the formula, we can find the maximum value of the norm of the operator T as
follows:

M(T ) = max

{
12 − 1

12 + 1
,
12 + 1

(1 + 1)2

}
= max

{
0,

2

4

}
=

1

2
.

3 Conclusions

In consideration of the applications of boundary curvature in engineering, physics, and chemistry, we initially
explored certain properties of the boundary curvature of the numerical range. Secondly, we introduced M(T ) as the
smallest constant such that dist(λ, σ(T )) ≤ M(T )Rλ(T ), for all λ ∈ ∂W (T ). Subsequently, for non-convexoid T , we

have M(T ) = sup dist(λ,σ(T ))
Rλ(T ) , where the supremum on the right-hand side is taken over all points λ ∈ ∂W (T ) with

finite non-zero curvature. Lastly, we determined the value of M(T ) for the self-inverse operators.
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